The present invention relates generally to the field of composite materials and, more particularly, to lightweight thermal insulating cement based materials.
None.
The present invention provides a lightweight thermal insulating cement-based material (“insulating material”) formed from a mixture that includes cement, water and a foaming agent. The foaming agent can be an aluminum powder or a surfactant. The insulating material has a maximum use temperature of about 900 degrees Celsius or more.
In addition, the present invention provides an insulating material formed from a mixture that includes cement in an amount of about 25 to 90% of weight wet, water in an amount of about 10 to 70% of weight wet, and a foaming agent. The foaming agent can be an aluminum powder in an amount of about 0.5 to 3.0% by weight of the cement or a surfactant in an amount of about 0.05 to 4.0% by weight of the water. The insulating material has a maximum use temperature of about 900 degrees Celsius or more, a density in the range of about 0.05 to 1.0 g/cm3, a thermal conductivity in the range of about 0.02 to 1.0 W/(m·K), a compressive strength in the range of about 10 to 3000 PSI, and a flexural strength in the range of about 10 to 3000 PSI.
Moreover, the present invention provides a method for manufacturing an insulating material by mixing a cement with water, foaming the cement-water mixture using a foaming agent, pouring the foamed cement-water mixture into a mold and allowing the foamed cement-water mixture to rise to form the insulating material, removing the insulating material from the mold and curing the insulating material. The insulating material has a maximum use temperature of about 900 degrees Celsius or more.
Furthermore, the present invention provides a method for manufacturing an insulating material by mixing a cement in an amount of about 25 to 90% of weight wet with water in an amount of about 10 to 70% of weight wet, foaming the cement-water mixture using a foaming to agent (an aluminum powder in an amount of about 0.5 to 3.0% by weight of the cement or a surfactant in an amount of about 0.05 to 4.0% by weight of the water), pouring the foamed cement-water mixture into a mold and allowing the foamed cement-water mixture to rise to form the insulating material, removing the insulating material from the mold and curing the insulating material. The insulating material has a maximum use temperature of about 900 degrees Celsius or more, a density in the range of about 0.05 to 1.0 g/cm3, a thermal conductivity in the range of about 0.02 to 1.0 W/(m·K), a compressive strength in the range of about 10 to 3000 PSI, and a flexural strength in the range of about 10 to 3000 PSI.
The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which:
None.
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
Ordinary Portland cement (OPC), calcium aluminate cement (CAC), Sorel cement (magnesium oxide and magnesium chloride cements), CSA cement (calcium sulphate aluminate cement), phosphate cement, geo-polymer cement or other cement type known in the State-of-the-Art, in its wet state with water added before setting, can be foamed up with reacting aluminum powder or the use of a surfactant. The more the wet material is foamed by adding higher amounts of aluminum or surfactant, the lighter weight and lower density it will be and as a result the more insulating the set and dried material will be. Following setting and drying, when based on OPC, the insulating material can be used below freezing, minimum −273 degrees Celsius, or have a maximum use temperature up to approximately 900 degrees Celsius, and when based on CAC, Sorel cement, CSA cement, phosphate cement, geo-polymer cement or other cement types, the insulating material will have a maximum use temperature up to approximately 1800 degrees Celsius.
The cementitious binder can be used in combination with a multitude of additive materials such as sand, gypsum, silica fume, fumed silica, plaster of Paris, fly ash, slag, rock, glass fiber, plastic fiber, etc. Moreover, the insulating material can be strengthened by adding a strength increasing admixture, such as fumed silica (e.g., Cab-O-Sil EH-5 or similar by Cabot Corporation).
To make the foamed cement-water mixture, the water to cement ratio by weight is typically in the range of about 0.2 to 2.0. When foaming mixtures with lower water to cement ratios in the range of about 0.2 to 1.0 these are as an option made more fluid by adding a conventional plasticizer or high range water reducer (HRWR) in an amount of 0.25 to 4.0% of the cement weight.
As one embodiment, the cement-water-based foam is sometimes stabilized by the addition of a rheology modifying agent. The rheology modifying agent will typically be added in an amount of 0.1 to 5% of the cement weight.
