This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2012-070339 filed Mar. 26, 2012.
(i) Technical Field
The present invention relates to a light emitting element array chip, a light emitting element head, and an image forming apparatus.
(ii) Related Art
In electro-photographic image forming apparatuses, such as printers, copying machines, and facsimiles, an optical recording unit irradiates a uniformly charged photoconductor with light including image information to obtain an electrostatic latent image, toner is attached to the electrostatic latent image to obtain a visible image, and the visible image is transferred and fixed onto the recording sheet, thereby forming an image. In recent years, as the optical recording unit, the following units have been used: a light-scanning-type optical recording unit that uses a laser, scans the photoconductor in the main scanning direction with laser light, and exposes the photoconductor; and an optical recording unit that uses an LED head including plural LED (Light Emitting Diode) array light sources arranged in the main scanning direction.
According to an aspect of the invention, there is provided a light emitting element array chip including a first light emitting element row including light emitting elements that are arranged in a row in a main scanning direction, a second light emitting element row including light emitting elements that are arranged in a row in the main scanning direction and are provided between the light emitting elements forming the first light emitting element row such that the light emitting elements are arranged in a zigzag, a first light emission signal line that transmits a light emission signal for allowing the light emitting elements forming the first light emitting element row to emit light, and a second light emission signal line that transmits a light emission signal for allowing the light emitting elements forming the second light emitting element row to emit light, wherein the first light emission signal line or the second light emission signal line is arranged in the main scanning direction between the first light emitting element row and the second light emitting element row and is provided in regions between the light emitting elements forming the first light emitting element row and between the light emitting elements forming the second light emitting element row.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, an exemplary embodiment of the invention will be described in detail with reference to the accompanying drawings.
An image forming apparatus 1 shown in
The image forming process unit 10 includes an image forming unit 11 including plural engines which are arranged in parallel with a predetermined gap therebetween. The image forming unit 11 includes four image forming units 11Y, 11M, 11C, and 11K, which are an example of toner image forming units for forming toner images. Each of the image forming units 11Y, 11M, 11C, and 11K includes a photoconductor drum 12 which is an example of an image holding member that forms an electrostatic latent image and holds a toner image, a charger 13 that uniformly charges a photoconductor applied onto the surface of the photoconductor drum 12 with a predetermined potential, a light emitting element head 14 that exposes the photoconductor charged by the charger 13 to form the electrostatic latent image, and a developer unit 15 which is an example of a developing unit that develops the electrostatic latent image formed by the light emitting element head 14. The image forming units 11Y, 11M, 11C, and 11K have the same structure except for toner accommodated in the developer units 15. The image forming units 11Y, 11M, 11C, and 11K form yellow (Y), magenta (M), cyan (C), and black (K) toner images, respectively.
In order to multiply transfer the toner images of each color which are formed on the photoconductor drums 12 of the image forming units 11Y, 11M, 11C, and 11K onto a recording sheet, which is an example of a recording medium, the image forming process unit 10 includes a sheet transport belt 21 that transports the recording sheet, a driving roller 22 that drives the sheet transport belt 21, a transfer roller 23 which is an example of a transfer unit that transfers the toner image on the photoconductor drum 12 onto the recording sheet, and a fixing device 24 which is an example of a fixing unit that fixes the toner image to the recording sheet.
In the image forming apparatus 1, the image forming process unit 10 performs an image forming operation on the basis of various control signals supplied from the image output controller 30. Then, under the control of the image output controller 30, the image processing unit 40 performs image processing on the image data received from the personal computer (PC) 2 or the image reading device 3 and the processed image data is supplied to the image forming unit 11. For example, in the black (K) image forming unit 11K, while being rotated in the direction of an arrow A, the photoconductor drum 12 is charged with a predetermined potential by the charger 13 and is exposed by the light emitting element head 14 that emits light on the basis of the image data supplied from the image processing unit 40. In this way, an electrostatic latent image related to a black (K) image is formed on the photoconductor drum 12. Then, the electrostatic latent image formed on the photoconductor drum 12 is developed by the developer unit 15 and a black (K) toner image is formed on the photoconductor drum 12. Similarly, in the image forming units 11Y, 11M, and 11C, yellow (Y), magenta (M), and cyan (C) toner images are formed.
