1. Field of the Invention
This invention is related to LED Light Extraction and white LED with high luminous efficacy for optoelectronic applications, and, more specifically, relates to a textured phosphor conversion layer LED.
2. Description of the Related Art
(Note: This application references a number of different publications as indicated throughout the specification. A list of these different publications can be found below in the section entitled “References.” Each of these publications is incorporated by reference herein.)
In conventional white LEDs, the phosphor conversion layer is typically placed directly on top of the blue GaN chip. The surface is usually smooth and conformal to the surface of the GaN chip. The blue photons from the GaN chip are down converted into photons of lower energy (Yellow, Green, and Red) in the phosphor conversion layer. A large fraction of these photons are internal reflected in the phosphor conversion layer and directed back toward the chip where they are reabsorbed. This results in a decrease in overall luminous efficiency.
Previous applications of the phosphor conversion layer are limited to placing a gel or other liquid form of material onto the chip, and allowing the phosphor to cure. This non-uniform and typically smooth application of the phosphor does not take into account several factors that can be used to increase the efficiency of the LED.
The present invention describes an (Al, Ga, In)N and light emitting diode (LED) combined with a textured, or shaped, phosphor conversion in which the multi directions of light can be extracted from the surfaces of the chip and phosphor layer before subsequently being extracted to air. The present invention combines the high light extraction efficiency LED chip with shaped (textured) phosphor layers to increase the total luminous efficacy of the device. As a result, this combined structure extracts more light out of the white LED.
The present invention minimizes the internal reflection of the phosphor layer by preferential patterning the emitting surface to direct more light away from the absorbing chip structure. In order to minimize the internal reflection of the LED light further, transparent electrode such as Indium Tin Oxide (ITO) or Zinc Oxide (ZnO), or the surface roughening of AlInGaN by patterning or anisotropically etching, or the roughening of ITO and ZnO, or the roughening of epoxy and glass or the roughening of the phosphor layer, are used. The present invention furthermore combines the high light extraction efficiency LED chip with shaped (textured) phosphor layers to increase the total luminous efficacy of the device. As a result, this combined structure extracts more light out of the LED.
More particularly the invention relates to (Al, Ga, In)N LEDs and light extraction structure combined with phosphors and optimized optics for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. Present invention describes a white high efficient LED created by maximizing extraction from the photon conversion layer. In the present invention it has been shown that roughening the surface of a phosphor layer increases the luminous efficacy of a white LED. In order to roughen the phosphor layer the phosphor is first prepared in a resin mixture. It is then poured directly onto an aluminum oxide 120-grit square piece of sandpaper (120 abrasive particles per inch). The optic used for the remote phosphor layer is then placed on top of the phosphor. This serves to flatten the phosphor on the sandpaper so that a thin uniform layer is produced. These items are then heated under the curing conditions for the resin.
A further extension is the general combination of a shaped high refractive index light extraction material with transparent conducting electrodes, textured phosphor conversion layers and shaped optical elements. The overall effect is to achieve a device with superior luminous efficacy and a high output power.
A Light Emitting Diode (LED) in accordance with the present invention comprises an LED chip, emitting light at a first wavelength region, an encapsulation layer, coupled to the LED chip, wherein the encapsulation layer is transparent at the first wavelength region, and a phosphor layer, coupled to the encapsulation layer and distant from the LED chip, the phosphor layer converting the light emitted by the LED chip in the first wavelength region to light in at least a second wavelength region, wherein at least a portion of a surface of the phosphor layer is textured.
Such an LED further optionally comprises the LED being made from a material selected from the group comprising (Al, Ga, In)N material system, the (Al, Ga, In)As material system, the (Al, Ga, In)P material system, the (Al, Ga, In) AsPNSb material system, and the ZnGeN2 and ZnSnGeN2 material systems, the textured phosphor layer having a cone shape, the encapsulation layer comprising epoxy, glass, air, and other materials that are transparent at the emission wavelength, at least a portion of a second surface of the phosphor layer being textured, the transparent electrode comprising a material selected from a group comprising ITO, ZnO, and a thin metal, the LED chip further comprising a current spreading layer, a textured sapphire substrate being used for the LED chip to increase the light transmission from the LED chip, a backside of the textured sapphire substrate being textured, the LED being molded into an inverted cone shape, light being extracted from the LED in a direction normal to the emitting surface of the LED chip, a mirror, and the mirror being designed such that light striking the mirror is reflected away from the LED chip.
Another LED in accordance with the present invention comprises an LED chip, emitting light at a first wavelength region and having a first refractive index, an encapsulation layer, coupled to the LED chip, wherein the encapsulation layer is transparent at the first wavelength region and having a second refractive index less than the first refractive index, wherein the second refractive index is greater than 1, and a phosphor layer, coupled to the encapsulation layer and distant from the LED chip, the phosphor layer converting light emitted in the first wavelength region to light in at least a second wavelength region, wherein at least a portion of a surface of the phosphor layer farthest from the LED chip is not normal to the light emitted from the LED chip.
Such an LED further optionally comprises the LED being made from a material selected from the group comprising (Al, Ga, In)N material system, the (Al, Ga, In)As material system, the (Al, Ga, In)P material system, the (Al, Ga, In) AsPNSb material system, and the ZnGeN2 and ZnSnGeN2 material systems, the phosphor layer having a cone shape, at least a portion of a second surface of the phosphor layer closer to the LED chip also being textured, the encapsulation layer comprising a material selected from a group comprising ITO, ZnO, and a thin metal, the LED chip further comprising a current spreading layer, and the encapsulation layer comprising epoxy, glass, and other materials that are transparent at the emission wavelength.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
In the following description of the preferred embodiment, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
Overview
The present invention describes the high efficient LEDs which use the phosphor to change the emission color of the LEDs.
