Embodiments of the technology relate generally to lighting fixtures and more specifically to an outdoor luminaire, such as a streetlight, that comprises light emitting diodes and associated circuitry disposed against a metallic substrate.
For illumination applications, light emitting diodes (LEDs) offer substantial potential benefit associated with their energy efficiency, light quality, and compact size. However, to realize the full potential of the potential benefits offered by light emitting diodes, new technologies are needed. For instance, relative to incandescent lights, light emitting diodes typically have different thermal properties, different electrical characteristics, different manufacturing requirements, and different mounting constraints.
Accordingly, there are needs in the art for technology to manage heat produced by one or more light emitting diodes. Additional needs exist for lighting fixture configurations that facilitate cost-effective manufacturing. Need further exist for light emitting diode mounting technologies. Need also exists for lighting fixture configurations that facilitate cost-effective manufacturing and for improved technology for powering light emitting diodes. A capability addressing one or more such needs, or some other related deficiency in the art, would support improved illumination systems and more widespread utilization of light emitting diodes in lighting applications.
In one aspect of the disclosure, a lighting fixture can comprise a sheet of metal, a circuit that comprises one or more light emitting diodes, and one or more optics. The circuit can be disposed adjacent the sheet of metal. The circuit can be attached to, mounted next to, or integrated with the sheet of metal. In some examples, a layer of dielectric material adheres to the sheet of metal, and circuit elements adhere to the layer of dielectric material. Such circuit elements may comprise electrical traces, light emitting diodes, and/or a light emitting diode driver, to mention a few representative examples without limitation. The sheet of metal can provide a substrate for the circuit or a support for a freestanding circuit board that may be rigid or flexible. The optic or optics can manage light emitted by the light emitting diode or diodes.
The foregoing discussion of certain aspects of the disclosure is for illustrative purposes only. Various aspects of the present technology may be more clearly understood and appreciated from a review of the following text and by reference to the associated drawings and the claims that follow. Other aspects, systems, methods, features, advantages, and objects of the present technology will become apparent to one with skill in the art upon examination of the following drawings and text. It is intended that all such aspects, systems, methods, features, advantages, and objects are to be included within this description and covered by this application and by the appended claims of the application.
Reference will be made below to the accompanying drawings.
The drawings illustrate only example embodiments and are therefore not to be considered limiting of the embodiments described, as other equally effective embodiments are within the scope and spirit of this disclosure. The elements and features shown in the drawings are not necessarily drawn to scale, emphasis instead being placed upon clearly illustrating principles of the embodiments. Additionally, certain dimensions or positionings may be exaggerated to help visually convey certain principles. In the drawings, similar reference numerals among different figures designate like or corresponding, but not necessarily identical, elements.
As will be discussed in further detail below, some example embodiments of a lighting fixture can comprise an electrical circuit that is attached to a sheet of metal, with a layer of dielectric material positioned between the circuit and the sheet of metal. The layer of dielectric material can provide electrical insulation between the electrical circuit and the sheet of metal. In some embodiments, the dielectric material comprises a film or coating applied to the sheet of metal. The sheet of metal and the insulating layer can comprise a substrate for the circuit. In some example embodiments, the sheet of metal provides a ground plane for the electrical circuit. In some example embodiments, the sheet of metal provides electrical shielding for the electrical circuit. In some example embodiments, the sheet of metal may have a thickness in a range from approximately 0.01 inches to approximately 0.25 inches. Other embodiments may utilize other appropriate thicknesses that may be above or below that range, for example.
The electrical circuit can provide electricity for one or more light emitting diodes. In some example embodiments, the circuit comprises the light emitting diodes, so that the light emitting diodes are mounted adjacent the sheet of metal. In some example embodiments, an array of light emitting diodes is attached to the sheet of metal, and the layer of dielectric material electrically insulates the light emitting diodes from the sheet of metal.
In some example embodiments, each light emitting diode has an associated optic that manages emitted light. In some example embodiments, an array of such optics is mounted adjacent an array of light emitting diodes. The array may be two dimensional in some embodiments, for example. In some example embodiments, a sheet of pliable material, such as gasket material, is disposed between the array of optics and the layer of dielectric material to provide environmental protection, including to protect against moisture ingress.
Some representative embodiments will be further described hereinafter with example reference to the accompanying drawings that describe representative embodiments of the present technology. The technology may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the technology to those appropriately skilled in the art.
Turning now to
In the illustrated example, the lighting fixture 100 comprises an outdoor luminaire, specifically a pole-mounted streetlight. A clamp 120 attaches the lighting fixture 100 to the end of a pole 105. The clamp 120 comprises a bracket 121 that provides vibration support. The lighting fixture 100 comprises an integral shroud 107 adjacent the clamp 120 that covers the end of the pole 105.
As illustrated, the lighting fixture 100 comprises an array of light emitting diodes 126 for emitting light and a corresponding array of optics 125 for directing the emitted light to provide a desirable illumination pattern. In other embodiments, a single light emitting diode may be utilized.
A light shield 150 extends about the periphery of the array of optics 125. The light shield 150 prevents the emitted light from traveling skyward, thus suppressing light pollution. In other words, the light shield 150 occludes rays of light oriented in an unintended direction, for example skyward. In some embodiments, the light shield 150 is a unitary element. In other embodiments, the light shield 150 comprises multiple components.
