This application claims priority from Japanese Patent Application Serial No. 2009-039462 filed Feb. 23, 2009, the contents of which are incorporated herein by reference in its entirety
The present invention generally relates to a light source apparatus which converts blue light emitted from a blue light diode, into white light. The present invention relates to a light source apparatus, which has excellent moisture resistance, heat resistance, and durability, having improved luminous efficacy when the blue light emitted from the blue light diode is converted into white light by a fluorescent material.
In the conventional light source apparatus, blue light emitted from the blue light emitting diode is converted into white light when passing through a YAG-based fluorescent material film. The conventionally used fluorescent material film is, for example, made of garnet doped with rare-earth elements (e.g., Y3Ga5O12:Ce3+, Y(Al, Ga)5O12:Ce3+, Y(Al, Ga)5O12:Tb3+); alkaline-earth sulfides doped with rare-earth elements (e.g., SrS:Ce3+, Na, SrS:Ce3+, Cl, SrS:CeCl3, CaS:Ce3+, SrSe:Ce3); and thiogallate doped with rare-earth elements (e.g., CaGa2S4:Ce3+, SrGa2S4:Ce3+), as described in Japanese Patent Application Publication No. 2004-111981. Further, the fluorescent material film may be made of aluminate doped with rare-earth elements (e.g., YAlO3:Ce3+, YGaO3:Ce3+, Y(Al, Ga)O3:Ce3+); orthosilicate doped with rare-earth elements (e.g., M2SiO5:Ce3+ (wherein M: Sc, Y, Sc), Y2SiO5:Ce3+) or the like.
Conventionally, the fluorescent material used for a light source apparatus in general is contained in a silicone resin sheet. It is difficult to bond or attach the silicone resin sheet containing the fluorescent material to a light source apparatus having parts in various shapes, especially the spherical surface part of electric bulb. That is, there are limitations in applying the silicone resin sheet containing fluorescent material to a light source apparatus having parts in various shapes. Moreover, conventional fluorescent materials have problems with moisture resistance, heat resistance, and durability in addition to luminous efficacy.
Because conventional fluorescent material films are vulnerable to high humidity and high temperature, and have problems with reliability and life span, they cannot be used in a high-output light source apparatus, or particularly in a fishery etc. And although the silicone resin sheet containing a fluorescent material may address the humidity and temperature by covering the fluorescent material with the silicone resin film, the silicone resin still tends to absorb moisture, which does not solve the problem.
Also, when the silicone resin containing the fluorescent material becomes high in temperature due to the generation of heat in the light emitting diode, the luminous efficacy is down, thereby deteriorating the property thereof. Moreover, when the light emitting diode is covered with the silicone resin, the quality thereof becomes worse due to the temperature rise caused by poor heat conduction. Furthermore, because the silicone resin containing the fluorescent material is generally in form of a sheet, it is difficult to apply the resin to the light source apparatus that has various spherical surfaces other than a plane.
In order to solve the above problems, it is an object of the present invention to offer a light source apparatus capable of converting, into white light, blue light emitted from a blue light emitting diode with excellent luminous efficacy, moisture resistance, heat resistance, durability, and reliability. In addition, another object of the present invention is to offer a light source apparatus that is applied to a light emission face that is not a plane, such as a spherical surface.
A light source apparatus according to a first embodiment of the invention comprises a blue light emitting diode and a fluorescent material film that converts blue light emitted from the blue light emitting diode into white light, wherein the fluorescent material film is formed by coating, on a glass substrate, a dispersion prepared by dispersing a composition containing metallic oxide fine particles and a yellow fluorescent material capable of absorbing part of the blue light thereby emitting yellow light, in a metallic alkoxide and/or metallic alkoxide oligomer, followed by firing.
According to a second embodiment of the invention, in the above-mentioned light source apparatus, the metallic alkoxide may have, as a metal element, at least one metal selected from a group consisting of silicon, titanium and zirconia.
According to a third embodiment of the invention, in the above-mentioned light source apparatus, the metallic oxide fine particles may comprise of at least one oxide selected from a group consisting of silicon oxide, titanium oxide, aluminum oxide or composite oxides thereof.
A light source apparatus according to a fourth embodiment of the invention comprises a casing, which may at least be partially made of a glass substrate, a blue light emitting diode assembly attached to the inside of the casing, a fluorescent material film that may be formed by coating on an inner and/or outer wall surface of the glass substrate, a dispersion prepared by dispersing a composition containing metallic oxide fine particles and a yellow fluorescent material capable of absorbing part of the blue light thereby emitting yellow light, in a metallic alkoxide and/or metallic alkoxide oligomer, followed by firing, and a power connection unit that may be electrically connected to the blue light emitting diode assembly and may be provided on the casing.