The present invention also includes an (Al, Ga, In)N and light emitting diode (LED) in which the multiple directions of light can be extracted from the surfaces of the chip before then entering the shaped plastic optical element and subsequently extracted to air after exciting the phosphor. In particular the (Al, Ga, In)N and transparent contact layers (ITO or ZnO) is combined with a shaped lens in which most light entering lens lies within the critical angle and is extracted. The present invention also includes a high efficient LED by minimizing the re-absorption of LED emission without any intentional mirrors attached to LED chip. The conventional LEDs have used a high reflective mirror in order to increase the front emission by reflecting the LED light forward direction. See
In all of
Light Emitting Diode (LED) 100 comprises LED chip 102 and a phosphor layer 104. The phosphor layer 104 is excited by the blue light from the LED chip 102 and converts the blue light, in the first wavelength region, to light in a second wavelength region. The phosphor layer is located near the surface of the inverted cone shape epoxy molding 106 to improve the conversion efficiency of the phosphor layer 104.
The surface 108 of the phosphor layer is roughened to increase the converted light extraction 110 from the phosphor layer 104. At least a portion of surface 108, rather than being completely planar, is roughened, textured, patterned, or otherwise made not normal to the light 112 emitted from the LED chip 102 so that reflection of light 112 is reduced. This irregular surface 108 may be generated through additional processing of phosphor layer 104, or may occur as the phosphor layer 104 is applied to LED 100, without departing from the scope of the present invention.
Although shown as a pyramid-like shape, the surface 108 can take any shape, so long as the shape of surface 108 reduces reflections of light 112 or increases the efficiency of conversion performed by phosphor layer 104. Some of the blue light 112 is reflected at the interface between the epoxy 106 and the phosphor layer 104 due to the flat surface of the back side of the phosphor layer 104.
LED chip 102 typically comprises a sapphire wafer 114 and a III-nitride LED active layer 116. The active layer 116 typically emits blue light 112, which excites phosphor layer 104 into producing yellow light 110. To increase the efficiency of LED 100, a zinc oxide (ZnO) layer 106 can be formed with a refractive index that is between that of the LED chip 102 and that of air, and for ZnO layer 106 the refractive index n is 2.1. Further, layer 106 can comprise ZnO, ITO, a thin metal, as well as an epoxy or some combination of these and other materials. Any material can be used for layer 106, so long as layer 106 is transmissive at the wavelengths being emitted by LED chip 102. The blue light 112 and the yellow emissions 110 both emit from LED 100 to form white light that emits from the surface 118 of LED 100.
Graph 200 shows a chart of current on the x-axis and lumens per watt on the y-axis. Line 202 shows an un-roughened phosphor layer 104, e.g., one with a flat upper surface rather than a roughened surface 108. As the surface 108 of the phosphor layer 104 is roughened, the luminous efficacy of the white LEDs is increased, as shown in graphs 204 and 206, due to the improvement of the light extraction efficiency from the phosphor layer 104.
As in
Rather than placing the phosphor layer 104 onto the epoxy layer 106, the phosphor layer 104 can be placed directly on LED chip 102, and have a patterned, textured, or roughened upper surface 108 as described previously, such that LED 400 will also have an increased efficiency. The approach shown in LED 400 also reduces reflection of blue light 112, and increases efficiency, because there is no reflecting surface between the emission of the LED chip 102 and the phosphor layer 104.
LED 402 shows that a dual-sided roughened phosphor layer 104, i.e., with surfaces 108 and 302, can also be placed directly on LED chip 102, to increase efficiency further.
LED 404 uses a phosphor layer 104 inside of the epoxy layer 106, rather than on top of epoxy layer 106 as shown in
LED 500 with emitted light 502 and active layer 504 are shown. Lead frame 506 and electrode 508 are shown as supporting glass plate 510.
In
In
In
Also, when the surface of ITO layers, e.g., layers 512, 516, etc., are roughened, the light extraction through the ITO layers 512, 516 is increased. Even without the ITO layer 512 that is deposited on the p-type GaN layer 514, the roughening of the surface of p-type GaN 514 as surface 700 is effective to increase the light extraction through the p-type GaN 514. To create an ohmic contact for n-type GaN layer 520, ITO or ZnO are typically used after the surface roughening of Nitrogen-face GaN layer 520. Since ITO and ZnO have a similar refractive index as GaN, the light reflection at the interface between ITO (ZnO) and GaN is minimized.
In
In
In
In
In
Then an ITO or ZnO layer 1510 was deposited on p-type GaN. Then, bonding pad 1512 was formed on the ITO or ZnO layer 1510, and an Ohmic contact/bonding pad 1514 on n-type GaN layer 1516 are formed after disclosing the n-type GaN by a selective etching through p-type GaN. Wire bonds 1518 and 1520 are added to connect the LED structure 1502 to the lead frame 1522.
Then, the LED chip 1502 was molded as an inverted cone-shape for both the front and back sides by shaping epoxy/glass layers 1508 into inverted cone shapes. Then, the phosphor layers 1524 were put near the top surface of the glass/epoxy layers 1508 molding. Typically, this means that the phosphor layer is placed at a distance far away from the LED chip 1502. In this case, the conversion efficiency of the blue light to white light is increased due to a small re-absorption of the LED light due to a small back scattering by the phosphor to the LED chip. Then the surfaces 1526 and 1528 of the phosphor layers 1524 are roughened to improve the light extraction through the phosphor. The surfaces 1526 and 1528 may have different patterns or may be roughened in the same fashion as each other, as desired.
In
In this case, the mirror 1600 is partially attached to the LED chip 1502 or the substrate 1506. This partial attachment of the mirror 1600 is not defined as attached mirror to the LED chip 1502 because the mirror of a conventional LED chip is attached to the whole rear surface of the LED chip at the front or the back sides of the LED chip, which would allow for re-absorption of the light within the LED chip, which is undesirable.
