Lightweight copying of data using metadata references

Information

  • Patent Grant
  • 12099741
  • Patent Number
    12,099,741
  • Date Filed
    Friday, May 5, 2023
    a year ago
  • Date Issued
    Tuesday, September 24, 2024
    3 months ago
Abstract
A system and method comprising: receiving a request to write data stored at a first range of a first volume to a second range of a second volume, where first metadata for the first range of the first volume is associated with a range of physical addresses where the data is stored in the storage system; and responsive to receiving the request: creating second metadata for the second range of the second volume, wherein the second metadata is associated with the range of physical addresses where the data is stored in the storage system; and associating the second volume with the second metadata.
Description
BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a generalized block diagram illustrating one embodiment of a storage system.



FIG. 2 is a generalized block diagram of one embodiment of a directed acyclic graph (DAG) of mediums.



FIG. 3 illustrates one embodiment of a medium mapping table.



FIG. 4 illustrates one embodiment of a copy offload operation.



FIG. 5 is a generalized block diagram of another embodiment of a copy offload operation.



FIG. 6 is a generalized flow diagram illustrating one embodiment of a method for performing a copy offload operation.



FIG. 7 is a generalized flow diagram illustrating one embodiment of another method for performing copy offload operations.


While the disclosure is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that drawings and detailed description thereto are not intended to limit the disclosure to the particular form disclosed, but on the contrary, the disclosure is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims.







DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, one having ordinary skill in the art should recognize that the disclosure might be practiced without these specific details. In some instances, well-known circuits, structures, signals, computer program instruction, and techniques have not been shown in detail to avoid obscuring the present disclosure.


Referring now to FIG. 1, a generalized block diagram of one embodiment of a storage system 100 is shown. Storage system 100 may include storage controller 110 and storage device groups 130 and 140, which are representative of any number of storage device groups (or data storage arrays). As shown, storage device group 130 includes storage devices 135A-N, which are representative of any number and type of storage devices (e.g., solid-state drives (SSDs)). Storage controller 110 may be coupled directly to client computer system 125, and storage controller 110 may be coupled remotely over network 120 to client computer system 115. Clients 115 and 125 are representative of any number of clients which may utilize storage controller 110 for storing and accessing data in system 100. It is noted that some systems may include only a single client, connected directly or remotely to storage controller 110.


Storage controller 110 may include software and/or hardware configured to provide access to storage devices 135A-N. Although storage controller 110 is shown as being separate from storage device groups 130 and 140, in some embodiments, storage controller 110 may be located within one or each of storage device groups 130 and 140. Storage controller 110 may include or be coupled to a base operating system (OS), a volume manager, and additional control logic for implementing the various techniques disclosed herein.


Storage controller 110 may include and/or execute on any number of processors and may include and/or execute on a single host computing device or be spread across multiple host computing devices, depending on the embodiment. In some embodiments, storage controller 110 may generally include or execute on one or more file servers and/or block servers. Storage controller 110 may use any of these various techniques for replicating data across devices 135A-N to prevent loss of data due to the failure of a device or the failure of storage locations within a device. Storage controller 110 may utilize any of various deduplication, compression, or other techniques for reducing the amount of data stored in devices 135A-N by deduplicating common data.


Storage controller 110 may also be configured to create and manage snapshots in system 100. A set of mediums may be recorded and maintained by storage controller 110. Most of the mediums may be read-only except for one or more selected mediums such as the most recent medium in use by a particular volume. Each medium logically comprises all of the blocks in the medium. However, only the blocks that were changed from the time the medium was created to the time the medium was closed are saved and mappings to these blocks may also be maintained with the medium.


In various embodiments, multiple mapping tables may be maintained by storage controller 110. These mapping tables may include a medium mapping table and a volume-to-medium mapping table. These tables may be utilized to record and maintain the mappings between mediums and underlying mediums and the mappings between volumes and mediums. Storage controller 110 may also include an address translation table with a plurality of entries, wherein each entry holds a virtual-to-physical mapping for a corresponding data component. This mapping table may be used to map logical read/write requests from each of the client computer systems 115 and 125 to physical locations in storage devices 135A-N. A “physical” pointer value may be read from the mappings associated with a given medium during a lookup operation corresponding to a received read/write request. The term “mappings” is defined as the one or more entries of the address translation mapping table which convert a given medium ID and block number into a physical pointer value. This physical pointer value may then be used to locate a physical location within the storage devices 135A-N. It is noted the physical pointer value may be used to access another mapping table within a given storage device of the storage devices 135A-N. Consequently, one or more levels of indirection may exist between the physical pointer value and a target storage location.


It is noted that in alternative embodiments, the number and type of client computers, storage controllers, networks, storage device groups, and data storage devices is not limited to those shown in FIG. 1. At various times one or more clients may operate offline. In addition, during operation, individual client computer connection types may change as users connect, disconnect, and reconnect to system 100. Further, the systems and methods described herein may be applied to directly attached storage systems or network attached storage systems and may include a host operating system configured to perform one or more aspects of the described methods. Numerous such alternatives are possible and are contemplated.


Network 120 may utilize a variety of techniques including wireless connection, direct local area network (LAN) connections, wide area network (WAN) connections such as the Internet, a router, storage area network, Ethernet, and others. Network 120 may comprise one or more LANs that may also be wireless. Network 120 may further include remote direct memory access (RDMA) hardware and/or software, transmission control protocol/internet protocol (TCP/IP) hardware and/or software, router, repeaters, switches, grids, and/or others. Protocols such as Fibre Channel, Fibre Channel over Ethernet (FCoE), iSCSI, and so forth may be used in network 120. The network 120 may interface with a set of communications protocols used for the Internet such as the Transmission Control Protocol (TCP) and the Internet Protocol (IP), or TCP/IP.


Client computer systems 115 and 125 are representative of any number of stationary or mobile computers such as desktop personal computers (PCs), servers, server farms, workstations, laptops, handheld computers, servers, personal digital assistants (PDAs), smart phones, and so forth. Generally speaking, client computer systems 115 and 125 include one or more processors comprising one or more processor cores. Each processor core includes circuitry for executing instructions according to a predefined general-purpose instruction set. For example, the x86 instruction set architecture may be selected. Alternatively, the ARM®, Alpha®, PowerPC®, SPARC®, or any other general-purpose instruction set architecture may be selected. The processor cores may access cache memory subsystems for data and computer program instructions. The cache subsystems may be coupled to a memory hierarchy comprising random access memory (RAM) and a storage device.


Referring now to FIG. 2, a block diagram illustrating a directed acyclic graph (DAG) 200 of mediums is shown. Also shown is a volume to medium mapping table 205 which shows which medium a volume maps to for each volume in use by a storage system. Volumes may be considered pointers into graph 200.


The term “medium” as is used herein is defined as a logical grouping of data. A medium may have a corresponding identifier with which to identify the logical grouping of data. Each medium may also include or be associated with mappings of logical block numbers to content location, deduplication entries, and other information. In one embodiment, medium identifiers may be used by the storage controller but medium identifiers may not be user-visible. A user (or client) may send a data request accompanied by a volume ID to specify which data is targeted by the request, and the storage controller may map the volume ID to a medium ID and then use the medium ID when processing the request.


