LIDAR WITH FREE SPACE COUPLED DETECTORS

Information

  • Patent Application
  • 20220413138
  • Publication Number
    20220413138
  • Date Filed
    June 27, 2022
    2 years ago
  • Date Published
    December 29, 2022
    a year ago
Abstract
A light detection and ranging system can consist of a detector body constructed of Germanium and configured with a Mie resonance. A metal contact and metasurface can each be positioned atop the detector body with the metal contact preventing screening of light to the detector body. Impedance mismatch can be corrected to eliminate reflection from the metasurface.
Description
Summary

Light detection and ranging can be optimized, in various embodiments, by providing a detector body constructed of Germanium and configured with a Mie resonance. A metal contact and metasurface are each positioned atop the detector body with the metal contact preventing screening of light to the detector body.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block representation of an example environment in which assorted embodiments can be practiced.



FIG. 2 plots operational information for an example detection system configured in accordance with some embodiments.



FIGS. 3A & 3B respectively depict portions of an example detection system arranged and operated in accordance with various embodiments.



FIG. 4 depicts a block representation of a mechanical light detection and ranging system 150 that can be utilized in assorted embodiments.



FIG. 5 depicts a block representation of portions of an example detection system employed in accordance with assorted embodiments.



FIG. 6 depicts portions of a detection system arranged in accordance with various embodiments.



FIG. 7 depicts a block representation of portions of an example detector that can be utilized in a light detection and ranging system in some embodiments.



FIG. 8 depicts portions of an example detector that can be utilized in assorted embodiments of a light detection and ranging system.





DETAILED DESCRIPTION

Various embodiments of the present disclosure are generally directed to optimization of an active light detection system.


Advancements in computing capabilities have corresponded with smaller physical form factors that allow intelligent systems to be implemented into a diverse variety of environments. Such intelligent systems can complement, or replace, manual operation, such as with the driving of a vehicle or flying a drone. The detection and ranging of stationary and/or moving objects with radio or sound waves can provide relatively accurate identification of size, shape, and distance. However, the use of radio waves (300 GHz-3 kHz) and/or sound waves (20 kHZ-200 kHz) can be significantly slower than light waves (430-750 Terahertz), which can limit the capability of object detection and ranging while moving.


The advent of light detection and ranging (LiDAR) systems employ light waves that propagate at the speed of light to identify the size, shape, location, and movement of objects with the aid of intelligent computing systems. The ability to utilize multiple light frequencies and/or beams concurrently allows LiDAR systems to provide robust volumes of information about objects in a multitude of environmental conditions, such as rain, snow, wind, and darkness. Yet, current LiDAR systems can suffer from inefficiencies and inaccuracies during operation that jeopardize object identification as well as the execution of actions in response to gathered object information. Hence, embodiments are directed to structural and functional optimization of light detection and ranging systems to provide increased reliability, accuracy, safety, and efficiency for object information gathering.



FIG. 1 depicts a block representation of portions of an example object detection environment 100 in which assorted embodiments can be practiced. One or more energy sources 102, such as a laser or other optical emitter, can produce photons that travel at the speed of light towards at least one target 104 object. The photons bounce off the target 104 and are received by one or more detectors 106. An intelligent controller 108, such as a microprocessor or other programmable circuitry, can translate the detection of returned photons into information about the target 104, such as size and shape.


The use of one or more energy sources 102 can emit photons over time that allow the controller 108 to track an object and identify the target's distance, speed, velocity, and direction. FIG. 2 plots operational information for an example light detection and ranging system 120 that can be utilized in the environment 100 of FIG. 1. Solid line 122 conveys the volume of photons received by a detector over time. The greater the intensity of returned photons (Y axis) can be interpreted by a system controller as surfaces and distances that that can be translated into at least object size and shape.


It is contemplated that a system controller can interpret some, or all, of the collected photon information from line 122 to determine information about an object. For instance, the peaks 124 of photon intensity can be identified and used alone as part of a discrete object detection and ranging protocol. A controller, in other embodiments, can utilize the entirety of photon information from line 122 as part of a full waveform object detection and ranging protocol. Regardless of how collected photon information is processed by a controller, the information can serve to locate and identify objects and surfaces in space in front of the light energy source.



FIGS. 3A & 3B respectively depict portions of an example light detection assembly 130 that can be utilized in a light detection and ranging system 140 in accordance with various embodiments. In the block representation of FIG. 3A, the light detection assembly 130 consists of an optical energy source 132 coupled to a phase modulation module 134 and an antennae 136 to form a solid-state light emitter and receiver. Operation of the phase modulation module 134 can direct beams of optical energy in selected directions relative to the antennae 136, which allows the single assembly 130 to stream one or more light energy beams in different directions over time.