A light source apparatus according to a fifth embodiment of the invention comprises a casing, which may at least be partially made of a glass substrate in a light bulb shape, a blue light emitting diode assembly attached to the inside of the casing, a fluorescent material film that may be formed by coating on an inner and/or outer wall surface of the glass substrate in the shape of light bulb, a dispersion prepared by dispersing a composition containing metallic oxide fine particles and a yellow fluorescent material capable of absorbing part of the blue light thereby emitting yellow light, in a metallic alkoxide and/or metallic alkoxide oligomer, followed by firing, a power supply unit that supplies electric power to the blue light emitting diode assembly, and a socket that is electrically connected to the power supply unit.
According to a sixth embodiment of the invention, in the light source apparatus, the blue light emitting diode assembly may be suspended inside the casing or the light bulb-shaped translucent member by a member having electrical conduction and heat transfer.
According to a seventh embodiment of the invention, in the light source apparatus, the thickness of the fluorescent material film may be 20 to 200 μm (micrometer).
According to an eighth embodiment of the invention, in the light source apparatus, the socket portion may include an electric conduction screw portion which is screwed in a lighting fixture and a heat dissipation part.
In the light source apparatus according to a ninth embodiment of the invention, the glass substrate may be a lens having a convex and/or concave surface.
According to the present invention, a fluorescent material film is formed by coating, on a glass substrate, a dispersion prepared by dispersing a composition containing metallic oxide fine particles and a yellow fluorescent material capable of absorbing part of the blue light thereby emitting yellow light, in a metallic alkoxide and/or metallic alkoxide oligomer, followed by firing, which produces a light source apparatus with excellent luminance efficiency, moisture resistance, heat resistance, durability and reliability.
Since the fluorescent material film is formed by the dispersion prepared by dispersing a composition, it is possible to provide the film on a face having any shape, especially a light source apparatus such as a light bulb or a flashlight.
According to the present invention, a light source apparatus can suit the needs of tropical region use where the temperature is high, be attached to a tool with high temperature, or can be uses in a place where it tends to be exposed to water, while maintaining high luminance efficiency and a long life span.
A light source apparatus according to a first embodiment of the invention comprises at least a blue light emitting diode and a fluorescent material film capable of converting, for example, blue light with wavelength of 455 nm, which is emitted from the blue light emitting diode, into white light. The fluorescent material film of the light source apparatus is formed by coating on a glass substrate a dispersion prepared by dispersing a composition comprising metallic oxide fine particles and a yellow fluorescent material capable of absorbing part of the blue light to emit a yellow light in a metallic alkoxide and/or metallic alkoxide oligomer, followed by firing. The glass substrate does not always have a flat surface, but includes a curved surface.
The fluorescent material film for converting light emitted from the blue light emitting diode into white light can also be obtained by coating a liquid prepared by dispersing spin-on-glass (SOG) mainly comprising silicon oxide and a yellow fluorescent material in a solvent, and thereafter firing the coated liquid. The fluorescent material film used in the present invention does not include any components rendering any colors other than yellow. Thus the luminous efficacy is improved, and at the same time, it is possible to make a light source apparatus with excellent moisture resistance, heat resistance, durability and reliability.
Because of the advantages of improved moisture resistance and heat resistance, the light source apparatus equipped with the fluorescent material film mentioned above can used in extreme situations, especially when used in high tropical temperatures, installed in the equipment giving off an intense heat, employed in the market often exposed to water sprays, or employed in fishing, for example as a fishing lamp readily exposed to salt water. Furthermore, when the yellow fluorescent material mentioned above does not include yttrium, white light is obtained with further improved luminous efficacy by conversion.
In a fluorescent material film of a light source apparatus according to a second embodiment of the invention, the metallic alkoxide has as a metal element at least one metal selected from a group consisting of silicon, titanium and zirconia. Consequently, the fluorescent material film is easily coated or sprayed uniformly. The metallic alkoxide mentioned above contributes to improvements in the heat resistance and the durability of the fluorescent material film. The fluorescent material film herein used also includes a layer formed basically using spin-on-glass (SOG) containing silicon oxide as the main component, or a liquid prepared by dissolving the above-mentioned SOG in at least one solvent selected from ethanol, methanol, acetone, isopropylene alcohol (IPA), ethylene glycol dimethyl ether or propylene glycol dimethyl ether. In particular, silicon alkoxide is the preferred above-mentioned metallic alkoxide.
