The present invention relates to a lighting system using a light emitting diode (LED) as a light source, more particularly to a lighting system using a haze-changeable film with an LED, which light system can be utilized for interior emotional lighting.
Since the history of lighting began over 100 years ago with incandescent lamps converting electricity into light, filaments and discharge luminescence light sources have been widely used. However, such filaments and discharge luminescence light sources are problematic because of high power consumption and poor durability. Further, they have disadvantageously low energy efficiency because most of the supplied power is dissipated in the form of heat, while converting only about 5-28% of energy into light. Also, LEDs have been more important as a substitute for conventional light sources due to recent environmental concerns.
LEDs typically do not contain any mercury component and are thus eco-friendly. They have a long lifespan of at least fifty thousand hours and a high energy efficiency of about 90%, as compared to incandescent lamps that have low energy efficiency. Therefore, the scope of application of LEDs has been gradually broadened.
Interior lighting techniques employing an LED light source enable light emitted from the LED to pass through a transparent cover (e.g., a transparent acryl cover) to provide direct lighting, or to pass through a diffusion cover (e.g., a diffusion acryl cover) to provide indirect lighting. Currently, it is necessary to use separate lighting systems adapted for direct lighting and indirect lighting, respectively.
Further, in order to provide two or more correlated color temperatures (CCTs), it is currently necessary to employ LEDs having respective CCTs, resulting in an undesirable increase in the manufacturing costs of the lighting system.
Thus, there has been a demand for the development of novel LED lighting systems capable of addressing the above problems.
Meanwhile, as thin-film materials having various functions have been developed and researches on liquid crystal materials have been made, films capable of adjusting light transmittance or haze have recently been developed. Such a haze-changeable film or a transmittance-changeable film is manufactured by employing functional materials such as liquid crystals and suspended particles.
In a haze- or transmittance-changeable film using liquid crystals or suspended particles, the liquid crystals or suspended particles are interposed between two transparent conductive films. When an electric field is not applied, the liquid crystal molecules or suspended particles are randomly oriented. The haze of the film is maximized since light is scattered, thereby rendering the film opaque. On the other hand, when an electric field is applied, the liquid crystal molecules or suspended particles are well oriented. In such case, light passes through the film, thereby rendering the film transparent. Therefore, the average transmittance of visible light may be adjusted by controlling the intensity of an electric field.
For example, Korean Patent No. 318868 discloses liquid crystals including ferroelectric/antiferroelectric liquid crystal materials and a polymer comprised of urethane acrylate and (meth)acrylate, and a haze-changeable film using same.
Such a haze-changeable film is spotlighted for an increase in its demand, and there have been attempts to apply it to various fields.
Accordingly, it is an object of the present invention to provide an LED lighting system capable of adjusting direct lighting and indirect lighting in a single lighting system and providing various CCTs with a single LED light source by means of employing a haze-changeable film.
In accordance with one aspect of the present invention, there is provided an LED lighting system, comprising a housing comprising a transparent substrate as an illuminating side; an LED light source located in the housing; and a haze-changeable film attached to the transparent substrate, wherein the transparency of the haze-changeable film changes depending on the application of electric power, and the haze-changeable film has a haze on light varying with the intensity of an applied voltage or an applied current.
The LED lighting system according to the present invention can provide a direct lighting, an indirect lighting and a mixed lighting thereof in a single lighting system and can provide various CCTs with a single LED light source, thereby rendering it useful for interior emotional lighting and the like.
The above and other objects and features of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, the present invention is described in detail.
The LED lighting system of the present invention comprises a housing comprising a transparent substrate as an illuminating side; an LED light source located in the housing; and a haze-changeable film attached to the transparent substrate, wherein the transparency of the haze-changeable film changes depending on the application of electric power, and the haze-changeable film has a haze on light varying with the intensity of an applied voltage or an applied current.
The haze-changeable film may be attached to the upper side and/or the lower side of the transparent substrate, or may be laminated between at least two transparent substrates.
The haze-changeable film used in the present invention has a haze on light varying with the intensity of an applied voltage or an applied current. The haze of the haze-changeable film may change in inverse proportion to the intensity of an applied voltage or an applied current. The beam angle of light that has passed through the transparent substrate to which the haze-changeable film has been attached may vary in proportion to the level of haze. Accordingly, the LED lighting system according to the present invention may provide a direct lighting, an indirect lighting, or a mixed lighting thereof depending on the haze level of the haze-changeable film.
For example, when a voltage or a current is not applied to the haze-changeable film, the film becomes opaque at a maximum haze so that light emitted from the LED light source is diffused while passing through the film, resulting in an effect of indirect lighting. In contrast, when a voltage or a current is applied to the haze-changeable film, the film becomes transparent at a minimum haze so that light emitted from the LED light source directly passes through the film without diffusion thereof, resulting in an effect of direct lighting. Further, in case where a voltage or a current is applied to the haze-changeable film at an intermediate intensity, the film becomes translucent at an intermediate level of haze, thereby producing a mixed effect of direct lighting and indirect lighting.