The rheology-modifying agents fall into the following categories: (1) polysaccharides and derivatives thereof, (2) proteins and derivatives thereof, and (3) synthetic organic materials. Polysaccharide rheology-modifying agents can be further subdivided into (a) cellulose-based materials and derivatives thereof, (b) starch based materials and derivatives thereof, and (c) other polysaccharides.
Suitable cellulose-based rheology-modifying agents include, for example, methylhydroxyethylcellulose, hydroxymethylethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxyethylpropylcellulose, etc.
Suitable starch based materials include, for example, wheat starch, pre-gelled wheat starch, potato starch, pre-gelled potato starch, amylopectin, amylose, seagel, starch acetates, starch hydroxyethyl ethers, ionic starches, long-chain alkylstarches, dextrins, amine starches, phosphate starches, and dialdehyde starches.
The currently preferred rheology-modifying agent is hydroxypropylmethylcellulose, examples of which are Methocel 240 and Methocel 240S.
When using aluminum as a foaming agent, the aluminum is typically in a particle size below 100 microns. The aluminum can be added as a dry powder, or as a paste in a mixture with water or diethyleneglycol and for some applications can also be used in a retarded version. The preferred aluminum is purchased from the company Eckart (a German company). Typically, the aluminum is added in an amount of about 0.05 to 3% by weight of the cement weight. When foaming OPC cement based mixes, the water and cement are typically mixed first for about 1 to 5 minutes where after the aluminum is added and mixed for about 5 seconds to 1 minute. When foaming CAC cement based mixes and most other cement types, the water, cement and rheology modifying agent are typically mixed first for about 1 to 5 minutes, where after calcium oxide, calcium hydroxide, sodium hydroxide or similar pH increasing agent is added in an amount of about 0.5 to 10% of the water weight and mixed for about 5 seconds to 1 minute, and finally the aluminum is added and mixed for about 5 seconds to 1 minute.
When using surfactant as a foaming agent, it is preferred that the water and rheology modifying agent are mixed first to make a viscous water phase that is then mixed with the cement, fiber, and foaming agent. The typical mixing time is about 1 to 10 minutes depending on the type of mixer. Alternatively, the surfactant can be premixed with 1-90% of the water to prepare a foam that is then added, or the water mixture can be foamed by passing through a venture-type foaming aggregate nozzle (similar to making shaving foam) that is added to the fiber mixture. The rheology modifying agent is used to stabilize the foam stability and also helps in developing a smaller cell structure in the foam.
By adding a reinforcement fiber to the material increased foam stability will be achieved before setting of the cement, which is especially important when making materials with a dry density in the range of about 0.05 to 0.3 g/cm3. Further, the fiber addition has been found to reduce or eliminate material shrinkage and drying shrinkage cracks during the drying phase of the production process, and further provide increased flexural strength and toughness of the dry material. The preferred type of fiber is cellulose (hardwood or softwood), plastic (based on poly vinyl alcohol or acrylic) and glass fiber; cellulose and plastic fiber is primarily used for insulation intended for below freezing or ambient temperatures, whereas glass fiber is primarily used for insulation intended for temperatures above ambient or where fire resistance is required. Also, combinations of fiber types can be applied. The preferred fiber length is from about 1 to 2 mm for the cellulose fiber, about 4 to 10 mm for the plastic fiber and about 6 to 20 mm for the glass fiber. The preferred fiber diameter is about 10 to 40 microns.
Following mixing, the mixture is poured into a mold system, which can be in the shape of a pipe, half-pipe, block, panel, sheet or other desired shape. For example, a large mold box (e.g., 3 to 6 meters long by 1 to 1.5 meters wide by 0.6 to 1.2 meters tall, etc.) can be used. When using aluminum powder as a foaming agent, the mixture is allowed to rise (due to the formation of hydrogen bubbles as the aluminum reacts with the hydroxyl ions) and fill the mold over the next 0.5 to 2 hours.
When using a surfactant as the foaming agent, the surfactant is specially chosen to have a high degree of foam stability and to generate the right bubble size. One such air entraining agent is sold by the company Sika. The surfactant is typically added in an amount of about 0.05 to 4.0% of the weight of water. The water, cement, surfactant and rheology modifying agent are typically mixed for about 1 to 10 minutes to foam up the mixture. Following mixing, the foamed mixture is poured into the mold system and is allowed to set.