Then, the phosphor layer 1524 was put near the top surface of the molding layer 1508. Again, this means that the phosphor layer 1524 should be put far away from the LED chip 1502 to allow the light to escape the LED chip 1502. In this case, the conversion efficiency of the blue light to white light is increased due to a small re-absorption of the LED light due to a small back scattering by the phosphor layer 1524. Then surface 1528 of the phosphor layer 1524 was roughened to improve the light extraction through the phosphor layer 1524.
In
In
For example, the typical refractive index of epoxy is n=1.5. The refractive index of the air is n=1. In such a case, the critical angle of the reflection is sin−1(1/1.5). So, the angle of the inverted cone 1802 should be more than sin−1(1/1.5). Then the LED light 1604 is effectively extracted from the front surface 1804 of the inverted cone, which is approximately parallel to the side wall of the LED chip 1502. A mirror 1806 coating can be applied to the epoxy layer 1508 to increase the reflection of the rear surface of the epoxy layer 1508 if desired.
Then, the phosphor layer 1524 is put near the top surface of the inverted cone-shape molding 1508, which places the phosphor layer 1524 relatively far away from the LED chip 1502. In this case, the conversion efficiency of the blue light to white light is increased due to a small re-absorption of the LED light 1604 due to a small back scattering by the phosphor layer 1524 to the LED chip 1502. Then surface 1528 of the phosphor layer 1524 is roughened to improve the conversion efficiency of the phosphor layer 1524 from blue to yellow emission. The details of lead frame 1522 are shown in
In
With a roughening or texturing of the phosphor layer, the conversion efficiency of the phosphor layer is increased by increasing the light extraction from the phosphor layer and also by increasing the excitation efficiency of the phosphor layer.
Also, without any intentional mirrors attached to LED chip (the mirror coated on lead frame is also included as the intentional mirrors), the re-absorption of LED light is minimized and the light extraction efficiency is increased dramatically. Then, the light output power of the LEDs is increased dramatically. See
The combination of a transparent oxide electrode with a surface roughened nitride LED and shaped lens results in high light extraction as shown in
The following references are incorporated by reference herein:
In summary, the present invention comprises LEDs with high efficiency. A Light Emitting Diode (LED) in accordance with the present invention comprises an LED chip, emitting light at a first wavelength region, an encapsulation layer, coupled to the LED chip, wherein the encapsulation layer is transparent at the first wavelength region, and a phosphor layer, coupled to the encapsulation layer and distant from the LED chip, the phosphor layer converting the light emitted by the LED chip in the first wavelength region to light in at least a second wavelength region, wherein at least a portion of a surface of the phosphor layer is textured.
Such an LED further optionally comprises the LED being made from a material selected from the group comprising (Al, Ga, In)N material system, the (Al, Ga, In)As material system, the (Al, Ga, In)P material system, the (Al, Ga, In) AsPNSb material system, and the ZnGeN2 and ZnSnGeN2 material systems, the textured phosphor layer having a cone shape, the encapsulation layer comprising epoxy, glass, air, and other materials that are transparent at the emission wavelength, at least a portion of a second surface of the phosphor layer being textured, the encapsulation layer comprising a material selected from a group comprising ITO, ZnO, and a thin metal, the LED chip further comprising a current spreading layer, a textured sapphire substrate being used for the LED chip to increase the light transmission from the LED chip, a backside of the textured sapphire substrate being textured, the LED being molded into an inverted cone shape, light being extracted from the LED in a direction normal to the emitting surface of the LED chip, a mirror, and the mirror being designed such that light striking the mirror is reflected away from the LED chip.
Another LED in accordance with the present invention comprises an LED chip, emitting light at a first wavelength region and having a first refractive index, an encapsulation layer, coupled to the LED chip, wherein the encapsulation layer is transparent at the first wavelength region and having a second refractive index less than the first refractive index, wherein the second refractive index is greater than 1, and a phosphor layer, coupled to the encapsulation layer and distant from the LED chip, the phosphor layer converting light emitted in the first wavelength region to light in at least a second wavelength region, wherein at least a portion of a surface of the phosphor layer farthest from the LED chip is not normal to the light emitted from the LED chip.
Such an LED further optionally comprises the LED being made from a material selected from the group comprising (Al, Ga, In)N material system, the (Al, Ga, In)As material system, the (Al, Ga, In)P material system, the (Al, Ga, In) AsPNSb material system, and the ZnGeN2 and ZnSnGeN2 material systems, the phosphor layer having a cone shape, at least a portion of a second surface of the phosphor layer closer to the LED chip also being textured, the encapsulation layer comprising a material selected from a group comprising ITO, ZnO, and a thin metal, the LED chip further comprising a current spreading layer, and the encapsulation layer comprising epoxy, glass, and other materials that are transparent at the emission wavelength.
This concludes the description of the preferred embodiment of the present invention. The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto and the full range of equivalents to the claims appended hereto.