The toner images of each color which are formed on the photoconductor drums 12 by each image forming unit 11 are sequentially electrostatically transferred onto the recording sheet which is supplied with the movement of the sheet transport belt 21 in the direction of an arrow B by the transfer electric field applied to the transfer roller 23 such that the toner images of each color overlap each other on the recording sheet. In this way, a composite toner image is formed.
Then, the recording sheet having the composite toner image electrostatically transferred thereto is transported to the fixing device 24. The fixing device 24 performs a fixing process using heat and pressure on the composite toner image on the recording sheet transported to the fixing device 24, thereby fixing the composite toner image to the recording sheet. Then, the recording sheet is discharged from the image forming apparatus 1.
The housing 61 is made of, for example, a metal material, supports the circuit board 62 and the rod lens array 64, and is set such that the light emission point of the light emitting unit 63 is aligned with the focal plane of the rod lens array 64. The rod lens array 64 is arranged along the axial direction (main scanning direction) of the photoconductor drum 12.
As shown in
The light emitting chip C includes plural LEDs 71 which are an example of the light emitting element arrays and are arranged in a row in the main scanning direction. In this exemplary embodiment, the LEDs 71 are arranged in two rows. That is, the LEDs 71 include a first light emitting element row including the LEDs 71 that are arranged in a row in the main scanning direction and a second light emitting element row including the LEDs 71 that are arranged in a row in the main scanning direction and are provided between the LEDs 71 forming the first light emitting element row such that the LEDs 71 are arranged in a zigzag, which will be described in detail below. As such, when the LEDs 71 are arranged in two rows, it is easy to increase the optical output emitted from the LEDs 71, as compared to the structure in which the LEDs 71 are arranged in a row. In addition, bonding pads 72, which are an example of electrodes that input and output signals for driving the light emitting element arrays, are provided on both sides of a substrate 70 such that the light emitting element arrays are interposed therebetween. A microlens 73 is formed on the light emission side of each of the LEDs 71. The microlens 73 focuses light emitted from the LED 71 such that light may be incident on the photoconductor drum 12 (see
The microlens 73 is made of a transparent resin, such as a light-curable resin, and it is preferable that the surface of the microlens 73 have an aspheric shape in order to focus light with higher efficiency. For example, the size, thickness, and focal length of the microlens 73 are determined by the wavelength of the LED 71 used and the refractive index of the light-curable resin used.
In this exemplary embodiment, it is preferable to use a self-scanning light emitting element array (SLED: Self-Scanning Light Emitting Device) chip as the light emitting element array chip which is exemplified as the light emitting chip C. The self-scanning light emitting element array chip uses a light emitting thyristor with a pnpn structure as a component of the light emitting element array chip and is configured such that the self-scanning of the light emitting element may be achieved.
The image output controller 30 (see
The signal generating circuit 100 outputs a start transmission signal φS, a first transmission signal φ1, and a second transmission signal φ2 to each of the light emitting chips C1 to C60 on the basis of various control signals input from the outside.
A power line 101 for a power supply voltage Vcc=−5.0 V which is connected to a Vcc terminal of each of the light emitting chips C1 to C60 and a power line 102 for ground which is connected to a GND terminal are provided on the circuit board 62. In addition, a start transmission signal line 103, a first transmission signal line 104, and a second transmission signal line 105 for respectively transmitting the start transmission signal φS, the first transmission signal φ1, and the second transmission signal φ2 of the signal generating circuit 100 are provided on the circuit board 62. Furthermore, 60 light emission signal lines 106 (106_1 to 106_60) for outputting the light emission signals φI (φI1 to φI60) from the signal generating circuit 100 to each of the light emitting chips C (C1 to C60) and 60 light emission signal lines 107 (107_1 to 107_60) for outputting the light emission signals φIe (φIe1 to φIe60) are provided on the circuit board 62. In addition, 60 light emitting current limiting resistors RID for preventing an excess current from flowing to the 60 light emission signal lines 106 (106_1 to 106_60) and the 60 light emission signal lines 107 (107_1 to 107_60) are provided on the circuit board 62. Each of the light emission signals φ1 to φI60 and the light emission signals φIe1 to φIe60 have two states, that is, a high level (H) and a low level (L), which will be described below. The low level is a potential of about −5.0 V and the high level is a potential of about ±0.0 V.