The term medium is not to be confused with the terms “storage medium” or “computer readable storage medium”. A storage medium is defined as an actual physical device (e.g., SSD, HDD) that is utilized to store data. A computer readable storage medium (or non-transitory computer readable storage medium) is defined as a physical storage medium configured to store program instructions which are executable by a processor or other hardware device. Various types of program instructions that implement the methods and/or mechanisms described herein may be conveyed or stored on a computer readable medium. Numerous types of media which are configured to store program instructions are available and include hard disks, floppy disks, CD-ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and various other forms of volatile or non-volatile storage.


It is also noted that the term “volume to medium mapping table” may refer to multiple tables rather than just a single table. Similarly, the term “medium mapping table” may also refer to multiple tables rather than just a single table. It is further noted that volume to medium mapping table 205 is only one example of a volume to medium mapping table. Other volume to medium mapping tables may have other numbers of entries for other numbers of volumes.


Each medium is depicted in graph 200 as three conjoined boxes, with the leftmost box showing the medium ID, the middle box showing the underlying medium, and the rightmost box displaying the status of the medium (RO—read-only) or (RW—read-write). Within graph 200, a medium points to its underlying medium. For example, medium 20 points to medium 12 to depict that medium 12 is the underlying medium of medium 20. Medium 12 also points to medium 10, which in turn points to medium 5, which in turn points to medium 1. Some mediums are the underlying medium for more than one higher-level medium. For example, three separate mediums (12, 17, 11) point to medium 10, two separate mediums (18, 10) point to medium 5, and two separate mediums (6, 5) point to medium 1. Each of the mediums which is an underlying medium to at least one higher-level medium has a status of read-only.


The set of mediums on the bottom left of graph 200 is an example of a linear set. As depicted in graph 200, medium 3 was created first and then a snapshot was taken resulting in medium 3 becoming stable (i.e., the result of a lookup for a given block in medium 3 will always return the same value after this point). Medium 7 was created with medium 3 as its underlying medium. Any blocks written after medium 3 became stable were labeled as being in medium 7. Lookups to medium 7 return the value from medium 7 if one is found, but will look in medium 3 if a block is not found in medium 7. At a later time, a snapshot of medium 7 is taken, medium 7 becomes stable, and medium 14 is created. Lookups for blocks in medium 14 would check medium 7 and then medium 3 to find the targeted logical block. Eventually, a snapshot of medium 14 is taken and medium 14 becomes stable while medium 15 is created. At this point in graph 200, medium 14 is stable with writes to volume 102 going to medium 15.


Volume to medium mapping table 205 maps user-visible volumes to mediums. Each volume may be mapped to a single medium, also known as the anchor medium. This anchor medium, as with all other mediums, may take care of its own lookups. A medium on which multiple volumes depend (such as medium 10) tracks its own blocks independently of the volumes which depend on it. Each medium may also be broken up into ranges of blocks, and each range may be treated separately in medium DAG 200.


Referring now to FIG. 3, one embodiment of a medium mapping table 300 is shown. Any portion of or the entirety of medium mapping table 300 may be stored in storage controller 110 and/or in one or more of storage devices 135A-N. A volume identifier (ID) may be used to access volume to medium mapping table 205 to determine a medium ID corresponding to the volume ID. This medium ID may then be used to access medium mapping table 300. It is noted that table 300 is merely one example of a medium mapping table, and that in other embodiments, other medium mapping tables, with other numbers of entries, may be utilized. In addition, in other embodiments, a medium mapping table may include other attributes and be organized in a different manner than that shown in FIG. 3.


Each medium may be identified by a medium ID, as shown in the leftmost column of table 300. A range attribute may also be included in each entry of table 300, and the range may be in terms of data blocks. The size of a block of data (e.g., 4 KB, 8 KB) may vary depending on the embodiment. A medium may be broken up into multiple ranges, and each range of a medium may be treated as if it is an independent medium with its own attributes and mappings. For example, medium ID 2 has two separate ranges. Range 0-99 of medium ID 2 has a separate entry in table 300 from the entry for range 100-999 of medium ID 2.


Although both of these ranges of medium ID 2 map to underlying medium ID 1, it is possible for separate ranges of the same source medium to map to different underlying mediums. For example, separate ranges from medium ID 35 map to separate underlying mediums. For example, range 0-299 of medium ID 35 maps to underlying medium ID 18 with an offset of 400. This indicates that blocks 0-299 of medium ID 35 map to blocks 400-699 of medium ID 18. Additionally, range 300-499 of medium ID 35 maps to underlying medium ID 33 with an offset of −300 and range 500-899 of medium ID 35 maps to underlying medium ID 5 with an offset of −400. These entries indicate that blocks 300-499 of medium ID 35 map to blocks 0-199 of medium ID 33 while blocks 500-899 of medium ID 35 map to blocks 100-499 of medium ID 5. It is noted that in other embodiments, mediums may be broken up into more than three ranges.


The state column of table 300 records information that allows lookups for blocks to be performed more efficiently. A state of “Q” indicates the medium is quiescent, “R” indicates the medium is registered, and “U” indicates the medium is unmasked. In the quiescent state, a lookup is performed on exactly one or two mediums specified in table 300. In the registered state, a lookup is performed recursively. The unmasked state determines whether a lookup should be performed in the basis medium, or whether the lookup should only be performed in the underlying medium. Although not shown in table 300 for any of the entries, another state “X” may be used to specify that the source medium is unmapped. The unmapped state indicates that the source medium contains no reachable data and can be discarded. This unmapped state may apply to a range of a source medium. If an entire medium is unmapped, then the medium ID may be entered into a sequence invalidation table and eventually discarded.


In one embodiment, when a medium is created, the medium is in the registered state if it has an underlying medium, or the medium is in the quiescent state if it is a brand-new volume with no pre-existing state. As the medium is written to, parts of it can become unmasked, with mappings existing both in the medium itself and the underlying medium. This may be done by splitting a single range into multiple range entries, some of which retain the original masked status, and others of which are marked as unmasked.


In addition, each entry in table 300 may include a basis attribute, which indicates the basis of the medium, which in this case points to the source medium itself. Each entry may also include an offset field, which specifies the offset that should be applied to the block address when mapping the source medium to an underlying medium. This allows mediums to map to other locations within an underlying medium rather than only being built on top of an underlying medium from the beginning block of the underlying medium. As shown in table 300, medium 8 has an offset of 500, which indicates that block 0 of medium 8 will map to block 500 of its underlying medium (medium 1). Therefore, a lookup of medium 1 via medium 8 will add an offset of 500 to the original block number of the request. The offset column allows a medium to be composed of multiple mediums. For example, in one embodiment, a medium may be composed of a “gold master” operating system image and per-VM (virtual machine) scratch space. Other flexible mappings are also possible and contemplated.


