1. Field of the Invention
The present invention relates to a light tube, and more specifically, to a light tube having microstructure regions respectively formed on a roof portion and two side arm portions of a transparent cover.
2. Description of the Prior Art
In recent years, for achieving the environmental protection and energy saving purposes, a cold cathode fluorescent lamp has gradually been replaced by a light emitting diode tube utilizing at least one light emitting diode as a light source. However, the light emitting diode tube only has an illumination angle of about 120° due to the limited light emitting angle of the light emitting diode (about 120°), which is far less than that of the cold cathode fluorescent lamp, so as to restrict the illumination application of the light emitting diode tube.
In the prior art, the design of utilizing an approximately planar cover to replace a semi-circular cover for providing approximately planar illumination has been developed to increase the light emitting angle of the light emitting diode tube. However, due to uneven brightness distribution on the approximately planar cover caused by different light paths from the light emitting diode to the approximately planar cover when light emitted by the light emitting diode is incident into the approximately planar cover, the aforesaid design usually makes the light emitting diode tube have a poor visual effect.
The present invention provides a light tube including a tube body, at least one light emitting diode, and a transparent cover. The light emitting diode is assembled with the tube body. The transparent cover is disposed on the tube body to cover the light emitting diode and has a roof portion and two side arm portions. A first microstructure region and a second microstructure region are formed on a surface of the roof portion corresponding to the light emitting diode. The second microstructure region extends from two ends of the first microstructure region. A third microstructure region is formed on a surface of each side arm portion corresponding to the light emitting diode. A microstructure density of the second microstructure region is less than or equal to a microstructure density of the first microstructure region and is greater than or equal to a microstructure density of the third microstructure region.
The present invention further provides alight tube including a tube body, at least one light emitting diode, and a transparent cover. The light emitting diode is assembled with the tube body. The transparent cover is disposed on the tube body to cover the light emitting diode and has a roof portion and two side arm portions. A first microstructure region and a second microstructure region are formed on a surface of the roof portion corresponding to the light emitting diode. The second microstructure region extends from two ends of the first microstructure region. A third microstructure region is formed on a surface of each side arm portion corresponding to the light emitting diode. A microstructure density of the second microstructure region is less than a microstructure density of the first microstructure region and is greater than a microstructure density of the third microstructure region.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
More detailed description for the structural design of the transparent cover 16 is provided as follows. Please refer to
As shown in
In practical application, a central angle α of the first microstructure region 22 relative to the light emitting diode 14 is preferably less than or equal to 40°. A sum of central angles β1, β2 of two sections of the second microstructure region 24 respectively extending from two ends of the first microstructure region 22 preferably falls within a range between 41° and 80° but not limited thereto. In other words, the aforesaid central angles of the first microstructure region 22 and the second microstructure region 24 relative to the light emitting diode 14 are adjustable according to the practical illumination application of the light tube 10.
In this embodiment, the transparent cover 16 could have sawtooth-shaped bar microstructures formed thereon for further enhancing the light scattering effect of the transparent cover 16. For example, as shown in
Via the design in which the aforesaid microstructures are distributed sequentially from the roof portion 18 to the side arm portions 20 in a from-dense-to-sparse manner with the gradually-increasing vertex angles, the light scattering effect of the transparent cover 16 could be further enhanced after light emitted by the light emitting diode 14 is incident into the first microstructure region 22, the second microstructure region 24, and the third microstructure region 26. Accordingly, the light emitting angle of the light tube 10 could be increased and light emitted out of the transparent cover 16 could have a more uniform brightness distribution.
It should be mentioned that the microstructure design of the transparent cover 16 is not limited to the aforesaid embodiment. In other words, all microstructure designs for light scattering enhancement could be utilized by the present invention. For example, in another embodiment, the first, second, and third microstructure regions 22, 24, 26 could have a plurality of first, second, and third arc-shaped bar structures respectively. A radius of each second arc-shaped bar structure is preferably less than or equal to a radius of each first arc-shaped bar structure and is preferably greater than a radius of each third arc-shaped bar structure. That is, the aforesaid arc-shaped bar structures are distributed sequentially from the roof portion 18 to the side arm portions 20 of the transparent cover 16 with the gradually-decreasing radiuses. As for other related description, it could be reasoned according to the aforesaid embodiment and therefore omitted herein. To be noted, the present invention could also utilize the design in which the microstructures of different shapes (e.g. the tooth-shaped bar structures and the arc-shaped bar structures) are formed on different microstructure regions respectively or one microstructure region, to improve flexibility of the transparent cover 16 in its structural design.
In summary, the present invention utilizes the structural designs of the roof portion and the side arm portion of the transparent cover and the design in which the microstructures are distributed sequentially from the roof portion to the side arm portions in a from-dense-to-sparse manner, to make the transparent cover capable of providing approximately planar illumination and having a light scattering enhancement effect, so that the light emitting angle of the light tube could be increased and light emitted out of the transparent cover could have a more uniform brightness distribution. In such a manner, the light tube provided by the present invention could not only have a planar illumination function (or an approximately illumination function), but also solve the prior art problem that a light tube has a poor visual effect due to uneven brightness distribution on an approximately planar cover. Accordingly, the illumination quality of the light tube provided by the present invention could be greatly improved.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101223833 U | Dec 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
8038322 | Chen | Oct 2011 | B2 |
8454206 | Chang | Jun 2013 | B2 |
20110175536 | Fujita et al. | Jul 2011 | A1 |
20130128577 | Wang He | May 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140160743 A1 | Jun 2014 | US |