This application is a continuation under 35 U.S.C. §120 of commonly-assigned: U.S. Utility patent application Ser. No. 14/483,501, filed on Sep. 11, 2014, by Natalie Fellows DeMille, Steven P. DenBaars, and Shuji Nakamura, entitled, “TEXTURED PHOSPHOR CONVERSION LAYER LIGHT EMITTING DIODE,”, now U.S. Pat. No. 9,240,529, issued Jan. 19, 2016, which application is a continuation under 35 U.S.C. §120 of commonly-assigned: U.S. Utility patent application Ser. No. 11/940,885, filed on Nov. 15, 2007, by Natalie Fellows DeMille, Steven P. DenBaars, and Shuji Nakamura, entitled, “TEXTURED PHOSPHOR CONVERSION LAYER LIGHT EMITTING DIODE,”, now U.S. Pat. No. 8,860,051, issued Oct. 14, 2014, which application claims the benefit under 35 U.S.C. Section 119(e) of commonly-assigned: U.S. Provisional Patent Application Ser. No. 60/866,024, filed on Nov. 15, 2006, by Natalie N. Fellows, Steven P. DenBaars and Shuji Nakamura, entitled “TEXTURED PHOSPHOR CONVERSION LAYER LIGHT EMITTING DIODE,”; all of which applications are incorporated by reference herein. This application is related to the following commonly-assigned applications: U.S. Utility application Ser. No. 10/581,940, filed on Jun. 7, 2006, by Tetsuo Fujii, Yan Gao, Evelyn. L. Hu, and Shuji Nakamura, entitled “HIGHLY EFFICIENT GALLIUM NITRIDE BASED LIGHT EMITTING DIODES VIA SURFACE ROUGHENING,”, now U.S. Pat. No. 7,704,763, issued Apr. 27, 2010, which application claims the benefit under 35 U.S.C. Section 365(c) of PCT Application Serial No. US2003/03921, filed on Dec. 9, 2003, by Tetsuo Fujii, Yan Gao, Evelyn L. Hu, and Shuji Nakamura, entitled “HIGHLY EFFICIENT GALLIUM NITRIDE BASED LIGHT EMITTING DIODES VIA SURFACE ROUGHENING,”; U.S. Utility application Ser. No. 11/054,271, filed on Feb. 9, 2005, by Rajat Sharma, P. Morgan Pattison, John F. Kaeding, and Shuji Nakamura, entitled “SEMICONDUCTOR LIGHT EMITTING DEVICE,”, now U.S. Pat. No. 8,227,820 issued Jul. 24, 2012; U.S. Utility application Ser. No. 11/175,761, filed on Jul. 6, 2005, by Akihiko Murai, Lee McCarthy, Umesh K. Mishra and Steven P. DenBaars, entitled “METHOD FOR WAFER BONDING (Al, In, Ga)N and Zn(S, Se) FOR OPTOELECTRONICS APPLICATIONS,”, now U.S. Pat. No. 7,344,958, issued Mar. 18, 2008, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/585,673, filed Jul. 6, 2004, by Akihiko Murai, Lee McCarthy, Umesh K. Mishra and Steven P. DenBaars, entitled “METHOD FOR WAFER BONDING (Al, In, Ga)N and Zn(S, Se) FOR OPTOELECTRONICS APPLICATIONS,”; U.S. Utility application Ser. No. 11/067,957, filed Feb. 28, 2005, by Claude C. A. Weisbuch, Aurelien J. F. David, James S. Speck and Steven P. DenBaars, entitled “HORIZONTAL EMITTING, VERITCAL EMITTING, BEAM SHAPED, DISTRIBUTED FEEDBACK (DFB) LASERS BY GROWTH OVER A PATTERNED SUBSTRATE,”, now U.S. Pat. No. 7,345,298, issued Mar. 18, 2008; U.S. Utility application Ser. No. 11/923,414, filed Oct. 24, 2007, by Claude C. A. Weisbuch, Aurelien J. F. David, James S. Speck and Steven P. DenBaars, entitled “SINGLE OR MULTI-COLOR HIGH EFFICIENCY LIGHT EMITTING DIODE (LED) BY GROWTH OVER A PATTERNED SUBSTRATE,”, now U.S. Pat. No. 7,755,096, issued Jul. 13, 2010, which application is a continuation of U.S. Pat. No. 7,291,864, issued Nov. 6, 2007, to Claude C. A. Weisbuch, Aurelien J. F. David, James S. Speck and Steven P. DenBaars, entitled “SINGLE OR MULTI-COLOR HIGH EFFICIENCY LIGHT EMITTING DIODE (LED) BY GROWTH OVER A PATTERNED SUBSTRATE,”; U.S. Utility application Ser. No. 11/067,956, filed Feb. 28, 2005, by Aurelien J. F. David, Claude C. A Weisbuch and Steven P. DenBaars, entitled “HIGH EFFICIENCY LIGHT EMITTING DIODE (LED) WITH OPTIMIZED PHOTONIC CRYSTAL EXTRACTOR,”, now U.S. Pat. No. 7,582,910, issued Sep. 1, 2009; U.S. Utility application Ser. No. 11/403,624, filed Apr. 13, 2006, by James S. Speck, Troy J. Baker and Benjamin A. Haskell, entitled “WAFER SEPARATION TECHNIQUE FOR THE FABRICATION OF FREE-STANDING (AL, IN, GA)N WAFERS,”, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional application Ser. No. 60/670,810, filed Apr. 13, 2005, by James S. Speck, Troy J. Baker and Benjamin A. Haskell, entitled “WAFER SEPARATION TECHNIQUE FOR THE FABRICATION OF FREE-STANDING (AL, IN, GA)N WAFERS,”; U.S. Utility application Ser. No. 11/403,288, filed Apr. 13, 2006, by James S. Speck, Benjamin A. Haskell, P. Morgan Pattison and Troy J. Baker, entitled “ETCHING TECHNIQUE FOR THE FABRICATION OF THIN (AL, IN, GA)N LAYERS,”, now U.S. Pat. No. 