The light emitting chip C includes 65 transmission thyristors S1 to S65 and 130 light emitting thyristors L1 to L130. The light emitting thyristors L1 to L130 have the same pnpn junction as the transmission thyristors S1 to S65 and also function as light emitting diodes (LEDs) using a pn junction. In addition, the light emitting chip C includes 64 diodes D1 to D64 and 65 resistors R1 to R65. Furthermore, the light emitting chip C includes transmission current limiting resistors R1A, R2A, and R3A that prevent an excess current from flowing to the signal lines through which the first transmission signal φ1, the second transmission signal φ2, and the start transmission signal φS are supplied. The light emitting thyristors L1 to L130 forming a light emitting element array 81 are arranged in the order of L1, L2, . . . , L129, L130 from the left side of
Next, the electrical connection of the elements in the light emitting chip C will be described.
The anode terminal of each of the transmission thyristors S1 to 565 is connected to the GND terminal. The power line 102 (see
The cathode terminals of the odd-numbered transmission thyristors S1, S3, . . . , 365 are connected to a φ1 terminal through the transmission current limiting resistor R1A. The first transmission signal line 104 (see
The cathode terminals of the even-numbered transmission thyristors S2, S4, . . . , S64 are connected to a φ2 terminal through the transmission current limiting resistor R2A. The second transmission signal line 105 (see
The gate terminals G1 to G65 of the transmission thyristors S1 to S65 are connected to the Vcc terminal through the resistors R1 to R65 which are provided so as to correspond to the transmission thyristors S1 to S65, respectively. The power line 101 (see
The gate terminals G1 to G65 of the transmission thyristors S1 to S65 are connected to the gate terminals of the light emitting thyristors L1 to L130 in the ratio of one to two. That is, the gate terminal G1 is connected to the gate terminals of the light emitting thyristors L1 and L2. The gate terminal G2 is connected to the gate terminals of the light emitting thyristors L3 and L4 and the gate terminal G3 is connected to the gate terminals of the light emitting thyristors L5 and L6. The gate terminals G4 to G65 are connected to the corresponding gate terminals in the same way as described above. Finally, the gate terminal G65 is connected to the gate terminals of the light emitting thyristors L129 and L130.
The anode terminals of the diodes D1 to D64 are connected to the gate terminals G1 to G64 of the transmission thyristors S1 to S64, respectively. The cathode terminals of the diodes D1 to D64 are connected to the gate terminals G2 to G65 of the adjacent transmission thyristors S2 to 565 in the next stages. That is, the diodes D1 to D64 are connected in series to each other so as to be interposed between the gate terminals G1 to G65 of the transmission thyristors S1 to S65.
The anode terminal of the diode D1, that is, the gate terminal G1 of the transmission thyristor S1 is connected to the φS terminal through the transmission current limiting resistor R3A. The start transmission signal φS is supplied to the φS terminal through the start transmission signal line 103 (see
The anode terminals of the light emitting thyristors L1 to L130 are connected to the GND terminal, similarly to the anode terminals of the transmission thyristors S1 to S65.
The cathode terminals of the odd-numbered light emitting thyristors L (light emitting thyristors L1, L3, . . . , L127, L129) are connected to the φI terminal. The light emission signal line 106 (in the case of the light emitting chip C1, the light emission signal line 106_1: see
As shown in
A branch line 106a extends from the light emission signal line 106 to an electrode 108 that is provided in the vicinity of the center of the odd-numbered light emitting thyristor L from the upper side of
In the light emitting chip C1, the light emission signal line 106 is arranged on the upper side of the first light emitting element row in
When the light emission signal line 107 is arranged in this way, it is possible to reduce the internal resistance of the light emission signal line 107. In addition, it is possible to reduce the distance between the second light emitting element row and the chip end. Therefore, it is possible to reduce the distance (the distance between the second light emitting element rows of adjacent light emitting chips C) d between the even-numbered light emitting thyristors L of the light emitting chip C1 and the adjacent light emitting chip C2. As a result, it is possible to arrange the light emitting thyristors L so as to be close to the center line (for example, a line represented by a one-dot chain line in
Next, the above will be described in detail while showing the arrangement of the light emission signal line 107 according to the related art.