Following hardening, the wet material will be de-molded and cut to size, trimmed, etc. For example, a block of the hardened material can be cut into panels, sheets or other desired shapes.
To develop the final 28 days strength of products made from OPC cement, the product is either allowed to sit around for 28 days in a humid environment, or the strength development can be accelerated within 24-48 hours by heating either by its own internal (exothermic) heat development or by steam curing such as is conventional in the State-of-the-Art.
Products made from CAC cement, Sorel cement, CSA cement, phosphate cement, geo-polymer cement or other cement types will achieve its final strength in 24 hours and does not necessarily require additional curing.
After achieving the final strength development, the product is dried to generate the finished lightweight insulating composite.
In one embodiment, the finished product can be made water repellent by spraying the product with water or solvent based silane. Such product, Protectosil BHN, is typically sold by BASF. The finished product can also be sprayed with anti-fungal or anti-microbial coatings. Moreover, the finished product can be painted, stained or textured.
The finished lightweight cement based insulating composite will have a density in the range of about 0.05-1.0 g/cm3, a compressive strength in the range of about 10-3000 PSI, a flexural strength in the range of about 10 to 3000 PSI, and a heat conductance in the range of about 0.02-1.0 W/mK.
The compositional ranges are shown below:
0 to 4.0
The cement can be 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89% or 90% by weight or other incremental percentage between.
The water can be 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70% by weight or other incremental percentage between.
The secondary material can be 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49% or 50% by weight or other incremental percentage between.
The strength increasing admixture can be 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10% by weight or other incremental percentage between.
The reinforcement fiber can be 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20% by weight or other incremental percentage between.
The rheology modifying agent can be 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9% or 4.0% by weight or other incremental percentage between.
The aluminum powder of cement can be 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9% or 3.0% by weight or other incremental percentage between.
The pH increasing agent can be 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, 5.0%, 5.1%, 5.2%, 5.3%, 5.4%, 5.5%, 5.6%, 5.7%, 5.8%, 5.9%, 6.0%, 6.1%, 6.2%, 6.3%, 6.4%, 6.5%, 6.6%, 6.7%, 6.8%, 6.9%, 7.0%, 7.1%, 7.2%, 7.3%, 7.4%, 7.5%, 7.6%, 7.7%, 7.8%, 7.9%, 8.0%, 8.1%, 8.2%, 8.3%, 8.4%, 8.5%, 8.6%, 8.7%, 8.8%, 8.9%, 9.0%, 9.1%, 9.2%, 9.3%, 9.4%, 9.5%, 9.6%, 9.7%, 9.8%, 9.9%, 10%, by weight or other incremental percentage between.
The surfactant of water can be 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9% or 4.0% by weight or other incremental percentage between.
As a result, the present invention provides a lightweight thermal insulating cement-based material (“insulating material”) formed from a mixture that includes cement, water and a foaming agent. The foaming agent can be an aluminum powder or a surfactant. The OPC-based insulating material has a maximum use temperature of about 900 degrees Celsius. The CAC, Sorel cement, CSA cement, phosphate cement, geo-polymer cement or other cement-based insulating material has a maximum use temperature of about 1800 degrees Celsius.
In addition, the present invention provides an insulating material formed from a mixture that includes cement in an amount of about 25 to 90% of weight wet, water in an amount of about 10 to 70% of weight wet, and a foaming agent. The foaming agent can be an aluminum powder in an amount of about 0.5 to 3.0% by weight of the cement or a surfactant in an amount of about 0.05 to 4.0% by weight of the water. The insulating material has a density in the range of about 0.05 to 1.0 g/cm3, a thermal conductivity in the range of about 0.02 to 1.0 W/(m·K), a compressive strength in the range of about 10 to 3000 PSI, and a flexural strength in the range of about 10 to 3000 PSI.
Moreover, the present invention provides a method for manufacturing an insulating material by mixing a cement with water, foaming the cement-water mixture using a foaming agent, pouring the foamed cement-water mixture into a mold and allowing the foamed cement-water mixture to rise to form the insulating material and removing the insulating material from the mold. The OPC-based insulating material has a maximum use temperature of about 900 degrees Celsius. The CAC, Sorel cement, CSA cement, phosphate cement, geo-polymer cement or other cement-based insulating material has a maximum use temperature of about 1800 degrees Celsius.