7,795,146, issued Sep. 14, 2010, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/670,790, filed Apr. 13, 2005, by James S. Speck, Benjamin A. Haskell, P. Morgan Pattison and Troy J. Baker, entitled “ETCHING TECHNIQUE FOR THE FABRICATION OF THIN (AL, IN, GA)N LAYERS,”; U.S. Utility application Ser. No. 11/454,691, filed on Jun. 16, 2006, by Akihiko Murai, Christina Ye Chen, Daniel B. Thompson, Lee S. McCarthy, Steven P. DenBaars, Shuji Nakamura, and Umesh K. Mishra, entitled “(Al,Ga,In)N AND ZnO DIRECT WAFER BONDING STRUCTURE FOR OPTOELECTRONIC APPLICATIONS AND ITS FABRICATION METHOD,”, now U.S. Pat. No. 7,719,020, issued May 18, 2010, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/691,710, filed on Jun. 17, 2005, by Akihiko Murai, Christina Ye Chen, Lee S. McCarthy, Steven P. DenBaars, Shuji Nakamura, and Umesh K. Mishra, entitled “(Al, Ga, In)N AND ZnO DIRECT WAFER BONDING STRUCTURE FOR OPTOELECTRONIC APPLICATIONS, AND ITS FABRICATION METHOD,”, U.S. Provisional Application Ser. No. 60/732,319, filed on Nov. 1, 2005, by Akihiko Murai, Christina Ye Chen, Daniel B. Thompson, Lee S. McCarthy, Steven P. DenBaars, Shuji Nakamura, and Umesh K. Mishra, entitled “(Al, Ga, In)N AND ZnO DIRECT WAFER BONDED STRUCTURE FOR OPTOELECTRONIC APPLICATIONS, AND ITS FABRICATION METHOD,”, and U.S. Provisional Application Ser. No. 60/764,881, filed on Feb. 3, 2006, by Akihiko Murai, Christina Ye Chen, Daniel B. Thompson, Lee S. McCarthy, Steven P. DenBaars, Shuji Nakamura, and Umesh K. Mishra, entitled “(Al,Ga,In)N AND ZnO DIRECT WAFER BONDED STRUCTURE FOR OPTOELECTRONIC APPLICATIONS AND ITS FABRICATION METHOD,”; U.S. Utility application Ser. No. 11/251,365 filed Oct. 14, 2005, by Frederic S. Diana, Aurelien J. F. David, Pierre M. Petroff, and Claude C. A. Weisbuch, entitled “PHOTONIC STRUCTURES FOR EFFICIENT LIGHT EXTRACTION AND CONVERSION IN MULTI-COLOR LIGHT EMITTING DEVICES,”, now U.S. Pat. No. 7,768,023, issued Aug. 3, 2010; U.S. Utility application Ser. No. 11/633,148, filed Dec. 4, 2006, Claude C. A. Weisbuch and Shuji Nakamura, entitled “IMPROVED HORIZONTAL EMITTING, VERTICAL EMITTING, BEAM SHAPED, DISTRIBUTED FEEDBACK (DFB) LASERS FABRICATED BY GROWTH OVER A PATTERNED SUBSTRATE WITH MULTIPLE OVERGROWTH,”, now U.S. Pat. No. 7,768,024, issued Aug. 3, 2010, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/741,935, filed Dec. 2, 2005, Claude C. A. Weisbuch and Shuji Nakamura, entitled “IMPROVED HORIZONTAL EMITTING, VERTICAL EMITTING, BEAM SHAPED, DFB LASERS FABRICATED BY GROWTH OVER PATTERNED SUBSTRATE WITH MULTIPLE OVERGROWTH,”; U.S. Utility application Ser. No. 11/593,268, filed on Nov. 6, 2006, by Steven P. DenBaars, Shuji Nakamura, Hisashi Masui, Natalie N. Fellows, and Akihiko Murai, entitled “HIGH LIGHT EXTRACTION EFFICIENCY LIGHT EMITTING DIODE (LED),”, now U.S. Pat. No. 7,994,527, issued Aug. 9, 2011, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/734,040, filed on Nov. 4, 2005, by Steven P. DenBaars, Shuji Nakamura, Hisashi Masui, Natalie N. Fellows, and Akihiko Murai, entitled “HIGH LIGHT EXTRACTION EFFICIENCY LIGHT EMITTING DIODE (LED),”; U.S. Utility application Ser. No. 11/608,439, filed on Dec. 8, 2006, by Steven P. DenBaars, Shuji Nakamura and James S. Speck, entitled “HIGH EFFICIENCY LIGHT EMITTING DIODE (LED),”, now U.S. Pat. No. 7,956,371, issued Jun. 7, 2011, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/748,480, filed on Dec. 8, 2005, by Steven P. DenBaars, Shuji Nakamura and James S. Speck, entitled “HIGH EFFICIENCY LIGHT EMITTING DIODE (LED),”, and U.S. Provisional Application Ser. No. 60/764,975, filed on Feb. 3, 2006, by Steven P. DenBaars, Shuji Nakamura and James S. Speck, entitled “HIGH EFFICIENCY LIGHT EMITTING DIODE (LED),”; U.S. Utility application Ser. No. 11/676,999, filed on Feb. 20, 2007, by Hong Zhong, John F. Kaeding, Rajat Sharma, James S. Speck, Steven P. DenBaars and Shuji Nakamura, entitled “METHOD FOR GROWTH OF SEMIPOLAR (Al,In,Ga,B)N OPTOELECTRONIC DEVICES,”, now U.S. Pat. No. 7,858,996, issued Dec. 28, 2010, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/774,467, filed on Feb. 17, 2006, by Hong Zhong, John F. Kaeding, Rajat Sharma, James S. Speck, Steven P. DenBaars and Shuji Nakamura, entitled “METHOD FOR GROWTH OF SEMIPOLAR (Al,In,Ga,B)N OPTOELECTRONIC DEVICES,”; U.S. Utility patent application Ser. No. 11/940,848, filed on Nov. 15, 2007, by Aurelien J. F. David, Claude C. A. Weisbuch and Steven P. DenBaars entitled “HIGH LIGHT EXTRACTION EFFICIENCY LIGHT EMITTING DIODE (LED) THROUGH MULTIPLE EXTRACTORS,”, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/866,014, filed on Nov. 15, 2006, by Aurelien J. F. David, Claude C. A. Weisbuch and Steven P. DenBaars entitled “HIGH LIGHT EXTRACTION EFFICIENCY LIGHT EMITTING DIODE (LED) THROUGH MULTIPLE EXTRACTORS,”, and U.S. Provisional Patent Application Ser. No. 60/883,977, filed on Jan. 8, 2007, by Aurelien J. F. David, Claude C. A. Weisbuch and Steven P. DenBaars entitled “HIGH LIGHT EXTRACTION EFFICIENCY LIGHT EMITTING DIODE (LED) THROUGH MULTIPLE EXTRACTORS,”; U.S. Utility patent application Ser. No. 11/940,853, filed on Nov. 15, 2007, by Claude C. A. Weisbuch, James S. Speck and Steven P. DenBaars entitled “HIGH EFFICIENCY WHITE, SINGLE OR MULTI-COLOUR LED BY INDEX MATCHING STRUCTURES,”, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/866,026, filed on Nov. 15, 2006, by Claude C. A. Weisbuch, James S. Speck and Steven P. DenBaars entitled “HIGH EFFICIENCY WHITE, SINGLE OR MULTI-COLOUR LED BY INDEX MATCHING STRUCTURES,”; U.S. Utility patent application Ser. No. 11/940,866, filed on same date herewith, by Aurelien J. F. David, Claude C. A. Weisbuch, Steven P. DenBaars and Stacia Keller, entitled “HIGH LIGHT EXTRACTION EFFICIENCY LIGHT EMITTING DIODE (LED) WITH EMITTERS WITHIN STRUCTURED MATERIALS,”, now U.S. Pat. No. 7,977,694, issued Jul. 12, 2011, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/866,015, filed on same date herewith, by Aurelien J. F. David, Claude C. A. Weisbuch, Steven P. DenBaars and Stacia Keller, entitled “HIGH LIGHT EXTRACTION EFFICIENCY LED WITH EMITTERS WITHIN STRUCTURED MATERIALS,”; U.S. Utility patent application Ser. No. 11/940,876, filed on Nov. 15, 2007, by Evelyn L. Hu, Shuji Nakamura, Yong Seok Choi, Rajat Sharma and Chiou-Fu Wang, entitled “ION BEAM TREATMENT FOR THE STRUCTURAL INTEGRITY OF AIR-GAP III-NITRIDE DEVICES PRODUCED BY PHOTOELECTROCHEMICAL (PEC) ETCHING,”, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/866,027, filed on Nov. 15, 2006, by Evelyn L. Hu, Shuji Nakamura, Yong Seok Choi, Rajat Sharma and Chiou-Fu Wang, entitled “ION BEAM TREATMENT FOR THE STRUCTURAL INTEGRITY OF AIR-GAP III-NITRIDE DEVICES PRODUCED BY PHOTOELECTROCHEMICAL (PEC) ETCHING,”; U.S. Utility patent application Ser. No. 11/940,872, filed on Nov. 15, 2007, by Steven P. DenBaars, Shuji Nakamura and Hisashi Masui, entitled “HIGH LIGHT EXTRACTION EFFICIENCY SPHERE LED,”, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/866,025, filed on Nov. 15, 2006, by Steven P. DenBaars, Shuji Nakamura and Hisashi Masui, entitled “HIGH LIGHT EXTRACTION EFFICIENCY SPHERE LED,”; U.S. Utility patent application Ser. No. 11/940,883, filed on Nov. 15, 2007, by Shuji Nakamura and Steven P. DenBaars, entitled “STANDING TRANSPARENT MIRROR-LESS (STML) LIGHT EMITTING DIODE,”, now U.S. Pat. No. 7,687,813, issued Mar. 30, 2010, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/866,017, filed on Nov. 15, 2006, by Shuji Nakamura and Steven P. DenBaars, entitled “STANDING TRANSPARENT MIRROR-LESS (STML) LIGHT EMITTING DIODE,”; and U.S. Utility patent application Ser. No. 11/940,898, filed on Nov. 15, 2007, by Steven P. DenBaars, Shuji Nakamura and James S. Speck, entitled “TRANSPARENT MIRROR-LESS (TML) LIGHT EMITTING DIODE,”, now U.S. Pat. No. 7,781,789, issued Aug. 24, 2010, which application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application Ser. No. 60/866,023, filed on Nov. 15, 2006, by Steven P. DenBaars, Shuji Nakamura and James S. Speck, entitled “TRANSPARENT MIRROR-LESS (TML) LIGHT EMITTING DIODE,”; all of which applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3607463 | Kinoshita et al. | Sep 1971 | A |
3999280 | Hansen et al. | Dec 1976 | A |
4026692 | Bartholomew | May 1977 | A |
4497974 | Deckman et al. | Feb 1985 | A |
5416870 | Chun et al. | May 1995 | A |
5696389 | Ishikawa et al. | Dec 1997 | A |
5775792 | Wiese | Jul 1998 | A |
5780867 | Fritz et al. | Jul 1998 | A |
5932048 | Furukawa et al. | Aug 1999 | A |
5952681 | Chen | Sep 1999 | A |
6155699 | Miller et al. | Dec 2000 | A |
6357889 | Duggal et al. | Mar 2002 | B1 |
6373188 | Johnson et al. | Apr 2002 | B1 |
6417019 | Mueller et al. | Jul 2002 | B1 |
6452217 | Wojnarowski et al. | Sep 2002 | B1 |
6515308 | Kneissl et al. | Feb 2003 | B1 |
6547423 | Marshall et al. | Apr 2003 | B2 |
6548956 | Forrest et al. | Apr 2003 | B2 |
6569544 | Alain et al. | May 2003 | B1 |