Each entry also includes an underlying medium attribute, which indicates the underlying medium of the source medium. If the underlying medium points to the source medium (as with medium 1), then this indicates that the source medium does not have an underlying medium, and all lookups will only be performed in the source medium. Each entry may also include a stable attribute, with “Y” (yes) indicating the medium is stable (or read-only), and with “N” (no) indicating the medium is read-write. In a stable medium, the data corresponding to a given block in the medium never changes, though the mapping that produces this data may change. For example, medium 2 is stable, but block 50 in medium 2 might be recorded in medium 2 or in medium 1, which are searched logically in that order, though the searches may be done in parallel if desired. In one embodiment, a medium will be stable if the medium is used as an underlying medium by any medium other than itself.


Turning now to FIG. 4, one embodiment of a copy offload operation is shown. The copy offload operation depicted in FIG. 4 specifies that blocks 400-599 of volume 8 are to be copied to blocks 850-1049 of volume 12. While the logical representations of volume 8 and volume 12 are depicted in FIG. 4 as contiguous data structures, it should be understood that the data corresponding to volumes 8 and volumes 12 may be located at many separate, non-contiguous locations throughout the storage devices of the host storage system.


The storage controller may determine which mediums are pointed to by volume 8 and volume 12 in response to receiving a request to perform this copy offload operation. In one embodiment, the storage controller may query a volume-to-medium mapping table to determine the anchor mediums of volume 8 and volume 12. It may be assumed for the purposes of this discussion that the anchor medium of volume 8 is medium 123 and that the anchor medium of volume 12 is medium 234 (as shown in volume-to-medium mapping table 405A, which represents two entries of the volume-to-medium mapping table before the copy offload operation is performed). Also, medium mapping table 410A represents two entries of the medium mapping table before the copy offload operation is performed.


To perform the requested copy offload operation, the storage controller may create medium ‘x’, and record medium 123 as an underlying medium of medium x. At this point, medium 123 becomes stable. The value ‘x’ may be any medium ID value that is not currently in use. Also, volume 8 may be updated to point to medium x, as shown in volume-to-medium mapping table 405B (representing two entries of the volume-to-medium mapping table after the copy offload operation is performed). Additionally, medium ‘y’ may be created, and medium 234 may be recorded as an underlying medium of medium y. Also, volume 12 may be updated so that it points at medium y. An entry may be created for the range of medium y being copied to, and this entry may have medium 123 recorded as its underlying (U) medium. All other entries for other ranges of medium y may have medium 234 as the underlying medium. These entries are shown in medium mapping table 410B, which represents a portion of the medium mapping table after the copy offload operation is performed. It is noted that the entries of medium mapping tables 410A-B may include additional information to what is shown in FIG. 4.


By performing the copy offload operation in accordance with the above steps, the storage controller is able to perform the requested copy offload operation without actually copying the data blocks in question. Instead, the copy offload operation is fulfilled solely by making changes to the volume-to-medium mapping table and the medium mapping table. As a result, no immediate data writes are performed in implementing the copy offload operation, and copy offload operations can be performed quickly with minimal resource utilization.


The above description of a copy offload operation may also be applied to other embodiments in which other types of copy offload operations are performed. For example, in another embodiment, a copy offload operation may be requested from a first range of a first volume to multiple separate volumes. For this copy offload operation, the steps described above corresponding to medium ‘x’ and volume 8 may be performed once for the source volume. The steps corresponding to medium ‘y’ and volume 12 may be repeated for each destination volume that is targeted by this copy offload operation, with a new medium being created for each destination volume.


In some embodiments, the steps described above for performing the copy offload operation may be buffered rather than being implemented immediately upon receipt of the request to perform the copy offload operation. Multiple copy offload operations may be buffered and then performed later in a batch mode. Additionally, in some embodiments, the steps of the copy offload operation corresponding to the source volume may be delayed until a request targeting the source volume is received by the storage controller. At that point in time, the portion of the copy offload operation corresponding to the source volume may be performed. Similarly, the steps of the copy offload operation corresponding to the destination volume may be delayed until a request targeting the destination volume is received by the storage controller.


Referring now to FIG. 5, a block diagram of another embodiment of a copy offload operation is shown. In this copy offload operation, a set of data blocks is being copied from a first location within a volume to a second location within the same volume. A logical representation of volume 35 is shown in FIG. 5, and data is being copied from locations 200-499 to locations 1800-2099. It may be assumed for the purposes of this discussion that medium 355 is the anchor medium of volume 35, as shown in table 505A. The entry for medium 355 is shown in medium mapping table 510A, which is representative of one entry of the medium mapping table before the copy offload operation is performed.


In one embodiment, in response to receiving a request to perform this copy offload operation, the storage controller may create a new medium ‘z’. Medium z may be recorded as the anchor medium of volume 35, as shown in table 505B. Also, three separate entries for medium z may be added to the medium mapping table (a portion of which is shown as table 510B). The first entry for medium z is for the range of data blocks from 0-1799, and the underlying (U) medium for this is recorded as medium 355. The offset for the first entry is set to 0. Similarly, the third entry for medium z for the range of data blocks from 2100-N has the same attributes as the first entry. The first and third entries each have an offset of 0, which is used when mapping to the underlying medium (medium 355). The second entry for medium z corresponds to the range (1800-2099) targeted by the copied data. The second entry also has medium 355 recorded as its underlying medium. However, the second entry has an offset of −1600 so as to map to the correct locations within medium 355 corresponding to the data specified in the copy offload operation.


By using the above-described techniques, the storage controller is able to accomplish the requested copy offload operation without physically copying the data blocks in question. Rather, the copy offload operation is performed merely by manipulating the volume and medium mapping tables without accessing the data blocks. The actual physical storage locations where the requested-for-copying data is stored are not accessed during this copy offload operation.


Turning now to FIG. 6, one embodiment of a method 600 for performing a copy offload operation is shown. The components embodied in system 100 described above (e.g., storage controller 110) may generally operate in accordance with method 600. In addition, the steps in this embodiment are shown in sequential order. However, some steps may occur in a different order than shown, some steps may be performed concurrently, some steps may be combined with other steps, and some steps may be absent in another embodiment.


A request to perform a copy offload operation from a first range of a first volume to a second range of a second volume may be received by a storage controller (block 605). For purposes of discussion, it is assumed that the first volume is associated with (i.e., points to) a first medium. It is also assumed that the second volume points to a second medium. In one embodiment, these associations may be determined by querying the volume to medium mapping table.


In response to receiving this request, a third medium may be created and a new entry for the third medium may be created in the medium mapping table (block 610). In various embodiments, the process of creating a new medium involves generating a new ID for the medium and generating a new entry for the medium in the medium mapping table. An indication may be stored designating the first medium as the underlying medium of the third medium (block 615). In one embodiment, block 615 may be implemented by recording the first medium as the underlying medium of the third medium in the new entry of the medium mapping table.


Then, the volume to mapping table may be updated so that the first volume is associated with the third medium (block 620). In other words, the third medium may be specified as the anchor medium of the first volume. Also, an indicator may be stored specifying that the first medium is read-only (i.e., stable) (block 625). In one embodiment, this indicator may be stored in a corresponding entry in the medium mapping table.