Furthermore, the present invention provides a method for manufacturing an insulating material by mixing cement in an amount of about 25 to 90% of weight wet with water in an amount of about 10 to 70% of weight wet, foaming the cement-water mixture using a foaming agent (an aluminum powder in an amount of about 0.5 to 3.0% by weight of the cement or a surfactant in an amount of about 0.05 to 4.0% by weight of the water), pouring the foamed cement-water mixture into a mold and allowing the foamed cement-water mixture to rise to form the insulating material, removing the insulating material from the mold and heat treating the insulating material. The insulating material has a density in the range of about 0.05 to 1.0 g/cm3, a thermal conductivity in the range of about 0.02 to 1.0 W/(m·K), a compressive strength in the range of about 10 to 3000 PSI, and a flexural strength in the range of about 10 to 3000 PSI.
Although preferred embodiments of the present invention have been described in detail, it will be understood by those skilled in the art that various modifications can be made therein without departing from the spirit and scope of the invention as set forth in the appended claims.
This application claims priority to, and is a continuation of U.S. patent application Ser. No. 15/116,763 filed on Aug. 4, 2016, now U.S. Pat. No. 10,442,733, which is the National Stage of International Application No. PCT/US2015/014360 filed on Feb. 4, 2015 and claims priority to U.S. Provisional Patent Application Ser. No. 61/935,393, filed on Feb. 4, 2014, U.S. Provisional Patent Application Ser. No. 62/001,753, filed on May 22, 2014. The contents of both applications are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
570391 | Fox | Oct 1896 | A |
1048923 | Wheeler | Dec 1912 | A |
3517468 | Woods | Jun 1970 | A |
3852083 | Yang | Dec 1974 | A |
3908062 | Roberts | Sep 1975 | A |
3987600 | Baehr | Oct 1976 | A |
3994110 | Ropella | Nov 1976 | A |
4014149 | Yamamoto | Mar 1977 | A |
4045937 | Stucky | Sep 1977 | A |
4075804 | Zimmerman | Feb 1978 | A |
4084571 | McFarland | Apr 1978 | A |
4159302 | Greve et al. | Jun 1979 | A |
4171985 | Motoki | Oct 1979 | A |
4225247 | Hodson | Sep 1980 | A |
4225357 | Hodson | Sep 1980 | A |
4284119 | Martin et al. | Aug 1981 | A |
4302127 | Hodson | Nov 1981 | A |
4308065 | Walls-Muycelo | Dec 1981 | A |
4339487 | Mullet | Jul 1982 | A |
4343127 | Greve et al. | Aug 1982 | A |
4347653 | Martin et al. | Sep 1982 | A |
4398842 | Hodson | Aug 1983 | A |
4428775 | Johnson et al. | Jan 1984 | A |
4434899 | Rivkin | Mar 1984 | A |
4443992 | Shechter | Apr 1984 | A |
4489121 | Luckanuck | Dec 1984 | A |
4552463 | Hodson | Nov 1985 | A |
4660338 | Wagner | Apr 1987 | A |
4664707 | Wilson et al. | May 1987 | A |
4695494 | Fowler et al. | Sep 1987 | A |
4704834 | Turner | Nov 1987 | A |
4716700 | Hagemeyer | Jan 1988 | A |
4716702 | Dickson | Jan 1988 | A |
4800538 | Passmore et al. | Jan 1989 | A |
4811538 | Lehnert et al. | Mar 1989 | A |