The above-mentioned metallic alkoxide is a metallic alkoxide represented by the following formula (I) and/or an oligomer thereof:
M(OR)nR′4-n (I)
wherein n is an integer of 1 to 4, R and R′ indicate an alkyl group having 1 to 4 carbon atoms, and M is an early transition metal such as Si, Ti, Zr or the like. Specific examples of the above-mentioned metallic alkoxide include silicon alkoxides such as tetramethoxy silane, tetraethoxy silane, tetrapropoxy silane, tetraisopropoxy silane, tetrabutoxy silane, vinyltriethoxy silane, methyl trimethoxy silane, methyl triethoxy silane and the like; titanium alkoxides such as titanium tetramethoxide, titanium tetraethoxide and the like; and zirconia alkoxides such as zirconia tetrapropoxide, zirconia tetraisopropoxide, zirconia tetrabutoxide and the like. They may be used alone or in combination. In particular, silicon alkoxides are preferred among the above-mentioned metallic alkoxides.
The SOG mentioned above is obtained by diluting the metallic alkoxide with a solvent. Therefore, the resultant fluorescent material film based on the SOG produces the same advantages of improved moisture resistance and heat resist as described above. The fluorescent material film mentioned above is easily formed by coating a curved inner wall surface or outer wall surface of the light source apparatus when the composition of the florescent material film is in a liquid form using the solvent.
In a light source apparatus according to a third embodiment of the invention, the metallic oxide fine particles comprise at least one oxide selected from a group consisting of silicon oxide, titanium oxide, aluminum oxide or composite oxides thereof. With the above-mentioned composition, the viscosity of the dispersion is increased, and therefore, the dispersion for formation of the fluorescent material film is coated with uniform thickness, without precipitating the metallic oxide fine particles in the dispersion. The fluorescent material film containing the above-mentioned composition has a refractive index of 1.4 to 1.7, thereby improving the luminous efficacy when used for the lighting fixture.
A light source apparatus according to a fourth embodiment of the invention comprises at least a casing partially made of a translucent member, a fluorescent material film capable of converting blue light emitted from a blue light emitting diode into a white light, a blue light emitting diode assembly, and a power connection unit provided in the casing. At least, part of the casing is made of a translucent member for allowing the light emitted from the light-emitting diode to pass through the casing and illuminate the outside. The fluorescent material film mentioned above is formed by coating a dispersion prepared by dispersing a composition comprising metallic oxide finely-divided particles with a BET surface area of 30 to 300 m2/g and a yellow fluorescent material capable of absorbing part of the blue light to emit yellow light in a metallic alkoxide and/or metallic alkoxide oligomer, and thereafter subjecting the coated dispersion to firing.
The fluorescent material film mentioned above can also be formed using a liquid prepared by dissolving the SOG, containing as the main component silicon oxide, and the yellow fluorescent material in a solvent, such as ethanol, methanol, acetone, isopropylene alcohol (IPA), ethylene glycol dimethyl ether, or propylene glycol dimethyl ether. The blue light emitting diode assembly in the casing is constructed in such a manner that at least one blue light emitting diode is provided on a substrate, which can be connected to a power supply unit.
The above-mentioned power connection unit, provided in the casing is electrically connected to the blue light emitting diode assembly. When the power connection unit is connected to an alternating-current power supply, the unit is equipped with a power converter in the casing to supply the desired power to the light-emitting diode after converting to the required voltage and current. When the power connection unit is connected to a direct current power supply, the unit is connected to a power supply circuit or the like capable of supplying a voltage and a current necessary for the light-emitting diode.
The shape of the casing is not particularly limited. This means that the translucent member may have a flat surface and/or a curved surface. Regardless of whether the surface of the translucent member may be a flat or curved inner or outer wall, the fluorescent material film with a uniform thickness can be formed on the translucent member of the casing because the dispersion of the fluorescent material is used for the formation of the fluorescent material film. Coating of the dispersion for formation of the fluorescent material film may be carried out using a spin coater or the like, to make the thickness of the coated layer uniform. After the above-mentioned dispersion is coated, the dispersion is subjected to firing in an atmosphere of an inert gas such as nitrogen gas, hydrogen gas, a gas mixture of nitrogen gas and hydrogen gas (forming gas), or the like to eliminate the solvent and deposit the composition of an oxide comprising silicon oxide as the main component and a fluorescent material. The silicon oxide-based oxide composition containing the fluorescent material is excellent in the moisture resistance and the heat resistance, so that the demand will grow in many fields.