Additionally, a fourth medium may be created and a new entry for the fourth medium may be created in the medium mapping table (block 630). The second medium may be designated as the underlying medium of the fourth medium (block 635). Also, an indication may be stored designating that the first range of the first medium underlies the second range of the fourth medium (block 640). A separate range entry may be created in the medium mapping table for the second range of the fourth medium, and this separate range entry may map the second range of the fourth medium to the first range of the first medium. In one embodiment, an offset value may be included in this range entry to specify how the second range of the fourth medium is aligned with the first range of the first medium. The second medium may remain as the underlying medium for all other ranges of the fourth medium.


In addition, the fourth medium may be specified as the anchor medium of the second volume (block 645). Still further, an indicator may be stored specifying that the second medium is read-only (block 650). After block 650, method 600 may end. Any number of copy offload operations may be performed in parallel using the above-described method. It is noted that some of the steps above may be delayed until read or write operations are received which target the regions of the volumes affected by the copy offset operation.


Referring now to FIG. 7, one embodiment of another method 700 for performing copy offload operations is shown. The components embodied in system 100 described above (e.g., storage controller 110) may generally operate in accordance with method 700. In addition, the steps in this embodiment are shown in sequential order. However, some steps may occur in a different order than shown, some steps may be performed concurrently, some steps may be combined with other steps, and some steps may be absent in another embodiment.


A request to perform a copy offload operation may be received by a storage controller (block 705). For the purposes of this discussion, it may be assumed that the objective of the copy offload operation is for data to be copied from a first range of a first volume to a second range of a second volume. However, other operations may have different sources and/or destinations. In response to receiving the request, the operations corresponding to the received copy offload request may be buffered rather than being immediately performed (block 710). In various embodiments, operations may be buffered separately. For example, the operations corresponding to the first volume may be generated, buffered, and made ready to be executed when the first range of the first volume is targeted by a subsequent request. Similarly, the operations corresponding to the second volume may be generated, buffered, and prepared for execution when the second range of the second volume is targeted.


After block 710, it may be determined if the storage controller has received a read or write request that targets an area affected by a previously received copy offload operation (conditional block 715). If a request targeting an affected location has not been received (conditional block 715, “no” leg), then the storage controller may prevent the buffered copy offload operation(s) from being performed (block 720). After block 720, it may be determined if another copy offload request has been received (conditional block 725). If a copy offload request has been received (conditional block 725, “yes” leg), then method 700 may return to block 710 to buffer the received copy offload request. It is noted that the storage controller may receive a copy offload request at any point in time (and not just at the point in time represented by block 725), in which case method 700 may accordingly jump to block 710 to buffer the received copy offload request. If a copy offload request has not been received (conditional block 725, “no” leg), then method 700 may return to block 715 to determine if a request targeting a region corresponding to a buffered copy offload request has been received.


If a request targeting an affected location has been received (conditional block 715, “yes” leg), then the corresponding copy offload operation may be performed by the storage controller (block 730). A buffered copy offload operation may target a source volume and a destination volume, and if a received request only targets one of these volumes, then only the copy offload operation targeting the affected volume may be performed. The other portion of the copy offload operation may remain buffered and may be performed at a later time (when its location within the corresponding volume is targeted or when processing resources are idle and available for use). After block 730, method 700 may return to block 725 to determine if another copy offload request has been received.


By waiting to perform a copy offload operation until a subsequent request targeting an affected area (or volume) is received, the processing resources on the storage system may be freed up to perform other tasks. Buffering copy offload operations also helps by preventing extra mediums from being created until these mediums are actually needed. Multiple copy offload operations may be received and buffered without unduly burdening the storage system. Also, during periods of time when storage system resources are available, the storage controller may use the idle processing capacity and perform a large number of buffered copy offload operations. In this way, the copy offload operations may be performed without interfering with other tasks being performed by the storage system. Accordingly, in some embodiments, rather than buffering all received copy offload operations as indicated by block 710, the storage controller may determine if a received copy offload operation should be buffered on a case by case basis. This determination may be based at least on the current operating conditions (e.g., processing load, storage utilization, number of pending requests) of the storage system. In other embodiments, received copy offload operations may be automatically buffered, and when the number of buffered copy offload operations exceeds a threshold, then the storage controller may perform multiple copy offload operations in a batch mode. In these embodiments, if a data request targeting an affected area is received, the corresponding buffered copy offload operation may be performed while the other copy offload operations remain buffered.


It is noted that the above-described embodiments may comprise software. In such an embodiment, the program instructions that implement the methods and/or mechanisms may be conveyed or stored on a computer readable medium. Numerous types of media which are configured to store program instructions are available and include hard disks, floppy disks, CD-ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and various other forms of volatile or non-volatile storage.


In various embodiments, one or more portions of the methods and mechanisms described herein may form part of a cloud-computing environment. In such embodiments, resources may be provided over the Internet as services according to one or more various models. Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). In IaaS, computer infrastructure is delivered as a service. In such a case, the computing equipment is generally owned and operated by the service provider. In the PaaS model, software tools and underlying equipment used by developers to develop software solutions may be provided as a service and hosted by the service provider. SaaS typically includes a service provider licensing software as a service on demand. The service provider may host the software, or may deploy the software to a customer for a given period of time. Numerous combinations of the above models are possible and are contemplated.