6573530 | Sargent et al. | Jun 2003 | B1 |
6573537 | Steigerwald et al. | Jun 2003 | B1 |
6607286 | West et al. | Aug 2003 | B2 |
6674096 | Sommers | Jan 2004 | B2 |
6677610 | Choi et al. | Jan 2004 | B2 |
6686218 | Lin et al. | Feb 2004 | B2 |
6717362 | Lee et al. | Apr 2004 | B1 |
6729746 | Suehiro et al. | May 2004 | B2 |
6746295 | Sorg | Jun 2004 | B2 |
6784460 | Ng et al. | Aug 2004 | B2 |
6961190 | Tamaoki et al. | Nov 2005 | B1 |
6997580 | Wong | Feb 2006 | B2 |
6998281 | Taskar et al. | Feb 2006 | B2 |
7053419 | Camras et al. | May 2006 | B1 |
7098589 | Erchak et al. | Aug 2006 | B2 |
7119271 | King et al. | Oct 2006 | B2 |
7126159 | Itai et al. | Oct 2006 | B2 |
7135709 | Wirth et al. | Nov 2006 | B1 |
7157745 | Blonder et al. | Jan 2007 | B2 |
7223998 | Schwach et al. | May 2007 | B2 |
7250728 | Chen et al. | Jul 2007 | B2 |
7253447 | Oishi et al. | Aug 2007 | B2 |
7268371 | Krames et al. | Sep 2007 | B2 |
7291864 | Weisbuch et al. | Nov 2007 | B2 |
7329982 | Conner et al. | Feb 2008 | B2 |
7344958 | Murai et al. | Mar 2008 | B2 |
7345298 | Weisbuch et al. | Mar 2008 | B2 |
7358537 | Yeh et al. | Apr 2008 | B2 |
7390117 | Leatherdale et al. | Jun 2008 | B2 |
7414270 | Kim et al. | Aug 2008 | B2 |
7489075 | Lee | Feb 2009 | B2 |
7582910 | David et al. | Sep 2009 | B2 |
7687813 | Nakamura et al. | Mar 2010 | B2 |
7704763 | Fujii et al. | Apr 2010 | B2 |
7719020 | Murai et al. | May 2010 | B2 |
7755096 | Weisbuch et al. | Jul 2010 | B2 |
8860051 | Fellows | Oct 2014 | B2 |
20010002049 | Reeh et al. | May 2001 | A1 |
20010033135 | Duggal et al. | Oct 2001 | A1 |
20020085601 | Wang et al. | Jul 2002 | A1 |
20020123204 | Torvik | Sep 2002 | A1 |
20020131726 | Lin et al. | Sep 2002 | A1 |
20020158578 | Eliashevich et al. | Oct 2002 | A1 |
20030100140 | Lin et al. | May 2003 | A1 |
20030215766 | Fischer et al. | Nov 2003 | A1 |
20040046179 | Baur et al. | Mar 2004 | A1 |
20040070014 | Lin | Apr 2004 | A1 |
20040079408 | Fetzer et al. | Apr 2004 | A1 |
20040089868 | Hon et al. | May 2004 | A1 |
20040094772 | Hon et al. | May 2004 | A1 |
20040164311 | Uemura | Aug 2004 | A1 |
20040173810 | Lin | Sep 2004 | A1 |
20040188700 | Fukasawa et al. | Sep 2004 | A1 |
20040211970 | Hayashimoto et al. | Oct 2004 | A1 |
20040239611 | Huang et al. | Dec 2004 | A1 |
20040245531 | Fuii et al. | Dec 2004 | A1 |
20040263064 | Huang | Dec 2004 | A1 |
20050029528 | Ishikawa | Feb 2005 | A1 |
20050032257 | Camras et al. | Feb 2005 | A1 |
20050035354 | Lin et al. | Feb 2005 | A1 |
20050062830 | Taki et al. | Mar 2005 | A1 |
20050077532 | Ota et al. | Apr 2005 | A1 |
20050082562 | Ou et al. | Apr 2005 | A1 |
20050093008 | Suehiro et al. | May 2005 | A1 |
20050111240 | Yonekubo | May 2005 | A1 |
20050121688 | Nagai et al. | Jun 2005 | A1 |
20050133810 | Roberts et al. | Jun 2005 | A1 |
20050156510 | Chua et al. | Jul 2005 | A1 |
20050184300 | Tazima et al. | Aug 2005 | A1 |
20050189551 | Peng et al. | Sep 2005 | A1 |
20050205884 | Kim et al. | Sep 2005 | A1 |
20050211997 | Suehiro et al. | Sep 2005 | A1 |
20050212002 | Sanga et al. | Sep 2005 | A1 |
20050224830 | Blonder et al. | Oct 2005 | A1 |
20050243570 | Chaves et al. | Nov 2005 | A1 |
20050248271 | Ng et al. | Nov 2005 | A1 |
20050265404 | Ashdown | Dec 2005 | A1 |
20060001186 | Richardson et al. | Jan 2006 | A1 |
20060008941 | Haskell et al. | Jan 2006 | A1 |
20060009006 | Murai et al. | Jan 2006 | A1 |
20060054905 | Schwach et al. | Mar 2006 | A1 |
20060063028 | Leurs | Mar 2006 | A1 |
20060091376 | Kim et al. | May 2006 | A1 |
20060138439 | Bogner et al. | Jun 2006 | A1 |
20060145170 | Cho | Jul 2006 | A1 |
20060163601 | Harle et al. | Jul 2006 | A1 |
20060164836 | Suehiro et al. | Jul 2006 | A1 |
20060171152 | Suehiro et al. | Aug 2006 | A1 |
20060175624 | Sharma et al. | Aug 2006 | A1 |
20060186418 | Edmond et al. | Aug 2006 | A1 |
20060192217 | David et al. | Aug 2006 | A1 |
20060194359 | Weisbuch et al. | Aug 2006 | A1 |
20060202219 | Ohashi et al. | Sep 2006 | A1 |
20060202226 | Weisbuch et al. | Sep 2006 | A1 |
20060234486 | Speck et al. | Oct 2006 | A1 |
20060237723 | Ito | Oct 2006 | A1 |
20060243993 | Yu | Nov 2006 | A1 |
20060246722 | Speck et al. | Nov 2006 | A1 |
20070001185 | Lu et al. | Jan 2007 | A1 |
20070001186 | Murai et al. | Jan 2007 | A1 |
20070012940 | Suh et al. | Jan 2007 | A1 |
20070019409 | Nawashiro et al. | Jan 2007 | A1 |
20070065960 | Fukshima et al. | Mar 2007 | A1 |
20070085075 | Yamazaki et al. | Apr 2007 | A1 |