4864789 | Thorn | Sep 1989 | A |
4889428 | Hodson | Dec 1989 | A |
4896471 | Turner | Jan 1990 | A |
4922674 | Thorn | May 1990 | A |
4944595 | Hodson | Jul 1990 | A |
4946504 | Hodson | Aug 1990 | A |
4998598 | Mardian et al. | Mar 1991 | A |
5061319 | Hodson | Oct 1991 | A |
5066080 | Woodward | Nov 1991 | A |
5074087 | Green | Dec 1991 | A |
5100586 | Jennings et al. | Mar 1992 | A |
5108677 | Ayres | Apr 1992 | A |
5154358 | Hartle | Oct 1992 | A |
5169566 | Stucky et al. | Dec 1992 | A |
5232496 | Jennings et al. | Aug 1993 | A |
5239799 | Bies et al. | Aug 1993 | A |
5242078 | Haas et al. | Sep 1993 | A |
5250578 | Cornwell | Oct 1993 | A |
5305577 | Richards et al. | Apr 1994 | A |
5311381 | Lee | May 1994 | A |
5317119 | Ayres | May 1994 | A |
5339522 | Paquin et al. | Aug 1994 | A |
5344490 | Roosen et al. | Sep 1994 | A |
5347780 | Richards et al. | Sep 1994 | A |
5356579 | Jennings et al. | Oct 1994 | A |
5358676 | Jennings et al. | Oct 1994 | A |
5376320 | Tiefenbacher et al. | Dec 1994 | A |
5385764 | Andersen et al. | Jan 1995 | A |
5395571 | Symons | Mar 1995 | A |
5401588 | Garvey et al. | Mar 1995 | A |
5417024 | San Paolo | May 1995 | A |
5433189 | Bales et al. | Jul 1995 | A |
5440843 | Langenhorst | Aug 1995 | A |
5453310 | Andersen et al. | Sep 1995 | A |
5482551 | Morris et al. | Jan 1996 | A |
5505987 | Jennings et al. | Apr 1996 | A |
5506046 | Andersen et al. | Apr 1996 | A |
5508072 | Andersen et al. | Apr 1996 | A |
5514430 | Andersen et al. | May 1996 | A |
5522195 | Bargen | Jun 1996 | A |
5527387 | Andersen et al. | Jun 1996 | A |
5540026 | Gartland | Jul 1996 | A |
5543186 | Andersen et al. | Aug 1996 | A |
5545297 | Andersen et al. | Aug 1996 | A |
5545450 | Andersen et al. | Aug 1996 | A |
5549859 | Andersen et al. | Aug 1996 | A |
5557899 | Dube et al. | Sep 1996 | A |
5569514 | Ayres | Oct 1996 | A |
5580409 | Andersen et al. | Dec 1996 | A |
5580624 | Andersen et al. | Dec 1996 | A |
5582670 | Andersen et al. | Dec 1996 | A |
5601888 | Fowler | Feb 1997 | A |
5614307 | Andersen et al. | Mar 1997 | A |
5618341 | Andersen et al. | Apr 1997 | A |
5626954 | Andersen et al. | May 1997 | A |
5631052 | Andersen et al. | May 1997 | A |
5631053 | Andersen et al. | May 1997 | A |
5631097 | Andersen et al. | May 1997 | A |
5635292 | Jennings et al. | Jun 1997 | A |
5637412 | Jennings et al. | Jun 1997 | A |
5641584 | Andersen et al. | Jun 1997 | A |
5644870 | Chen | Jul 1997 | A |
5653075 | Williamson | Aug 1997 | A |
5654048 | Andersen et al. | Aug 1997 | A |
5658603 | Andersen et al. | Aug 1997 | A |
5658624 | Andersen et al. | Aug 1997 | A |
5660900 | Andersen et al. | Aug 1997 | A |
5660903 | Andersen et al. | Aug 1997 | A |
5660904 | Andersen et al. | Aug 1997 | A |
5662731 | Andersen et al. | Sep 1997 | A |
5665439 | Andersen et al. | Sep 1997 | A |
5665442 | Andersen et al. | Sep 1997 | A |
5676905 | Andersen et al. | Oct 1997 | A |
5679145 | Andersen et al. | Oct 1997 | A |