Although the embodiments above have been described in considerable detail, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims
  • 1. A method implemented by a computing device comprising a processor and a memory device, the method comprising:receiving, by the computing device, a request to duplicate data stored in a first volume to a second volume, where first metadata for the first volume is associated with a physical address where the data is stored in the storage system;creating, by the computing device, after receiving the request, second metadata for the second volume, wherein the second metadata is associated with the physical address where the data is stored in the storage system;associating the second volume with the second metadata; andfulfilling the request to duplicate the data without accessing the data stored in the first volume.
  • 2. The method of claim 1 further comprising delaying the creation of the second metadata until receiving a duplicate request targeting the first volume.
  • 3. The method as recited in claim 1, further comprising: receiving a duplicate request targeting the second volume;creating third metadata;storing an indication that the second metadata underlies the third metadata; andassociating the second volume with the third metadata.
  • 4. The method as recited in claim 3, further comprising storing an indication that the second metadata is read-only responsive to storing the indication that the second metadata underlies the third metadata.
  • 5. The method as recited in claim 1, wherein the request to duplicate data at the first volume to a second volume is a copy operation to copy the data at a first range of the first volume to a second range of the second volume.
  • 6. The method as recited in claim 5, further comprising: buffering the copy operation;receiving a second request to duplicate data to the first range of the first volume; andresponsive to receiving the second request, proceeding to perform the copy operation.
  • 7. A computer system comprising: one or more storage devices; anda storage controller coupled to the one or more storage devices;receiving a request to duplicate data stored in a first volume to a second volume, where first metadata for the first volume is associated with a physical address where the data is stored in the storage system;creating, after receiving the request, second metadata for the second volume, wherein the second metadata is associated with the physical address where the data is stored in the storage system;associating the second volume with the second metadata; andfulfilling the request to duplicate the data without accessing the data stored in the first volume.
  • 8. The computer system as recited in claim 7, wherein the storage controller is further configured to delay the creation of the second metadata until receiving a duplicate request targeting the first volume.
  • 9. The computer system as recited in claim 7, wherein the storage controller is further configured to: receive a duplicate request targeting the second volume;create third metadata;store an indication that the second metadata underlies the third metadata; andassociate the second volume with the third metadata.
  • 10. The computer system as recited in claim 9, wherein the storage controller is further configured to store an indication that the second metadata is read-only responsive to storing the indication that the second metadata underlies the third metadata.
  • 11. The computer system as recited in claim 7, wherein the request to duplicate data at the first volume to a second volume is a copy operation to copy the data at a first range of the first volume to a second range of the second volume.
  • 12. The computer system as recited in claim 11, wherein the storage controller is further configured to: buffering the copy operation;receiving a second request to duplicate data to the first range of the first volume; andresponsive to receiving the second request, proceeding to perform the copy operation.
  • 13. A computer program product disposed upon a non-transitory computer readable medium, the computer program product comprising computer program instructions that, when executed, cause a computer to carry out the steps of: receiving a request to duplicate data stored in a first volume to a second volume, where first metadata for the first volume is associated with a physical address where the data is stored in the storage system;creating, after receiving the request, second metadata for the second volume, wherein the second metadata is associated with the physical address where the data is stored in the storage system;associating the second volume with the second metadata; andfulfilling the request to duplicate the data without accessing the data stored in the first volume.
  • 14. The computer program product as recited in claim 13 further comprising computer program instructions that, when executed, cause the computer to carry out the step of delaying the creation of the second metadata until receiving a duplicate request targeting the first volume.
  • 15. The computer program product as recited in claim 13 further comprising computer program instructions that, when executed, cause the computer to carry out the steps of: receiving a duplicate request targeting the second volume;creating third metadata;storing an indication that the second metadata underlies the third metadata; andassociating the second volume with the third metadata.
  • 16. The computer program product as recited in claim 13, wherein the request to duplicate data at the first volume to a second volume is a copy operation to copy the data at a first range of the first volume to a second range of the second volume.
  • 17. The computer program product as recited in claim 16 further comprising computer program instructions that, when executed, cause the computer to carry out the step of: buffering the copy operation;receiving a second request to duplicate data to the first range of the first volume; andresponsive to receiving the second request, proceeding to perform the copy operation.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation application for patent entitled to a filing date and claiming the benefit of earlier-filed U.S. patent application Ser. No. 17/406,421, filed Aug. 19, 2021, which is a continuation of and claims priority from U.S. Pat. No. 11,099,769, issued Aug. 24, 2021, which is a continuation of and claims priority from U.S. Pat. No. 10,585,617, issued Mar. 10, 2020, which is a continuation of and claims priority from U.S. Pat. No. 9,880,779, issued Jan. 30, 2018, which is a continuation of and claims priority from U.S. Pat. No. 9,760,313, issued Sep. 12, 2017, which is a continuation of and claims priority from U.S. Pat. No. 9,361,035, issued Jun. 7, 2016, which is a continuation of and claims priority from U.S. Pat. No. 9,063,967, issued Jun. 23, 2015, which claims the benefit of U.S. Provisional Application 61/751,142, filed Jan. 10, 2013, each of which are herein incorporated by reference in their entirety.

