The present disclosure generally relates to heat exchangers, and more particularly, to a lightweight heat exchanger capable of high temperature operation.
Aircraft use thermal management systems to transfer heat from air cycle system compressor outlet air to air passing through the aircraft engine fan section via heat exchangers mounted in the engine fan duct. Heat exchangers used for transferring heat from the air cycle thermal management system are frequently made from stainless steel to provide adequate heat transfer and withstand the temperature of the air cycle system compressor outlet air. Although these heat exchangers work well for their intended purpose, they are heavy, increasing fuel consumption and reducing aircraft range. Thus, there is a need for a heat exchanger that is both lightweight and able to withstand high temperatures.
In one aspect, the present disclosure includes a heat exchanger for transferring thermal energy between a hot fluid and a cold fluid passing through the exchanger. The heat exchanger includes a casing. The casing comprises aluminum nitride impregnated alumina-silica cloth. The heat exchanger also includes a hot fluid flowpath positioned inside the casing for carrying a hot fluid from a hot fluid inlet to a hot fluid outlet downstream from the hot fluid inlet. The hot fluid flowpath is defined at least in part by a thermally conductive wall permitting thermal energy to transfer from hot fluid flowing through the hot fluid flowpath. The heat exchanger also includes a cold fluid flowpath for carrying a cold fluid from a cold fluid inlet to a cold fluid outlet downstream from the cold fluid inlet. At least a downstream portion of the cold fluid flowpath being defined by the thermally conductive wall permitting thermal energy to transfer from hot fluid flowing through the hot fluid flowpath to the cold fluid flowing through the cold fluid flowpath. At least a portion of the cold fluid flowpath upstream from the thermally conductive wall is defined by a ceramic foam.
In another aspect, the present disclosure includes a heat exchanger for transferring thermal energy between a hot fluid and a cold fluid passing through the exchanger. The heat exchanger comprises a thermally conductive hot fluid flowpath formed at least in part by walls comprising aluminum nitride and alumina-silica cloth for carrying hot fluid from a hot fluid inlet to a hot fluid outlet downstream from the hot fluid inlet. The heat exchanger also includes a cold fluid flowpath for carrying a cold fluid from a cold fluid inlet to a cold fluid outlet downstream from the cold fluid inlet. The cold fluid flowpath including an upstream passage formed at least in part by walls comprising aluminum nitride and alumina-silica cloth and a downstream passage formed at least in part by walls comprising aluminum nitride and alumina-silica cloth. The upstream and downstream passages are separated by a thermally conductive porous panel. Cold fluid entering the cold fluid inlet enters the upstream passage, passes through the porous panel, and enters the downstream passage.
In still another aspect, the present disclosure includes a heat exchanger for transferring thermal energy between a hot fluid and a cold fluid passing through the exchanger. The heat exchanger comprises a hot fluid flowpath formed at least in part by walls comprising aluminum nitride and alumina-silica cloth for carrying hot fluid from a hot fluid inlet to a hot fluid outlet downstream from the hot fluid inlet. The heat exchanger also includes a cold fluid flowpath formed at least in part by walls comprising aluminum nitride and alumina-silica cloth for carrying cold fluid from a cold fluid inlet to a cold fluid outlet downstream from the cold fluid inlet. The cold fluid flowpath is in thermal communication with the hot fluid flowpath for transferring thermal energy between a hot fluid and a cold fluid. The heat exchanger also includes a casing surrounding the hot fluid flowpath and the cold fluid flowpath.
Other aspects of the present disclosure will be apparent in view of the following description and claims.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Referring to
As illustrated in
Thermally conductive elements 60 extend through the ceramic foam walls 40 at spaced intervals. In one embodiment the thermally conductive elements 60 are made of aluminum nitride that is injected as a liquid into holes formed in the ceramic foam. Further, in one embodiment the elements 60 are cylindrical pins or rods having a diameter of about 0.141 inch. In one embodiment, the elements 60 are arranged in staggered rows. Although the elements may have another spacing, in one embodiment the elements in each row are vertically spaced about 0.49 inch apart and each row is spaced about 0.245 inch from adjacent rows. This element 60 size and spacing reduce the flow area through the porous side walls 40 by about twelve percent. The elements 60 span a downstream passage 62 formed between the foam side wall 40 and a thermally conductive wall 64. In one embodiment, the elements 60 are connected (e.g., with aluminum nitride) to the thermally conductive wall 64. Although the thermally conductive wall 64 may be made of other materials, in one embodiment the wall is made from alumina-silica cloth impregnated with aluminum nitride. The downstream passage 62 also includes a top wall 66, a bottom wall 68, and an end wall 70. The top wall 66, bottom wall 68, and end wall 70 form part of the casing 12.
As illustrated in
Referring to
Cold air entering the cold air inlet 14 travels through the upstream passage 32 generally parallel to the porous side walls 40. A majority of cold air entering the inlet 14 turns orthogonally and travels through one of the opposing porous foam side walls 40 where it absorbs thermal energy from the BRI ceramic foam. This thermal energy is conducted from the wall 64 to the ceramic foam panels 40 by the thermally conductive elements 60. The fluid becomes rarefied when forced through the BRI, decreasing fluid friction and the associated pressure drop. After exiting the porous foam side walls 40, the cold air turns orthogonally again and travels alone a first direction 31 through the downstream passage 62 generally parallel to the thermally conductive wall 64 where it absorbs more thermal energy by direct convective heat transfer from both the thermally conductive elements 60 and the conductive wall 64.
The materials used can permit operation at temperatures in excess of 1000° F. These materials are also lightweight, permitting use in aircraft. Because the materials are lightweight and the heat exchanger can withstand higher temperatures, the aircraft can have more range.
As will be appreciated by those skilled in the art, the porous side walls 40 provide large surface areas that cause air traveling through the side walls to be at a low velocity. Further, the porous side walls 40 provide a low pressure differential across the walls.
Having described the embodiments in detail, it will be apparent that modifications and variations are possible without departing from the scope defined in the appended claims.
When introducing elements of the preferred embodiment(s) thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions, products, and methods, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
3557557 | Prachar | Jan 1971 | A |
4333522 | Brune | Jun 1982 | A |
5752566 | Liu | May 1998 | A |
6158242 | Lu | Dec 2000 | A |
6203587 | Lesieur et al. | Mar 2001 | B1 |
6716782 | Heng et al. | Apr 2004 | B2 |
7501111 | Keller | Mar 2009 | B2 |
7742297 | Behrens et al. | Jun 2010 | B2 |
8322406 | Du et al. | Dec 2012 | B2 |
20040245389 | Behrens et al. | Dec 2004 | A1 |
20050095476 | Schrooten et al. | May 2005 | A1 |
20070074859 | Nakada | Apr 2007 | A1 |
20080000630 | Haglid | Jan 2008 | A1 |
20080196869 | Behrens et al. | Aug 2008 | A1 |
20080277104 | Aoki et al. | Nov 2008 | A1 |
20080289802 | Nakajima | Nov 2008 | A1 |
20090000328 | Scherer et al. | Jan 2009 | A1 |
20090250191 | Klein | Oct 2009 | A1 |
20090288814 | Stoia et al. | Nov 2009 | A1 |
20100038051 | Behrens et al. | Feb 2010 | A1 |
20110133026 | Behrens et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
0510734 | Oct 1992 | EP |
Entry |
---|
European Search Report for EP12194996, dated May 3, 2013. |
European Search Report for EP12194996, dated Feb. 13, 2015. |
Number | Date | Country | |
---|---|---|---|
20130140003 A1 | Jun 2013 | US |