20070085100 | Diana et al. | Apr 2007 | A1 |
20070102721 | DenBaars et al. | May 2007 | A1 |
20070120135 | Soules et al. | May 2007 | A1 |
20070125995 | Weisbuch et al. | Jun 2007 | A1 |
20070139949 | Tanda et al. | Jun 2007 | A1 |
20070145397 | DenBaars et al. | Jun 2007 | A1 |
20070147072 | Scobbo et al. | Jun 2007 | A1 |
20070189013 | Ford | Aug 2007 | A1 |
20070252164 | Zhong et al. | Nov 2007 | A1 |
20080128730 | Fellows et al. | Jun 2008 | A1 |
20080128731 | DenBaars et al. | Jun 2008 | A1 |
20080135864 | David et al. | Jun 2008 | A1 |
20080149949 | Nakamura et al. | Jun 2008 | A1 |
20080182420 | Hu et al. | Jul 2008 | A1 |
20080191191 | Kim | Aug 2008 | A1 |
20090114928 | Messere et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
19807758 | Dec 1998 | DE |
1081771 | Mar 2001 | EP |
1536487 | Jun 2005 | EP |
1416543 | Jul 2012 | EP |
53024300 | Mar 1978 | JP |
09027642 | Jan 1997 | JP |
10200165 | Jul 1998 | JP |
H11 17223 | Jan 1999 | JP |
2000277808 | Oct 2000 | JP |
2001126515 | May 2001 | JP |
2002208735 | Jul 2002 | JP |
2002280614 | Sep 2002 | JP |
2002314152 | Oct 2002 | JP |
2003016808 | Jan 2003 | JP |
2003318441 | Nov 2003 | JP |
2003347586 | Dec 2003 | JP |
2004111981 | Apr 2004 | JP |
2004158557 | Jun 2004 | JP |
200557310 | Mar 2005 | JP |
2005150261 | Jun 2005 | JP |
2005-191197 | Jul 2005 | JP |
2005191514 | Jul 2005 | JP |
2005-268323 | Sep 2005 | JP |
2005347677 | Dec 2005 | JP |
2006024615 | Jan 2006 | JP |
2006032387 | Feb 2006 | JP |
2006128227 | May 2006 | JP |
2006191103 | Jul 2006 | JP |
2006210824 | Aug 2006 | JP |
2006229259 | Aug 2006 | JP |
2006-237264 | Sep 2006 | JP |
2006237264 | Sep 2006 | JP |
2006287113 | Oct 2006 | JP |
2006294907 | Oct 2006 | JP |
2007165811 | Jun 2007 | JP |
100626365 | Sep 2006 | KR |
02090825 | Nov 2002 | WO |
2005064666 | Jul 2005 | WO |
2005083037 | Sep 2005 | WO |
Entry |
---|
Fujii, T. et al., “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., Feb. 9, 2004, pp. 855-857, vol. 84, No. 6. |
Jasinski, J. et al., “Microstructure of GaAs/GaN interfaces produced by direct wafer fusion,” Appl. Phys. Lett., Oct. 21, 2002, pp. 3152-3154, vol. 81, No. 17. |
Kish, F.A. et al., “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGz1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., May 23, 1994, pp. 2839-2841, vol. 64, No. 21. |
Liau, Z.L. et al., “Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett., Feb. 19, 1990, pp. 737-739, vol. 56, No. 8. |
Murai, A. et al., “Wafer Bonding of GaN and ZnSSe for Optoelectronic Applications,” Jpn. J. Appl. Phys., 2004, pp. L1275-L1277, vol. 43, No. 10A. |
Narukawa, Y. et al., “Ultra-High Efficiency White Light Emitting Diodes,” Jpn. J. Appl. Phys., 2006, pp. L1084-L1086, vol. 45, No. 41. |
Japanese Office Action dated Jun. 4, 2012 for JP application No. 2009-537203. |
Extended European search report for European application No. 07862038.2 dated Jan. 6, 2012. |
International Search Report dated May 23, 2008 for PCT application No. PCT/US2007/023972 filed on Nov. 15, 2007. |
International Search Report mailed Nov. 1, 2007. |
Murai, A. et al., “Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding,” Applied Physics Letters, vol. 89, No. 17, Oct. 26, 2007, pp. 171116-1-171116-3. |
Nakahara, K. et al., “Improved external efficiency InGaN-based light-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes,” Jpn. J. or Applied Physics 2004, pp. L180-L182, vol. 43(2A). |
Nakamura, S. et al., “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 1995, L797-L799, vol. 34 (Part 2, 7A). |
Japanese Office Action (with English translation) dated Jun. 12, 2013 for Japanese Patent Application No. 2009-537203. |
Japanese Office Action (with English translation) dated Feb. 28, 2014 for Japanese Patent Application No. 2009-537203. |
Japanese Denial of Entry of Amendment (with English translation) dated Feb. 28, 2014 for Japanese Patent Application No. 2009-537203. |
Japanese Office Action (with English translation) dated Feb. 23, 2015 for Japanese Patent Application No. 2014-131217. |
Extended European Search Report dated Mar. 27, 2015 for European Application No. 14177879.5. |
Number | Date | Country | |
---|---|---|---|
20160133790 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
60866024 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14483501 | Sep 2014 | US |
Child | 14757937 | US | |
Parent | 11940885 | Nov 2007 | US |
Child | 14483501 | US |