US Referenced Citations (324)
Number Name Date Kind
5208813 Stallmo May 1993 A
5403639 Belsan et al. Apr 1995 A
5706210 Kumano et al. Jan 1998 A
5799200 Brant et al. Aug 1998 A
5933598 Scales et al. Aug 1999 A
5940838 Schmuck et al. Aug 1999 A
6012032 Donovan et al. Jan 2000 A
6085333 DeKoning et al. Jul 2000 A
6263350 Wollrath et al. Jul 2001 B1
6412045 DeKoning et al. Jun 2002 B1
6643641 Snyder Nov 2003 B1
6647514 Umberger et al. Nov 2003 B1
6718448 Ofer Apr 2004 B1
6757769 Ofer Jun 2004 B1
6789162 Talagala et al. Sep 2004 B1
6799283 Tamai et al. Sep 2004 B1
6834298 Singer et al. Dec 2004 B1
6850938 Sadjadi Feb 2005 B1
6915434 Kuroda et al. Jul 2005 B1
6973549 Testardi Dec 2005 B1
6996586 Stanley et al. Feb 2006 B2
7028216 Aizawa et al. Apr 2006 B2
7028218 Schwarm et al. Apr 2006 B2
7039827 Meyer et al. May 2006 B2
7089272 Garthwaite et al. Aug 2006 B1
7107389 Inagaki et al. Sep 2006 B2
7146521 Nguyen Dec 2006 B1
7216164 Whitmore et al. May 2007 B1
7334124 Pham et al. Feb 2008 B2
7437530 Rajan Oct 2008 B1
7493424 Bali et al. Feb 2009 B1
7669029 Mishra et al. Feb 2010 B1
7689609 Lango et al. Mar 2010 B2
7743191 Liao Jun 2010 B1
7783682 Patterson Aug 2010 B1
7873619 Faibish et al. Jan 2011 B1
7899780 Shmuylovich et al. Mar 2011 B1
7913300 Flank et al. Mar 2011 B1
7933936 Aggarwal et al. Apr 2011 B2
7975115 Wayda et al. Jul 2011 B2
7979613 Zohar et al. Jul 2011 B2
8042163 Karr et al. Oct 2011 B1
8086585 Brashers et al. Dec 2011 B1
8086652 Bisson et al. Dec 2011 B1
8117464 Kogelnik Feb 2012 B1
8200887 Bennett Jun 2012 B2
8205065 Matze Jun 2012 B2
8271700 Annem et al. Sep 2012 B1
8290911 Janakiraman et al. Oct 2012 B1
8352540 Anglin et al. Jan 2013 B2
8387136 Lee et al. Feb 2013 B2
8437189 Montierth et al. May 2013 B1
8465332 Hogan et al. Jun 2013 B2
8504797 Mimatsu Aug 2013 B2
8527544 Colgrove et al. Sep 2013 B1
8560747 Tan et al. Oct 2013 B1
8566546 Marshak et al. Oct 2013 B1
8578442 Banerjee Nov 2013 B1
8613066 Brezinski et al. Dec 2013 B1
8620970 English et al. Dec 2013 B2
8621241 Stephenson Dec 2013 B1
8700875 Barron et al. Apr 2014 B1
8751463 Chamness Jun 2014 B1
8762642 Bates et al. Jun 2014 B2
8769622 Chang et al. Jul 2014 B2
8800009 Beda, III et al. Aug 2014 B1
8806160 Colgrove et al. Aug 2014 B2
8812860 Bray Aug 2014 B1
8822155 Sukumar et al. Sep 2014 B2
8850546 Field et al. Sep 2014 B1
8874850 Goodson et al. Oct 2014 B1
8898346 Simmons Nov 2014 B1
8909854 Yamagishi et al. Dec 2014 B2
8931041 Banerjee Jan 2015 B1
8949863 Coatney et al. Feb 2015 B1
8959305 LeCrone et al. Feb 2015 B1
8984602 Bailey et al. Mar 2015 B1
8990905 Bailey et al. Mar 2015 B1
9063967 Colgrove et al. Jun 2015 B2
9081713 Bennett Jul 2015 B1
9124569 Hussain et al. Sep 2015 B2
9134922 Rajagopal et al. Sep 2015 B2
9189334 Bennett Nov 2015 B2
9209973 Aikas et al. Dec 2015 B2
9250823 Kamat et al. Feb 2016 B1
9280678 Redberg Mar 2016 B2
9300660 Borowiec et al. Mar 2016 B1
9311182 Bennett Apr 2016 B2
9361035 Colgrove et al. Jun 2016 B1
9395922 Nishikido et al. Jul 2016 B2
9423967 Colgrove et al. Aug 2016 B2
9436396 Colgrove et al. Sep 2016 B2
9436720 Colgrove et al. Sep 2016 B2
9444822 Borowiec et al. Sep 2016 B1
9454476 Colgrove et al. Sep 2016 B2
9454477 Colgrove et al. Sep 2016 B2
9507532 Colgrove et al. Nov 2016 B1
9513820 Shalev Dec 2016 B1
9516016 Colgrove et al. Dec 2016 B2
9552248 Miller et al. Jan 2017 B2
9632870 Bennett Apr 2017 B2
9760313 Colgrove et al. Sep 2017 B1
9880779 Colgrove et al. Jan 2018 B1
10324639 Seo Jun 2019 B2
10567406 Astigarraga et al. Feb 2020 B2
10585617 Colgrove et al. Mar 2020 B1
10846137 Vallala et al. Nov 2020 B2
10877683 Wu et al. Dec 2020 B2
11076509 Alissa et al. Jul 2021 B2
11099769 Colgrove et al. Aug 2021 B1
11106810 Natanzon et al. Aug 2021 B2
11194707 Stalzer Dec 2021 B2
20020013802 Mori et al. Jan 2002 A1
20020038436 Suzuki Mar 2002 A1
20020087544 Selkirk et al. Jul 2002 A1
20020178335 Selkirk et al. Nov 2002 A1
20030140209 Testardi Jul 2003 A1
20030145172 Galbraith et al. Jul 2003 A1
20030191783 Wolczko et al. Oct 2003 A1
20030225961 Chow et al. Dec 2003 A1
20040049572 Yamamoto et al. Mar 2004 A1
20040080985 Chang et al. Apr 2004 A1
20040111573 Garthwaite Jun 2004 A1
20040153844 Ghose et al. Aug 2004 A1
20040193814 Erickson et al. Sep 2004 A1
20040260967 Guha et al. Dec 2004 A1
20050066095 Mullick et al. Mar 2005 A1
20050160416 Jamison Jul 2005 A1
20050188246 Emberty et al. Aug 2005 A1
20050216535 Saika et al. Sep 2005 A1
20050216800 Bicknell et al. Sep 2005 A1
20050223154 Uemura Oct 2005 A1
20060015771 Van Gundy et al. Jan 2006 A1
20060074940 Craft et al. Apr 2006 A1
20060129817 Borneman et al. Jun 2006 A1
20060136365 Kedem et al. Jun 2006 A1
20060155946 Ji Jul 2006 A1
20060161726 Lasser Jul 2006 A1
20060174074 Banikazemi et al. Aug 2006 A1
20060230245 Gounares et al. Oct 2006 A1
20060239075 Williams et al. Oct 2006 A1
20070022227 Miki Jan 2007 A1
20070028068 Golding et al. Feb 2007 A1
20070055702 Fridella et al. Mar 2007 A1
20070067585 Ueda et al. Mar 2007 A1
20070109856 Pellicone et al. May 2007 A1
20070150689 Pandit et al. Jun 2007 A1
20070162954 Pela Jul 2007 A1
20070168321 Saito et al. Jul 2007 A1
20070171562 Maejima et al. Jul 2007 A1
20070174673 Kawaguchi et al. Jul 2007 A1
20070220227 Long Sep 2007 A1
20070220313 Katsuragi et al. Sep 2007 A1
20070245090 King et al. Oct 2007 A1
20070266179 Chavan et al. Nov 2007 A1
20070294563 Bose Dec 2007 A1
20070294564 Reddin et al. Dec 2007 A1
20080005587 Ahlquist Jan 2008 A1
20080059699 Kubo et al. Mar 2008 A1
20080065852 Moore et al. Mar 2008 A1
20080077825 Bello et al. Mar 2008 A1
20080134174 Sheu et al. Jun 2008 A1
20080155191 Anderson et al. Jun 2008 A1
20080162674 Dahiya Jul 2008 A1
20080178040 Kobayashi Jul 2008 A1
20080195833 Park Aug 2008 A1
20080209096 Lin et al. Aug 2008 A1
20080244205 Amano et al. Oct 2008 A1
20080256141 Wayda et al. Oct 2008 A1
20080270678 Cornwell et al. Oct 2008 A1
20080275928 Shuster Nov 2008 A1
20080282045 Biswas et al. Nov 2008 A1
20080285083 Aonuma Nov 2008 A1
20080307270 Li Dec 2008 A1
20090006587 Richter Jan 2009 A1
20090037662 La Frese et al. Feb 2009 A1
20090077340 Johnson et al. Mar 2009 A1
20090100115 Park et al. Apr 2009 A1
20090198889 Ito et al. Aug 2009 A1
20090204858 Kawaba Aug 2009 A1
20090228648 Wack Sep 2009 A1
20090300084 Whitehouse Dec 2009 A1