In contrast to the fourth embodiment of the invention where the shape of the casing is not particularly specified, a light source apparatus according to a fifth embodiment of the invention has a translucent member (glass material) shaped into a light bulb, for the purpose of replacing conventional light bulbs. The fluorescent material film and the blue light emitting diode assembly in the fifth embodiment may be substantially the same as those in the fourth embodiment. The fluorescent material film is coated on the inner wall and/or outer wall of the light bulb-shaped translucent member. The blue light emitting diode assembly is installed in the light bulb-shaped translucent member. A socket portion is attached to the bottom of the light bulb-shaped translucent member, and the light bulb-shaped translucent member is connected to an electric conduction screw portion of the socket portion via the blue light emitting diode assembly and a power supply unit.
The power supply unit is a unit capable of converting the commercial power (AC 100 V) into a predetermined voltage and current, for example, according to the number of blue light emitting diodes in the above-mentioned blue light emitting diode assembly. The electric conduction screw portion of the socket portion in the light source apparatus of the fifth embodiment of the invention is the same as that in the incandescent lamp, so that the light source apparatus and the incandescent lamp are interchangeable. In addition to the above, illumination with improved luminous efficacy and outstanding moisture resistance and heat resistance is obtained.
In the light source apparatus according to a sixth embodiment of the invention, the blue light emitting diode assembly is suspended by a column made of, for example, an aluminum or anodized aluminum member in the casing or the light bulb-shaped translucent member. The aluminum member or the like as mentioned above shows good electrical conduction and heat transfer, so that thermal dissipation is satisfactory. When the column with satisfactory thermal dissipation is connected to the power line via the socket portion, heat generated from the blue light emitting diode can be dissipated into the power line, thereby improving the efficiency of heat dissipation.
The fluorescent material film in the light source apparatus according to a seventh embodiment of the invention is formed by coating the above-mentioned solution, so that the thickness of the film can be adjusted to 20 to 200 micrometers. The fluorescent material film is formed by subjecting the coated liquid to firing at 100 to 500° C. for 10 to 60 minutes. Thus, the resultant fluorescent material film produces satisfactory results by not showing any change in the quality of film after the tests of 60° C. and 90% RH for 1,000 hours and 85° C. and 85% RH for 1,000 hours, or the pressure cooker test (PCT) of 121° C. and 2 atom for 96 hours. The fluorescent material film is highly resistant to elevated temperatures. Further, the fluorescent material film was not susceptible to high temperatures, such as 1,000° C., after the firing step. Not only is the fluorescent material film thin and uniform, but also the durability of the layer is improved with minimum age deterioration. These results are provided by spraying or coating a coating liquid where a fluorescent material is dissolved in a solvent, and thereafter subjecting the coated liquid to firing.
The socket portion of the light source apparatus according to an eighth embodiment of the invention, which is provided at the bottom of the bulb-shaped translucent member, includes an electric conduction screw portion to screw into lighting fixture and a heat dissipation part. The above-mentioned heat dissipation part exhibits good design as well as excellent heat dissipation properties for the light source apparatus when a concavo-convex portion is formed on the heat dissipation part similarly to the electric conduction screw portion.
In the light source apparatus according to a ninth embodiment of the invention, the translucent member is a lens having a convex and/or concave surface. The lens mentioned above may be attached to the top of a small-sized light source apparatus such as a flashlight or the like to emit more intense light.
A lighting circuit (power supply portion) 17, which converts AC 100 V into voltage and current suitable for the blue light emitting diode chip 131, is provided on the space section 153. An electric conduction end portion 162, which is insulated, is provided at an end portion of the electric conduction screw portion 161 of the socket section 16. The current of AC 100 V flows through in the following order: the electric conduction end portion 162, a lead wire (copper wire) 18, the power supply section 17, a lead wire 19, the conductive support 14, the light emitting diode (blue light emitting diode chip) 131, a lead wire (bonding wire)135, the conductive support 14′, a lead-wire (copper wire) 19′, the power supply section 17, a lead-wire (copper wire) 18′, and a mouthpiece (conductive screw portion) 161. Blue light emitted from the blue light emitting diode chip 131 is converted into white light, which is excellent in the luminous efficacy due to the fluorescent material film 12.