5679381 | Andersen et al. | Oct 1997 | A |
5683772 | Andersen et al. | Nov 1997 | A |
5691014 | Andersen et al. | Nov 1997 | A |
5695811 | Andersen et al. | Dec 1997 | A |
5702787 | Andersen et al. | Dec 1997 | A |
5705203 | Andersen et al. | Jan 1998 | A |
5705237 | Andersen et al. | Jan 1998 | A |
5705238 | Andersen et al. | Jan 1998 | A |
5705239 | Andersen et al. | Jan 1998 | A |
5705242 | Andersen et al. | Jan 1998 | A |
5707474 | Andersen et al. | Jan 1998 | A |
5709827 | Andersen et al. | Jan 1998 | A |
5709913 | Andersen et al. | Jan 1998 | A |
5711908 | Tiefenbacher et al. | Jan 1998 | A |
5714217 | Andersen et al. | Feb 1998 | A |
5716675 | Andersen et al. | Feb 1998 | A |
5720142 | Morrison | Feb 1998 | A |
5720913 | Andersen et al. | Feb 1998 | A |
5736209 | Andersen et al. | Apr 1998 | A |
5738921 | Andersen et al. | Apr 1998 | A |
5740635 | Gil et al. | Apr 1998 | A |
5746822 | Espinoza | May 1998 | A |
5749178 | Garmong | May 1998 | A |
5753308 | Andersen et al. | May 1998 | A |
5766525 | Andersen et al. | Jun 1998 | A |
5776388 | Andersen et al. | Jul 1998 | A |
5782055 | Crittenden | Jul 1998 | A |
5783126 | Andersen et al. | Jul 1998 | A |
5786080 | Andersen et al. | Jul 1998 | A |
5798010 | Richards et al. | Aug 1998 | A |
5798151 | Andersen et al. | Aug 1998 | A |
5800647 | Andersen et al. | Sep 1998 | A |
5800756 | Andersen et al. | Sep 1998 | A |
5810961 | Andersen et al. | Sep 1998 | A |
5830305 | Andersen et al. | Nov 1998 | A |
5830548 | Andersen et al. | Nov 1998 | A |
5843544 | Andersen et al. | Dec 1998 | A |
5849155 | Gasland | Dec 1998 | A |
5851634 | Andersen et al. | Dec 1998 | A |
5868824 | Andersen et al. | Feb 1999 | A |
5871677 | Falke et al. | Feb 1999 | A |
5879722 | Andersen et al. | Mar 1999 | A |
5887402 | Ruggie et al. | Mar 1999 | A |
5916077 | Tang | Jun 1999 | A |
5928741 | Andersen et al. | Jul 1999 | A |
5976235 | Andersen et al. | Nov 1999 | A |
6030673 | Andersen et al. | Feb 2000 | A |
6067699 | Jackson | May 2000 | A |
6083586 | Andersen et al. | Jul 2000 | A |
6090195 | Andersen et al. | Jul 2000 | A |
6115976 | Gomez | Sep 2000 | A |
6119411 | Mateu Gil et al. | Sep 2000 | A |
6161363 | Herbst | Dec 2000 | A |
6168857 | Andersen et al. | Jan 2001 | B1 |
6180037 | Andersen et al. | Jan 2001 | B1 |
6200404 | Andersen et al. | Mar 2001 | B1 |
6231970 | Andersen et al. | May 2001 | B1 |
6268022 | Schlegel et al. | Jul 2001 | B1 |
6299970 | Richards et al. | Oct 2001 | B1 |
6311454 | Kempel | Nov 2001 | B1 |
6327821 | Chang | Dec 2001 | B1 |
6347934 | Andersen et al. | Feb 2002 | B1 |
6379446 | Andersen et al. | Apr 2002 | B1 |
6402830 | Schaffer | Jun 2002 | B1 |
6434899 | Fortin et al. | Aug 2002 | B1 |
6475275 | Nebesnak et al. | Nov 2002 | B1 |
6485561 | Dattel | Nov 2002 | B1 |
6494704 | Andersen et al. | Dec 2002 | B1 |
6503751 | Hugh | Jan 2003 | B2 |
6528151 | Shah et al. | Mar 2003 | B1 |
6572355 | Bauman et al. | Jun 2003 | B1 |
6573340 | Khemani et al. | Jun 2003 | B1 |