The haze-changeable film used in the present invention may have a spectral transmittance, i.e., light transmittance at different wavelengths, varying with the intensity of the voltage or current applied. Thus, the haze-changeable film can change the correlated color temperature (CCT) of emitted light, i.e., light passing through the haze-changeable film. In the LED lighting system, the haze and the spectral transmittance of the haze-changeable film may independently be adjusted by different electric factors, such as voltage, current, etc. For example, if the LED lighting system is designed to use voltage as a factor for controlling the haze, current may be used as a factor for adjusting the spectral transmittance or CCTs. Consequently, both of the haze and the CCT of the LED lighting system can be simultaneously adjusted.
Accordingly, the LED lighting system according to the present invention can change the CCT of lighting even when the same light source is used.
Any film may be used for the haze-changeable film so long as its transparency changes depending on the application of electric power and it has a haze on light varying with the intensity of an applied voltage or an applied current.
Preferably, the haze-changeable film may comprise a haze-changeable layer containing one or more liquid crystals or one or more suspended particles; and transparent conductive films laminated on both sides of the haze-changeable layer. The transparent conductive films may be an indium tin oxide (ITO)-based film.
Also, the haze-changeable layer may contain, as the liquid crystals, polymer-dispersed liquid crystals (PDLC) or polymer-assembled liquid crystals (PALC). For example, the liquid crystals may be selected from the group consisting of nematic liquid crystals, ferroelectric liquid crystals and antiferroelectric liquid crystals, which are mixed with a polymer resin, e.g., an acrylic resin, in the haze-changeable layer (see Korean Patent No. 318868).
Alternatively, the haze-changeable layer may have a composition wherein a suspended solution containing light-polarizing particles as suspended particles is dispersed in the form of fine droplets in a polymer resin.
Examples of a commercially available haze-changeable film may include films manufactured by NSG (Nippon Sheet Glass), Asahi Glass, and Central Glass, Japan; RFI (Research Frontiers Incorporated), USA; Saint Gobain, France; and SPDI, DM Display, and Kukyoung G&M, Korea.
In the LED lighting system according to the present invention, the transparent substrate may be a transparent glass, a transparent acryl plate, etc.
The LED light source may be any one typically used in an LED lighting system.
The housing may be any one typically used in an LED lighting system and is not limited to specific shapes and materials.
The LED lighting system according to the present invention may be a direct light-type wherein light emitted from the LED light source directly reaches the transparent substrate; or a side light-type wherein a light guide plate is additionally disposed between the transparent substrate and the LED light source and light emitted from the LED light source reaches the transparent substrate through the light guide plate.
In the direct light-type LED lighting system 1 and the side light-type LED lighting system 2 according to the present invention, a power source, which is not shown in
The LED lighting system according to the present invention can convert light emitted from the LED light source into a direct lighting, an indirect lighting, or a mixed lighting thereof by adjusting the haze level of the haze-changeable film. Further, the LED lighting system can change the uniformity and the beam angle of light emitted from the LED light source.
Further, the LED lighting system according to the present invention may adjust the spectral transmittance in the haze-changeable film so that light emitted from a single LED light source can be emitted toward outside the LED lighting system at different CCTs of 4,000 K, 5,300 K, 6,500 K, etc., without the need for conventional multiple LED light sources. Therefore, the LED lighting system according to the present invention, which uses a single LED light source, can generate light having various CCTs by adjusting the spectral transmittance of the haze-changeable film, thereby providing emotional lighting.
As described above, the LED lighting system according to the present invention is advantageous since it can provide a direct lighting, an indirect lighting and a mixed lighting thereof by means of employing a single haze-changeable film, as compared to a conventional LED lighting system, which requires separate transparent and diffusion sheets to provide a direct lighting and an indirect lighting, respectively. Moreover, the inventive LED lighting system can provide various CCTs although it uses only a single LED light source, thereby reducing the number of LED light sources, which are conventionally required to provide various CCTs. Accordingly, the present LED lighting system can ultimately reduce the manufacturing costs thereof, which is advantageous in marketing the lighting system in the LED lighting industry. The inventive LED lighting system is useful for interior emotional lighting and the like.
While the invention has been described with respect to the above specific embodiments, it should be recognized that various modifications and changes may be made to the invention by those skilled in the art which also fall within the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0013217 | Feb 2012 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5764316 | Takizawa et al. | Jun 1998 | A |
20060250541 | Huck | Nov 2006 | A1 |
20070273265 | Hikmet | Nov 2007 | A1 |
20120169953 | Kataoka et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
WO2011030578 | Mar 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20130208501 A1 | Aug 2013 | US |