FIG. 3B conveys an example optical phase array (OPA) system 140 that employs multiple light detection assemblies 130 to concurrently emit separate optical energy beams 142 to collect information about any downrange targets 104. It is contemplated that the entire system 140 is physically present on a single system on chip (SOC), such as a silicon substrate. The collective assemblies 130 can be connected to one or more controllers 108 that direct operation of the light energy emission and target identification in response to detected return photons. The controller 108, for example, can direct the steering of light energy beams 142 to a particular direction 144, such as a direction that is non-normal to the antennae 138, like 45°.


The use of the solid-state OPA system 140 can provide a relatively small physical form factor and fast operation, but can be plagued by interference and complex processing that jeopardizes accurate target 104 detection. For instance, return photons from different beams 142 may cancel, or alter, one another and result in an inaccurate target detection. Another non-limiting issue with the OPA system 140 stems from the speed at which different beam 142 directions can be executed, which can restrict the practical field of view of an assembly 130 and system 140.



FIG. 4 depicts a block representation of a mechanical light detection and ranging system 150 that can be utilized in assorted embodiments. In contrast to the solid-state OPA system 140 in which all components are physically stationary, the mechanical system 150 employs a moving reflector 152 that distributes light energy from a source 154 downrange towards one or more targets 104. While not limiting or required, the reflector 152 can be a single plane mirror, prism, lens, or polygon with reflecting surfaces. Controlled movement of the reflector 152 and light energy source 154, as directed by the controller 108, can produce a continuous, or sporadic, emission of light beams 156 downrange.


Although the mechanical system 150 can provide relatively fast distribution of light beams 156 in different directions, the mechanism to physically move the reflector 152 can be relatively bulky and larger than the solid-state OPA system 140. The physical reflection of light energy off the reflector 152 also requires a clean environment to operate properly, which restricts the range of conditions and uses for the mechanical system 150. The mechanical system 150 further requires precise operation of the reflector 152 moving mechanism 158, which may be a motor, solenoid, or articulating material, like piezoelectric laminations.



FIG. 5 depicts a block representation of an example detection system 170 that is configured and operated in accordance with various embodiments. A light detection and ranging assembly 172 can be intelligently utilized by a controller 108 to detect at least the presence of known and unknown targets downrange. As shown, the assembly 172 employs one or more emitters 174 of light energy in the form of outward beams 176 that bounce off downrange targets and surfaces to create return photons 178 that are sensed by one or more assembly detectors 180. It is noted that the assembly 172 can be physically configured as either a solid-state OPA or mechanical system to generate light energy beams 172 capable of being detected with the return photons 178.


Through the return photons 178, the controller 108 can identify assorted objects positioned downrange from the assembly 172. The non-limiting embodiment of FIG. 5 illustrates how a first target 182 can be identified for size, shape, and stationary arrangement while a second target 184 is identified for size, shape, and moving direction, as conveyed by solid arrow 186. The controller 108 may further identify at least the size and shape of a third target 188 without determining if the target 188 is moving.


While identifying targets 182/184/188 can be carried out through the accumulation of return photon 178 information, such as intensity and time since emission, it is contemplated that the emitter(s) 174 employed in the assembly 172 stream light energy beams 176 in a single plane, which corresponds with a planar identification of reflected target surfaces, as identified by segmented lines 190. By utilizing different emitters 174 oriented to different downrange planes, or by moving a single emitter 174 to different downrange planes, the controller 108 can compile information about a selected range 192 of the assembly's field of view. That is, the controller 108 can translate a number of different planar return photons 178 into an image of what targets, objects, and reflecting surfaces are downrange, within the selected field of view 192, by accumulating and correlating return photon 178 information.


The light detection and ranging assembly 172 may be configured to emit light beams 176 in any orientation, such as in polygon regions, circular regions, or random vectors, but various embodiments utilize either vertically or horizontally single planes of beam 176 dispersion to identify downrange targets 182/184/188. The collection and processing of return photons 178 into an identification of downrange targets can take time, particularly the more planes 190 of return photons 178 are utilized. To save time associated with moving emitters 174, detecting large volumes of return photons 178, and processing photons 178 into downrange targets 182/184/188, the controller 108 can select a planar resolution 194, characterized as the separation between adjacent planes 190 of light beams 176.


In other words, the controller 108 can execute a particular downrange resolution 194 for separate emitted beam 176 patterns to balance the time associated with collecting return photons 178 and the density of information about a downrange target 182/184/188. As a comparison, tighter resolution 194 provides more target information, which can aid in the identification of at least the size, shape, and movement of a target, but bigger resolution 194 (larger distance between planes) can be conducted more quickly. Hence, assorted embodiments are directed to selecting an optimal light beam 176 emission resolution to balance between accuracy and latency of downrange target detection.