In
The fluorescent material film 12 or 25 for use in the present invention will now be explained. The fluorescent material film 12 or 25 is formed by coating a dispersion prepared by dispersing a composition comprising hydrophobic fine particles of metallic oxide with a BET surface area of 30 to 300 m2/g and a yellow fluorescent material capable of absorbing part of the blue light to emit a yellow light in a metallic alkoxide and/or metallic alkoxide oligomer, followed by firing.
Alternatively, the fluorescent material film comprises spin-on-glass (SOG) containing silicon oxide as the main component and a yellow fluorescent material. The SOG containing silicon oxide as the main component and the yellow fluorescent material as mentioned above may be dissolved in a solvent such as ethanol, methanol, acetone, isopropylene alcohol (IPA), ethylene glycol dimethyl ether, or propylene glycol dimethyl ether, and the resultant coating liquid is coated and subjected to firing to form the fluorescent material film 12 or 25.
For example, using a spin coater or the like, the dispersion prepared by dispersing the above-mentioned composition or the solution prepared by dissolving the above-mentioned composition is coated to form a layer with a uniform thickness, for example, on an inner wall of the light source apparatus. The SOG containing silicon oxide as the main component herein used is the same as that used for the interlayer insulator film in the semiconductor LSI or the like. The solution prepared by dissolving the above-mentioned fluorescent material in the solvent may be sprayed or coated on the inner wall and/or outer wall of the light source apparatus using the known or well-known means other than the above-mentioned spin coater, to obtain a layer with a uniform thickness, for example, with a thickness of 1 to 200 micrometers.
The fluorescent material-containing composition coated on the bulb-shaped translucent member 11 or the translucent member 24 is subjected to firing at 300 to 500° C. for 10 to 60 minutes. Thus, the resultant fluorescent material film 12 or 25 produced satisfactory results and showed no change in the quality of layer after the tests of 60° C. and 90% RH for 1,000 hours and 85° C. and 85% RH for 1,000 hours, or the pressure cooker test (PCT) of 121° C. and 2 atom for 96 hours. After firing, the fluorescent material film 12 or 25 became highly resistant to high temperatures and showed no change at 1,000° C. It was possible to make the fluorescent material film 12 or 25 a solid layer of high durability with minimum age deterioration as well as a layer with a uniform thickness because firing was carried out after spraying or coating of the composition containing the fluorescent material and a solvent.
The thus sprayed or coated fluorescent material film in a liquid form is subjected to firing in an atmosphere of an inert gas such as nitrogen gas, hydrogen gas, a gas mixture of nitrogen gas and hydrogen gas (forming gas), or the like to eliminate the solvent and deposit an oxide composition containing silicon oxide as the main component and the fluorescent material. The silicon oxide-based composition containing the fluorescent material is excellent in the luminous efficacy, moisture resistance, heat resistance, life, and reliability, thereby increasing the demand in many fields. In addition, the fluorescent material film can be formed uniformly on the flat surface or curved surface because formation of the fluorescent material film is achieved by spraying or coating.
In the dispersion containing the above-mentioned composition for constituting the fluorescent material film, the metallic alkoxide comprises at least one metal selected from a group consisting of silicon, titanium, and zirconia. As a result, the resultant fluorescent material film shows improved heat resistance and durability and a refractive index ranging from 1.4 to 1.7, thereby improving the luminous efficacy when used for the light source apparatus.
The metallic oxide fine particles, for example, hydrophobic metallic oxide fine particles comprise at least one oxide selected from a group consisting of silicon oxide, titanium oxide, aluminum oxide or composite oxides thereof. Therefore, the viscosity of the dispersion can be increased, so that the dispersion can be coated with a uniform thickness without precipitating the metallic oxide fine particles in the dispersion.
In the application and calcination in
Moreover, as apparent from
Although the embodiments of the present invention are explained above in full detail, the present invention is not limited to these embodiments. It is possible to make various changes to the design of the present invention, as long as it does not deviate from the claimed invention. For example, the light emitting diode may be an upper and lower electrode type light emitting diode. The well-known package can be used for the light emitting diode assembly. Moreover, in addition to an electric bulb shape, the shape of the casing on which the fluorescent material film of the present invention is formed may be any shape.
The preceding description has been presented only to illustrate and describe exemplary embodiments of the present light source apparatus. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. It will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. The invention may be practiced otherwise than is specifically explained and illustrated without departing from its spirit or scope.
Number | Date | Country | Kind |
---|---|---|---|
2009-039462 | Feb 2009 | JP | national |