1. Field of the Invention
This invention relates to light emitting device, particularly to the package of light emitting device (LED) or laser diode (LD).
2. Brief Description of Related Art
FIG.1 shows a prior art package for a LED. A LED 10 chip is mounted in a recess at the top of lead 11 of the LED package, which is in contact with the bottom electrode of the LED 10. The top electrode of the LED 10 is wire bonded to a second lead 12 of the package with a metal wire 14. The top portions of the leads 11, 12 are imbedded in protective glue 13.
When such a package is mounted on a planar display board, the board usually has printed wiring on the underside. The LED leads can only reach the printed wiring through plated through holes. When a customer changes the display panel pattern, a new printed wiring board must be furnished. Therefore, such a LED package lacks design flexibility for a display.
An object of this invention is to provide a LED package design flexibility in mounting on a display panel. Another object of this invention is to provide a LED package which can easily be removed and inserted into a mother board. Still another object of this invention is to save space between the LED leads.
These objects are achieved by providing the LEDs with coaxial leads. The coaxial leads are separated from each other by an insulating sleeve. For a LED with a bottom electrode, the LED can be mounted on top of the inner lead, or mounted on the side of the a protruded inner leads to change the direction of light emission. For a LED with two bottom electrodes, the two bottom electrodes can straddle over the planar tops of the two coaxial leads, or straddles over the two coaxial leads along their telescopic sides.
The dotted lines show how the LED package of the present invention is inserted into a display panel board. The bottom layer 271 of this dotted structure is a soft conducting layer, which supplies the first power source. The top layer 272 of this dotted structure is a soft conducting layer, which supplies the second power source. In between the bottom soft layer 271 and top soft layer 272 is a soft insulating layer 273. When the LED package is inserted into the display panel board, the inner lead 21 makes contact with the bottom layer 271 and the outer lead 22 makes contact with top layer 272. Thus, the LED 20 is energized. The soft conducting layer refers to conducting sponge, conducting rubber or metallic mesh. The soft insulating layer refers to glue, sponge, etc. The leads 21, 22 are selected from metal which can withstand repeated insertions.
FIG.3 shows a second embodiment of the present invention. The structure is similar to that in
While the preferred embodiments has been described, it will be apparent to those skilled in the art that various modification may be made in the embodiments without departing from the spirit of the present invention. Such modifications are all within the scope of the present invention.
This application is a division of application number 11/183,076, filed Jul. 18, 2005,(now allowed)
Number | Date | Country | |
---|---|---|---|
Parent | 11183076 | Jul 2005 | US |
Child | 11728610 | Mar 2007 | US |