A cover 110 provides environmental protection for the lighting fixture 100. The cover 110 further facilities thermal transfer of heat generated in connection with producing light from electricity. In some embodiments, the cover 110 is a unitary element. In other embodiments, the cover 110 comprises multiple components.
A photocontroller 115 is mounted on top of the cover 110. The photocontroller 115 senses ambient light level, turns the lighting fixture 100 on when the ambient light level is low, for example at dusk, and turns the lighting fixture 100 off in daylight conditions. In some embodiments, the photocontroller 115 can comprise multiple sensors, including an occupancy sensor or personnel sensor, for example. In some embodiments, the photocontroller 115 can be replaced by one or more other types of sensors, for example an occupancy sensor or personnel sensor. In some embodiments, such an occupancy sensor may be mounted on the light emitting side of the lighting fixture, for example.
The illustrated lighting fixture 100 further comprises a cover 130 on the fixture's light-emitting underside that provides an environmentally protected space for electrical elements. In some embodiments, the cover 130 is a unitary element. In other embodiments, the cover 130 comprises multiple components. In the illustrated embodiment, an opening 131 (visible in
In some embodiments, one or more sensors can be mounted to the cover 130, for example an occupancy or personnel sensor that detects presence of one or more people utilizing passive infrared sensing or other appropriate technology. In various embodiments, the cover 130 can comprise one or more holes, apertures, or windows for mounting such sensors, surge protection, and/or other appropriate devices. For example, such holes can be located in an area 132 of the cover 130 near the shroud 107.
In various embodiments, the cover 130 can have various electronic components mounted to the inside of the cover 130 or to the outside of the cover 130. In some example embodiments, the cover 130 has a recessed shape. In some example embodiments, the cover 130 has a substantially flat shape.
Turning now to
In the illustrated example embodiment, a gasket 135 is located between the cover 110 and the sheet of metal 140. The gasket 135 provides environmental protection, including against moisture ingress.
In some example embodiments, the sheet of metal 140 is flat or substantially flat. As discussed above, circuitry, including light emitting diodes 126, is mounted to the lower side of the sheet of metal 140. In some example embodiments, the sheet of metal 140 can comprise one or more recesses. In some example embodiments, the sheet of metal 140 is contoured on one or both sides, for example.
The photocontroller 115 is mounted at the upper surface of the cover 110 as discussed above. A gasket 103 is located between the cover 110 and the photocontroller 115 and seals around the periphery of the photocontroller 115. The gasket 103 can prevent ingress of water or dust.
A sheet of gasket material 145 is located between the array of optics 125 and the light shield 150, which functions as a frame. The sheet of gasket material 145 seals the light emitting diodes 126 and circuitry against moisture ingress.
In some example embodiments, the light emitting diode circuit comprises circuitry printed on a layer of insulating material that has been coated on the sheet of metal 140. The circuitry may include light emitting diodes 126, electrical traces, and/or one or more light emitting diode drivers 109. In some example embodiments, the light emitting diode circuitry comprises a printed circuit board that is mounted to or disposed against the sheet of metal 140. For example, light emitting diodes can be attached to a circuit board, with the circuit board fastened to or otherwise supported by the sheet of metal 140.
The light shield 150 extends around the array of optics 125 and light emitting diodes 126 as discussed above. The cover 130 is located on the pole side of the array of optics 125 and can provide light shielding as well as an enclosed space.
Turning now to
The inward facing side of the cover 130 is recessed to provide space for housing electrical components, including wiring. As shown in
The cover 130 provides an enclosed space that is under an opening 131 (illustrated in
Turning now to
As illustrated in
Turning now to
In some embodiments, the cover 110 can comprise metal inserts for holding other components or for mounting. For example, the cover 110 can comprise fastening elements molded or otherwise inserted.
The views of
Turning now to
The clamp 121 comprises bolts 191 that apply clamping force around the pole 105 in order to set and maintain the position of the lighting fixture 100 at the pole end. The bracket 121 is positioned on the upper side of the pole 105 and stabilizes the lighting fixture 100, including for vibration support. The collar 192 of the clamp 121 can accommodate poles 105 of varying diameters, as the bottom band that spans across one side of the pole is deformable relative to the upper member.
In some example embodiments, the clamp 121 comprises a lower pole mounting plate with stamped-in ramps that allow the lighting fixture 100 to be mounted at multiple angles on the pole 105. See for example
Many modifications and other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which these disclosures pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosures are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of this application. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application claims priority to U.S. Provisional Patent Application No. 62/042,836 filed Aug. 28, 2014 in the name of Sridhar Reddy Nimma and entitled “Lighting Fixture,” the entire contents of which are hereby incorporated herein by reference.
This invention was made with government support under Contract Number DE_EE0006260 awarded by the United States Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
8322881 | Wassel | Dec 2012 | B1 |
20080123340 | McClellan | May 2008 | A1 |
20110141728 | Russello et al. | Jun 2011 | A1 |
20120087125 | Liu | Apr 2012 | A1 |
20130155673 | Wang et al. | Jun 2013 | A1 |
20130279172 | Wang | Oct 2013 | A1 |
20140036521 | Elliott | Feb 2014 | A1 |
20140197291 | Schultz | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2762766 | Aug 2014 | EP |
2492761 | Jan 2013 | GB |
100862540 | Oct 2008 | KR |
Entry |
---|
International Search Report for PCT/US2015/047169 dated Nov. 18, 2015. |
Number | Date | Country | |
---|---|---|---|
20160061428 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62042836 | Aug 2014 | US |