6581588 | Wiedemann et al. | Jun 2003 | B2 |
6619005 | Chen | Sep 2003 | B1 |
6643991 | Moyes | Nov 2003 | B1 |
6665997 | Chen | Dec 2003 | B2 |
6668499 | Degelsegger | Dec 2003 | B2 |
6684590 | Frumkin | Feb 2004 | B2 |
6688063 | Lee et al. | Feb 2004 | B1 |
6696979 | Manten et al. | Feb 2004 | B2 |
6743830 | Soane et al. | Jun 2004 | B2 |
6745526 | Autovino | Jun 2004 | B1 |
6764625 | Walsh | Jul 2004 | B2 |
6766621 | Reppermund | Jul 2004 | B2 |
6773500 | Creamer | Aug 2004 | B1 |
6779859 | Koons | Aug 2004 | B2 |
6818055 | Schelinski | Nov 2004 | B2 |
6843543 | Ramesh | Jan 2005 | B2 |
6866081 | Nordgard et al. | Mar 2005 | B1 |
6886306 | Churchill et al. | May 2005 | B2 |
6890604 | Daniels | May 2005 | B2 |
6961998 | Furchheim et al. | Nov 2005 | B2 |
6964722 | Taylor et al. | Nov 2005 | B2 |
6981351 | Degelsegger | Jan 2006 | B2 |
7059092 | Harkin et al. | Jun 2006 | B2 |
7090897 | Hardesty | Aug 2006 | B2 |
RE39339 | Andersen et al. | Oct 2006 | E |
7185468 | Clark et al. | Mar 2007 | B2 |
7241832 | Khemani et al. | Jul 2007 | B2 |
7279437 | Kai et al. | Oct 2007 | B2 |
7297394 | Khemani et al. | Nov 2007 | B2 |
7386368 | Andersen et al. | Jun 2008 | B2 |
7598460 | Roberts, IV et al. | Oct 2009 | B2 |
7617606 | Robbins et al. | Nov 2009 | B2 |
7669383 | Darnell | Mar 2010 | B2 |
7721500 | Clark et al. | May 2010 | B2 |
7758955 | Frey et al. | Jul 2010 | B2 |
7775013 | Bartlett et al. | Aug 2010 | B2 |
7803723 | Herbert et al. | Sep 2010 | B2 |
7832166 | Daniels | Nov 2010 | B2 |
7886501 | Bartlett et al. | Feb 2011 | B2 |
7897235 | Locher et al. | Mar 2011 | B1 |
7927420 | Francis | Apr 2011 | B2 |
7964051 | Lynch et al. | Jun 2011 | B2 |
8037820 | Daniels | Oct 2011 | B2 |
8097544 | Majors | Jan 2012 | B2 |
8209866 | Daniels | Jul 2012 | B2 |
8381381 | Daniels | Feb 2013 | B2 |
8650834 | Hardwick et al. | Feb 2014 | B2 |
8915033 | Daniels | Dec 2014 | B2 |
9027296 | Daniels | May 2015 | B2 |
9475732 | Daniels | Oct 2016 | B2 |
9890083 | Daniels | Feb 2018 | B2 |
10442733 | Andersen | Oct 2019 | B2 |
20010032367 | Sasage | Oct 2001 | A1 |
20010047741 | Gleeson et al. | Dec 2001 | A1 |
20020053757 | Andersen et al. | May 2002 | A1 |
20020078659 | Hunt | Jun 2002 | A1 |
20020100996 | Moyes et al. | Aug 2002 | A1 |
20020124497 | Fortin et al. | Sep 2002 | A1 |
20020128352 | Soane et al. | Sep 2002 | A1 |
20020166479 | Jiang | Nov 2002 | A1 |
20030015124 | Klus | Jan 2003 | A1 |
20030033786 | Yulkowski | Feb 2003 | A1 |
20030084980 | Seufert et al. | May 2003 | A1 |
20030115817 | Blackwell et al. | Jun 2003 | A1 |
20030205187 | Carlson et al. | Nov 2003 | A1 |
20030209403 | Daniels | Nov 2003 | A1 |
20030211251 | Daniels | Nov 2003 | A1 |
20030211252 | Daniels | Nov 2003 | A1 |
20040025465 | Aldea | Feb 2004 | A1 |
20040026002 | Weldon | Feb 2004 | A1 |
20040231285 | Hunt et al. | Nov 2004 | A1 |
20040258901 | Luckevich | Dec 2004 | A1 |
20050092237 | Daniels | May 2005 | A1 |
20050227006 | Segall | Oct 2005 | A1 |
20050241541 | Hohn et al. | Nov 2005 | A1 |