Among the light emitting chips, the light emitting chip C1 shown in
However, the light emitting chip C1 shown in
The light emitting chip C1 shown in
In the light emitting chip C1 shown in
That is, according to the light emitting chip C1 shown in
The light emission signal line 107 shown in
In the light emitting chip C1 shown in
The light emitting thyristor L of the light emitting chip C shown in
The light emitting chip C1 shown in
When the light emitting thyristor L of the light emitting chip C1 is configured in this way, it is possible to increase the area of the light emitting thyristor L. This may be rephrased as “space efficiency is improved when the pentagonal light emitting thyristor L is used”. Therefore, the optical output from the light emitting thyristor L is likely to be improved.
In the example shown in
In the above-mentioned example, the branch line 107a extends from the upper side of the drawings to the electrode 109 that is provided in the vicinity of the center of the light emitting thyristor L and is connected to the electrode 109. However, the invention is not limited thereto. The branch line 107a may extend to the electrode 109 in other directions and may be connected to the electrode 109.
The light emitting chip C1 shown in
The light emitting chip C1 shown in
In the above-mentioned example, the odd-numbered light emitting thyristors L form the first light emitting element row and the even-numbered light emitting thyristors L form the second light emitting element row. However, the invention is not limited thereto. That is, the even-numbered light emitting thyristors L may form the first light emitting element row and the odd-numbered light emitting thyristors L may form the second light emitting element row.
Next, the operation of the light emitting chip in an exposure operation will be described in detail with reference to the timing chart shown in
It is assumed that, in an initial state, the start transmission signal φS is set to a low level (L), the first transmission signal φ1 is set to a high level (H), the second transmission signal φ2 is set to a low level, and the light emission signals φI and φIe are set to a high level.
When an operation starts, the start transmission signal φS input from the signal generating circuit 100 is changed from the low level to a high level. Then, a high-level start transmission signal φS is supplied to the gate terminal G1 of the transmission thyristor S1 of the light emitting chip C. In this case, the start transmission signal φS is also supplied to the gate terminals G2 to G65 of the other transmission thyristors 52 to S65 through the diodes D1 to D64. However, since a voltage drop occurs in each of the diodes D1 to D64, the highest voltage is applied to the gate terminal G1 of the transmission thyristor S1.
The first transmission signal φ1 input from the signal generating circuit 100 is changed from the high level to the low level with the start transmission signal φS at the high level. After a first period to has elapsed from the change in the first transmission signal φ1 to the low level, the second transmission signal φ2 is changed from the low level to the high level.
As such, when the low-level first transmission signal φ1 is supplied with the start transmission signal φS at the high level, the transmission thyristor S1 with the highest gate voltage equal to or more than a threshold value is turned on among the odd-numbered transmission thyristor S1, S3, . . . , S65 to which the low-level first transmission signal φ1 is supplied in the light emitting chip C. In this case, since the second transmission signal φ2 is at the high level, the cathode voltage of the even-numbered transmission thyristors S2, S4, . . . , S64 is maintained at a high level and the even-numbered transmission thyristors S2, S4, . . . , S64 are maintained in the off state. In this case, in the light emitting chip C, only the odd-numbered transmission thyristors S1 are turned on. Then, the odd-numbered transmission thyristor S1 and the light emitting thyristors L1 and L2 with the gates connected to each other are turned on and may emit light.
After a second period tb has elapsed from the change in the second transmission signal φ2 to the high level with the transmission thyristor S1 turned on, the second transmission signal φ2 is changed from the high level to the low level. Then, among the even-numbered transmission thyristors S2, S4, . . . , S64 to which the low-level second transmission signal φ2 is supplied, the transmission thyristor S2 with the highest gate voltage equal to or more than a threshold value is turned on. In this case, in the light emitting chip C, both the odd-numbered transmission thyristor S1 and the adjacent even-numbered transmission thyristor 52 are turned on. Then, in addition to the light emitting thyristors L1 and L2 which have been turned on, the even-numbered transmission thyristor S2 and the light emitting thyristors L3 and L4 with the gates connected to each other are turned on and may emit light.