20100052625 Cagno et al. Mar 2010 A1
20100057673 Savov Mar 2010 A1
20100058026 Heil et al. Mar 2010 A1
20100067706 Anan et al. Mar 2010 A1
20100077205 Ekstrom et al. Mar 2010 A1
20100082879 McKean et al. Apr 2010 A1
20100106905 Kurashige et al. Apr 2010 A1
20100153620 McKean et al. Jun 2010 A1
20100153641 Jagadish et al. Jun 2010 A1
20100191897 Zhang et al. Jul 2010 A1
20100211723 Mukaida Aug 2010 A1
20100246266 Park et al. Sep 2010 A1
20100250802 Waugh et al. Sep 2010 A1
20100250882 Hutchison Sep 2010 A1
20100257142 Murphy et al. Oct 2010 A1
20100262764 Liu et al. Oct 2010 A1
20100281225 Chen et al. Nov 2010 A1
20100287327 Li et al. Nov 2010 A1
20100306500 Mimatsu Dec 2010 A1
20100325345 Ohno et al. Dec 2010 A1
20100332754 Lai et al. Dec 2010 A1
20110035540 Fitzgerald et al. Feb 2011 A1
20110072290 Davis et al. Mar 2011 A1
20110072300 Rousseau Mar 2011 A1
20110125955 Chen May 2011 A1
20110131231 Haas et al. Jun 2011 A1
20110145598 Smith et al. Jun 2011 A1
20110161559 Yurzola et al. Jun 2011 A1
20110167221 Pangal et al. Jul 2011 A1
20110191555 Narayanan Aug 2011 A1
20110197022 Green et al. Aug 2011 A1
20110238634 Kobara Sep 2011 A1
20120023144 Rub Jan 2012 A1
20120023375 Dutta et al. Jan 2012 A1
20120036309 Dillow et al. Feb 2012 A1
20120054264 Haugh et al. Mar 2012 A1
20120079318 Colgrove et al. Mar 2012 A1
20120117029 Gold May 2012 A1
20120131253 McKnight et al. May 2012 A1
20120198175 Atkisson Aug 2012 A1
20120303919 Hu et al. Nov 2012 A1
20120311000 Post et al. Dec 2012 A1
20120330903 Periyagaram et al. Dec 2012 A1
20120330904 Factor et al. Dec 2012 A1
20120330954 Sivasubramanian et al. Dec 2012 A1
20130007845 Chang et al. Jan 2013 A1
20130031414 Dhuse et al. Jan 2013 A1
20130036272 Nelson Feb 2013 A1
20130042052 Colgrove et al. Feb 2013 A1
20130046995 Movshovitz Feb 2013 A1
20130047029 Keuchi et al. Feb 2013 A1
20130071087 Motiwala et al. Mar 2013 A1
20130073826 Tatara Mar 2013 A1
20130091102 Nayak Apr 2013 A1
20130145447 Maron Jun 2013 A1
20130191555 Liu Jul 2013 A1
20130198459 Joshi et al. Aug 2013 A1
20130205110 Kettner Aug 2013 A1
20130205173 Yoneda Aug 2013 A1
20130219164 Hamid Aug 2013 A1
20130227201 Talagala et al. Aug 2013 A1
20130227236 Flynn et al. Aug 2013 A1
20130275391 Batwara et al. Oct 2013 A1
20130275656 Talagala et al. Oct 2013 A1
20130283058 Fiske et al. Oct 2013 A1
20130290607 Chang et al. Oct 2013 A1
20130290648 Shao et al. Oct 2013 A1
20130311434 Jones Nov 2013 A1
20130318297 Jibbe et al. Nov 2013 A1
20130318314 Markus et al. Nov 2013 A1
20130332614 Brunk et al. Dec 2013 A1
20130339303 Potter et al. Dec 2013 A1
20140020083 Fetik Jan 2014 A1
20140052946 Kimmel Feb 2014 A1
20140059308 Blea et al. Feb 2014 A1
20140068791 Resch Mar 2014 A1
20140074850 Noel et al. Mar 2014 A1
20140082715 Grajek et al. Mar 2014 A1
20140086146 Kim et al. Mar 2014 A1
20140089730 Watanabe et al. Mar 2014 A1
20140090009 Li et al. Mar 2014 A1
20140096220 Da Cruz Pinto et al. Apr 2014 A1
20140101361 Gschwind Apr 2014 A1
20140101434 Senthurpandi et al. Apr 2014 A1
20140143517 Jin et al. May 2014 A1
20140164774 Nord et al. Jun 2014 A1
20140172929 Sedayao et al. Jun 2014 A1
20140173232 Reohr et al. Jun 2014 A1
20140195636 Karve et al. Jul 2014 A1
20140201150 Kumarasamy et al. Jul 2014 A1
20140201512 Seethaler et al. Jul 2014 A1
20140201541 Paul et al. Jul 2014 A1
20140208155 Pan Jul 2014 A1
20140215129 Kuzmin et al. Jul 2014 A1
20140215590 Brand Jul 2014 A1
20140220561 Sukumar et al. Aug 2014 A1
20140229131 Cohen et al. Aug 2014 A1
20140229452 Serita et al. Aug 2014 A1
20140229654 Goss et al. Aug 2014 A1
20140230017 Saib Aug 2014 A1
20140258526 Le Sant et al. Sep 2014 A1
20140281308 Lango et al. Sep 2014 A1
20140282983 Ju et al. Sep 2014 A1
20140285917 Cudak et al. Sep 2014 A1
20140325115 Ramsundar et al. Oct 2014 A1
20140325262 Cooper et al. Oct 2014 A1
20140351627 Best et al. Nov 2014 A1
20140373104 Gaddam et al. Dec 2014 A1
20140373126 Hussain et al. Dec 2014 A1
20150026387 Sheredy et al. Jan 2015 A1
20150074463 Jacoby et al. Mar 2015 A1
20150089569 Sondhi et al. Mar 2015 A1
20150095515 Krithivas et al. Apr 2015 A1
20150113203 Dancho et al. Apr 2015 A1
20150121137 McKnight et al. Apr 2015 A1
20150134920 Anderson et al. May 2015 A1
20150149822 Coronado et al. May 2015 A1
20150154418 Redberg Jun 2015 A1
20150193169 Sundaram et al. Jul 2015 A1
20150234709 Koarashi Aug 2015 A1
20150244775 Vibhor et al. Aug 2015 A1
20150278534 Thiyagarajan et al. Oct 2015 A1
20150378888 Zhang et al. Dec 2015 A1
20160019114 Han et al. Jan 2016 A1
20160026397 Nishikido et al. Jan 2016 A1
20160098191 Golden et al. Apr 2016 A1
20160098199 Golden et al. Apr 2016 A1
20160098323 Mutha et al. Apr 2016 A1
20160182542 Staniford Jun 2016 A1
20160248631 Duchesneau Aug 2016 A1
20160350009 Cerreta et al. Dec 2016 A1
20160352720 Hu et al. Dec 2016 A1
20160352830 Borowiec et al. Dec 2016 A1
20160352834 Borowiec et al. Dec 2016 A1
20170262202 Seo Sep 2017 A1
20180054454 Astigarraga et al. Feb 2018 A1
20180081562 Vasudevan Mar 2018 A1
20190220315 Vallala et al. Jul 2019 A1
20200034560 Natanzon et al. Jan 2020 A1
20200326871 Wu et al. Oct 2020 A1
20210360833 Alissa et al. Nov 2021 A1
20210382625 Miller et al. Dec 2021 A1
Foreign Referenced Citations (28)
Number Date Country
1788256 Jun 2006 CN
101120305 Feb 2008 CN
102866935 Jan 2013 CN
103370685 Oct 2013 CN
103370686 Oct 2013 CN
104025010 Nov 2016 CN
0725324 Aug 1996 EP
3066610 Sep 2016 EP
3082047 Oct 2016 EP
3120235 Jan 2017 EP
3066610 Jun 2018 EP
2007087036 Apr 2007 JP
2007094472 Apr 2007 JP
2008529187 Jul 2008 JP
2008250667 Oct 2008 JP
2010211681 Sep 2010 JP
1995002349 Jan 1995 WO
1999013403 Mar 1999 WO
2008102347 Aug 2008 WO
2010071655 Jun 2010 WO
WO-2012087648 Jun 2012 WO
WO-2013071087 May 2013 WO
2014110137 Jul 2014 WO
WO-2016015008 Jan 2016 WO
WO-2016190938 Dec 2016 WO
WO-2016195759 Dec 2016 WO
WO-2016195958 Dec 2016 WO
WO-2016195961 Dec 2016 WO
Non-Patent Literature Citations (38)
Entry
Hwang et al., “RAID-x: A New Distributed Disk Array for I/O-Centric Cluster Computing”, Proceedings of The Ninth International Symposium on High-performance Distributed Computing, Aug. 2000, pp. 279-286, The Ninth International Symposium on High-Performance Distributed Computing, IEEE Computer Society, Los Alamitos, CA.