FIG. 6 depicts portions of an example detector 200 that can be employed in a light detecting and ranging system in accordance with assorted embodiments. The detector 200 can be constructed of a single material, or lamination of materials, that provide light absorption characteristics with a field of view 202. It is noted that the detector body may be coupled to one or more external waveguides, as shown with segmented lines 204, that further define the field of view 202, but such configuration is not required. Such an external waveguide can aid the detector 200 by restricting all but certain wavelengths corresponding with the construction of the waveguide.


While the detector 200 configuration can provide sufficient operation, the structure may be too physically large to be positioned in some environments, such as vehicles or robotics, and may be too imprecise to provide accurate performance over time. Hence, assorted embodiments are directed to doping the material of the detector 200 to increase the efficiency of optical energy absorption. FIG. 7 depicts a block representation of portions of an example detector 210 configured in accordance with various embodiments to consist of a germanium core 212 that has Mie resonance excited within. It is contemplated that the core 212 can be exposed to light energy, coupled to a waveguide 204, or covered with one or more materials 214 to condition how light energy enters the core 212.


It is noted that the Mie resonance of the core 212 can provide a greater field of view 202 than a detector without such resonance. The addition of a metal contact 214 atop the core 212 can screen incoming light energy and be configured to correct impedance mismatch and eliminate reflections from degrading core reliability and/or performance. Such tuning and potential for customization can allow the detector 210 to be configured with a perfect absorption mode for a predetermined wavelength, or range of wavelengths.



FIG. 8 depicts portions of an example light detection and ranging system 230 that employs multiple detectors 232 to sense a downrange target 234. The assorted detectors 232 are shown in contacting proximity to one another, but such arrangement is not required or limiting as detectors 232 may be separated. The use of multiple detectors 232 allows for distinct configurations that optimally sense different wavelengths (WL). That is, the resonance, material, and/or covering materials 214 can be individually tuned to provide different optimal absorption and detection of different wavelengths, which can collectively provide efficient and reliable detection of downrange targets 234.


It is to be understood that even though numerous characteristics of various embodiments of the present disclosure have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present technology to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the particular elements may vary depending on the particular application without departing from the spirit and scope of the present disclosure.

Claims
  • 1. An apparatus comprising a detector body configured with Mie resonance to absorb light energy to sense a downrange target.
  • 2. The apparatus of claim 1, wherein the detector body comprises Germanium.
  • 3. The apparatus of claim 1, further comprising a waveguide coupled to the detector body.
  • 4. The apparatus of claim 3, wherein the waveguide blocks incoming light energy from the detector body.
  • 5. The apparatus of claim 3, wherein the waveguide restricts a field of view of the detector body.
  • 6. The apparatus of claim 1, wherein the detector body has a cylindrical shape.
  • 7. The apparatus of claim 1, further comprising a metal contact positioned atop the detector body.
  • 8. The apparatus of claim 7, wherein the metal contact covers an entirety of a surface of the detector body.
  • 9. The apparatus of claim 7, wherein the metal contact is configured to correct impedance mismatch with the detector body.
  • 10. The apparatus of claim 7, wherein the metal contact screens light energy incoming to the detector body.
  • 11. A light detection and ranging system comprising an optical emitter and first detector each connected to a controller, the detector having a detector body configured with Mie resonance to absorb light energy to sense a downrange target.
  • 12. The light detection and ranging system of claim 11, wherein the first detector is tuned to absorb a single wavelength of light energy with a metal contact.
  • 13. The light detection and ranging system of claim 11, further comprising a second detector configured with Mie resonance.
  • 14. The light detection and ranging system of claim 13, wherein the second detector is tuned to absorb a single wavelength of light energy with a metal contact, the second detector absorbing a different wavelength than the first detector.
  • 15. The light detection and ranging system of claim 13, further comprising a third detector configured with Mie resonance.
  • 16. The light detection and ranging system of claim 15, wherein the third detector is tuned to absorb a single wavelength of light energy with a metal contact, the third detector absorbing a different wavelength than the first detector and the second detector.
  • 17. The light detection and ranging system of claim 15, wherein the first detector is separated from the second detector and the third detector.
  • 18. The light detection and ranging system of claim 15, wherein the first detector has a different field of view than the second detector and the third detector.
  • 19. The light detection and ranging system of claim 15, wherein each detector is connected to the controller and concurrently sense the presence of the downrange target.
  • 20. The light detection and ranging system of claim 15, wherein less than all of the detectors are constructed of germanium.
RELATED APPLICATIONS

The present application makes a claim of domestic priority under 35 U.S.C. 119(e) to U.S. Provisional patent application Ser. No. 63/215,741 filed Jun. 28, 2021, the contents of which being hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
63215741 Jun 2021 US