After a third period tc has elapsed from the change in the second transmission signal φ2 to the low level with the transmission thyristor S1 and the transmission thyristor S2 turned on, the first transmission signal φ1 is changed from the low level to the high level. Then, the odd-numbered transmission thyristor S1 is turned off and only the even-numbered transmission thyristor S2 is turned on. Then, the light emitting thyristors L1 and L2 are turned off and may not emit light. Only the light emitting thyristors L3 and L4 are maintained in the on state and may emit light. In this example, the start transmission signal φS is changed from the high level to the low level when the first transmission signal φ1 is changed to the high level.
After a fourth period td has elapsed from the change in the first transmission signal φ1 to the high level with the transmission thyristor S2 turned on, the first transmission signal φ1 is changed from the high level to the low level. Then, among the odd-numbered transmission thyristor S1, S3, . . . , S65 to which the low-level first transmission signal φ1 is supplied, the transmission thyristor S3 with the highest gate voltage is turned on. In this case, in the light emitting chip C, both the even-numbered transmission thyristor S2 and the adjacent odd-numbered transmission thyristor S3 are turned on. Then, in addition to the light emitting thyristors L3 and L4 which have been turned on, the odd-numbered transmission thyristor S3 and the light emitting thyristors L5 and L6 with the gates connected to each other are turned on and may emit light.
After a fifth period to has elapsed from the change in the first transmission signal φ1 to the low level with the transmission thyristor S2 and the transmission thyristor S3 turned on, the second transmission signal φ2 is changed from the low level to the high level. Then, the even-numbered transmission thyristor S2 is turned off and only the odd-numbered transmission thyristor S3 is turned on. Then, the light emitting thyristors L3 and L4 are turned off and may not emit light. Only the light emitting thyristors L5 and L6 are maintained in the on state and may emit light.
As such, in the light emitting chip C, an overlap period for which both the first transmission signal φ1 and the second transmission signal φ2 are at the low level is provided and the first transmission signal φ2 and the second transmission signal φ2 are alternately switched between the high level and the low level to sequentially turn on the transmission thyristors S1 to S65 in the order of the numbers. Then, the light emitting thyristors L1 to L130 are turned on two by two in the order of the numbers. In this case, for the second period tb, only the odd-numbered transmission thyristor (for example, the transmission thyristor S1) is turned on. For the third period tc, the odd-numbered transmission thyristor and the next even-numbered transmission thyristor (for example, the transmission thyristor S1 and the transmission thyristor S2) are turned on. For the fourth period td, only the even-numbered transmission thyristor (for example, the transmission thyristor S2) is turned on. For the fifth period te, the even-numbered transmission thyristor and the next odd-numbered transmission thyristor (for example, the transmission thyristor S2 and the transmission thyristor S3) are turned on. Then, for the second period tb, only the odd-numbered transmission thyristor (for example, the transmission thyristor S3) is turned on again. This process is repeatedly performed.
Basically, the light emission signals φI and φIe are changed from the high level to the low level and from the low level to the high level for the second period tb for which the odd-numbered transmission thyristor is independently turned on and the fourth period td for which the even-numbered transmission thyristor is independently turned on, respectively.
As such, in the light emitting chip C according to this exemplary embodiment, since the light emitting thyristors L are turned on two by two, it is possible to increase the amount of light output from the light emitting chip C. In the above-mentioned example, the light emission signals φI and φIe are turned on and off in the same pattern, thereby performing control such that the light emitting thyristors L are turned on two by two. However, the invention is not limited thereto. That is, the light emission signals φI and φIe may be turned on and off in different patterns to turn on the light emitting thyristors L one by one. In this case, it is possible to obtain resolution that is two times more than that in the above-mentioned example. For example, it is possible to obtain a resolution of 1200 dpi (dots per inch) while a resolution of 600 dpi is obtained in the above-mentioned example.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2012-070339 | Mar 2012 | JP | national |