International Search Report & Written Opinion, PCT/US2014/010690, Mar. 24, 2014, 12 pages.
Microsoft Corporation, “Fundamentals of Garbage Collection”, Retrieved Aug. 30, 2013 via the WayBack Machine, 11 pages.
Microsoft Corporation, “GCSettings.IsServerGC Property”, Retrieved Oct. 27, 2013 via the WayBack Machine, 3 pages.
Stalzer, “FlashBlades: System Architecture and Applications”, Proceedings of the 2nd Workshop on Architectures and Systems for Big Data, Jun. 2012, pp. 10-14, Association for Computing Machinery, New York, NY.
Storer et al., “Pergamum: Replacing Tape with Energy Efficient, Reliable, Disk-Based Archival Storage”, FAST'08: Proceedings of the 6th USENIX Conference on File and Storage Technologies, Article No. 1, Feb. 2008, pp. 1-16, USENIX Association, Berkeley, CA.
Bellamy-McIntyre J., et al., “OpenID and the Enterprise: A Model-based Analysis of Single Sign-On Authentication,” (online), 2011, 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), Dated Aug. 29, 2011, 10 pages, DOI:10.1109/EDOC.2011.26, ISBN: 978-1-4577-0362-1, Retrieved fromURL:https://www.cs.auckland.ac.nz/lutteroth/publications/McIntyreLutterothWeber2011-OpenID.pdf.
ETSI: “Network Function Virtualisation (NFV); Resiliency Requirements,” ETSI GS NFV-REL 001, V1.1.1, etsi.org (Online), Jan. 2015, 82 Pages, RetrievedfromURL:www.etsi.org/deliver/etsi_gs/NFV-RELJ001_099/001/01.01.01_60/gs_NFV- REL001v010101p.pdf.
Faith R., “Dictzip File Format,” GitHub.com (Online), 01 Page, [Accessed on Jul. 28, 2015] Retrieved from URL: github.com/fidlej/idzip.
Google Search Of: “Storage Array Define,” Performed by the Examiner for U.S. Appl. No. 14/725,278 on Nov. 4, 2015 , Results Limited to Entries Dated before 2012, 01 Page.
Hota C., et al., “Capability-Based Cryptographic Data Access Control in Cloud Computing,” International Journal of Advanced Networking and Applications, Eswar Publications, India, Aug. 13, 2011, vol. 1, No. 1,10 Pages.
Hu X-Y., et al., “Container Marking: Combining Data Placement, Garbage Collection and Wear Levelling for Flash,” 19th Annual IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, Jul. 25-27, 2011, 11 Pages, DOI: 10.1109/MASCOTS.2011.50, ISBN: 978-0-7695-4430-4.
International Search Report and Written Opinion for International Application No. PCT/US2016/015006, Apr. 29, 2016, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/016333, Jun. 8, 2016, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/020410, mailed Jul. 8, 2016, 17 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/032052, mailed Aug. 30, 2016, 17 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/032084, mailed Jul. 18, 2016, 12 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/035492, mailed Aug. 17, 2016, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/036693, mailed Aug. 29, 2016, 10 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/038758, mailed Oct. 7, 2016, 10 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/040393, mailed Sep. 22, 2016, 10 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/044020, mailed Sep. 30, 2016, 11 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/044874, mailed Oct. 7, 2016, 11 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/044875, mailed Oct. 5, 2016, 13 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/044876, mailed Oct. 21, 2016, 12 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/044877, mailed Sep. 29, 2016, 13 pages.
International Search Report and Written Opinion of the International Application No. PCT/US2016/015008, mailed May 4, 2016, 12 pages.
Kong K., “Using PCI Express as the Primary System Interconnect in Multiroot Compute, Storage, Communications and Embedded Systems,” IDT, White Paper, Aug. 28, 2008, 12 Pages, [Retrieved by WIPO on Dec. 1, 2014] Retrieved from URL: http://www.idt.com/document/whp/idt-pcie-multi-root-white-paper.
Li J., et al., “Access Control for the Services Oriented Architecture,” Proceedings of the ACM Workshop on Secure Web Services (SWS), ACM, New York, Nov. 2, 2007, pp. 9-17.
Microsoft: “Hybrid for SharePoint Server 2013—Security Reference Architecture,” Oct. 1, 2014, pp. 1-53, XP055296534, [Retrieved On Aug. 19, 2016] Retrieved from URL: http://hybrid.office.com/img/Security_Reference_Architecture.pdf.
Microsoft, “Hybrid Identity Management”, Microsoft (online), Apr. 2014, 2 pages, URL: download.microsoft.com/download/E/A/E/EAE57CD1-A80B-423C-96BB-142FAAC630B9/Hybrid_Identity_Datasheet.pdf.
Microsoft, “Hybrid Identity,” (online), Dated Apr. 2014, 36 pages, Retrieved from URL: http://aka.ms/HybridIdentityWp.
PCMAG: “Storage Array Definition,” Published May 10, 2013, 1 page, Retrieved from URL: http://web.archive.Org/web/20130510121646/http://www.pcmag.com/encyclopedia/term/52091/storage-array.
Storer M.W., et al., “Secure Data Deduplication,” Proceedings of the 4th ACM International Workshop on Storage Security And Survivability (StorageSS'08), ACM New York, NY, USA, Oct. 31, 2008, 10 Pages, DOI: 10.1145/1456471.
Sweere P., “Creating Storage Class Persistent Memory with NVDIMM,” Flash Memory Summit, Aug. 2013, 22 Pages, Retrieved from URL: http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130814_T2_Sweere. pdf.
Techopedia, “What is a Disk Array,” techopedia.com (online), Jan. 13, 2012, 1 Page, Retrieved from URL: https://web.archive.org/web/20120113053358/http://www.techopedia.com/definition/1009/disk-array.
Webopedia, “What is a disk array,” webopedia.com (online), May 26, 2011, 2 Pages, Retrieved from URL: https://web/archive.org/web/20110526081214/http://www.webopedia.com/TERM/D/disk_array.html.
Wikipedia, “Convergent Encryption,” Wikipedia.org (online), Accessed on Sep. 8, 2015, 2 pages, Retrieved from URL: en.wikipedia.org/wiki/Convergent_encryption.
Related Publications (1)
Number Date Country
20230273743 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
61751142 Jan 2013 US
Continuations (7)
Number Date Country
Parent 17406421 Aug 2021 US
Child 18312872 US
Parent 16788771 Feb 2020 US
Child 17406421 US
Parent 15875189 Jan 2018 US
Child 16788771 US
Parent 15410202 Jan 2017 US
Child 15875189 US
Parent 15139408 Apr 2016 US
Child 15410202 US
Parent 14737927 Jun 2015 US
Child 15139408 US
Parent 14046872 Oct 2013 US
Child 14737927 US