20050284030 | Autovino et al. | Dec 2005 | A1 |
20060070321 | Au | Apr 2006 | A1 |
20060096240 | Fortin | May 2006 | A1 |
20060168906 | Tonyan et al. | Aug 2006 | A1 |
20060287773 | Andersen et al. | Dec 2006 | A1 |
20070021515 | Glenn et al. | Jan 2007 | A1 |
20070077436 | Naji | Apr 2007 | A1 |
20070092712 | Hodson | Apr 2007 | A1 |
20070095570 | Roberts, IV et al. | May 2007 | A1 |
20070125043 | Clark et al. | Jun 2007 | A1 |
20070125044 | Clark et al. | Jun 2007 | A1 |
20070157537 | Nicolson et al. | Jul 2007 | A1 |
20070175139 | Nicolson et al. | Aug 2007 | A1 |
20070193220 | Daniels | Aug 2007 | A1 |
20070283660 | Blahut | Dec 2007 | A1 |
20080016820 | Robbins, Sr. et al. | Jan 2008 | A1 |
20080027583 | Andersen et al. | Jan 2008 | A1 |
20080027584 | Andersen et al. | Jan 2008 | A1 |
20080027685 | Andersen et al. | Jan 2008 | A1 |
20080041014 | Lynch et al. | Feb 2008 | A1 |
20080066653 | Andersen et al. | Mar 2008 | A1 |
20080086982 | Parenteau et al. | Apr 2008 | A1 |
20080099122 | Andersen et al. | May 2008 | A1 |
20080145580 | McAllister et al. | Jun 2008 | A1 |
20080152945 | Miller | Jun 2008 | A1 |
20080156225 | Bury | Jul 2008 | A1 |
20080286519 | Nicolson et al. | Nov 2008 | A1 |
20090011207 | Dubey | Jan 2009 | A1 |
20090151602 | Francis | Jun 2009 | A1 |
20090266804 | Costin et al. | Oct 2009 | A1 |
20100064943 | Guevara et al. | Mar 2010 | A1 |
20100071597 | Perez-Pena | Mar 2010 | A1 |
20100095622 | Niemoller | Apr 2010 | A1 |
20100136269 | Andersen et al. | Jun 2010 | A1 |
20100251632 | Chen et al. | Oct 2010 | A1 |
20100252946 | Stumm | Oct 2010 | A1 |
20110040401 | Daniels | Feb 2011 | A1 |
20110120349 | Andersen et al. | May 2011 | A1 |
20110131921 | Chen | Jun 2011 | A1 |
20110167753 | Sawyers et al. | Jul 2011 | A1 |
20120276310 | Andersen et al. | Jan 2012 | A1 |
20120164402 | Murakami | Jun 2012 | A1 |
20120208003 | Beard | Aug 2012 | A1 |
20130008115 | Bierman | Jan 2013 | A1 |
20130086858 | Daniels et al. | Apr 2013 | A1 |
20130216802 | Leung | Aug 2013 | A1 |
20130280518 | Stahli et al. | Oct 2013 | A1 |
20140000193 | Daniels et al. | Jan 2014 | A1 |
20140000194 | Daniels | Jan 2014 | A1 |
20140000195 | Daniels et al. | Jan 2014 | A1 |
20140000196 | Daniels et al. | Jan 2014 | A1 |
20150086769 | Daniels | Mar 2015 | A1 |
20150107172 | Daniels | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2799983 | Dec 2012 | CA |
101113077 | Jan 2008 | CN |
101132999 | Feb 2008 | CN |
101132999 | Feb 2008 | CN |
101239838 | Aug 2008 | CN |
102001832 | Nov 2010 | CN |
102001832 | Nov 2010 | CN |
102167619 | Aug 2011 | CN |
102167619 | Aug 2011 | CN |
102220829 | Oct 2011 | CN |
102643013 | Aug 2012 | CN |
102712531 | Oct 2012 | CN |
102712531 | Oct 2012 | CN |
10200601544 | Oct 2007 | DE |
102006015644 | Oct 2007 | DE |
1266877 | Dec 2002 | EP |
1266877 | Dec 2002 | EP |
2189612 | May 2010 | EP |
2230075 | Sep 2010 | EP |
2314462 | Apr 2011 | EP |
2314462 | Apr 2011 | EP |
2583954 | Apr 2013 | EP |
2583954 | Apr 2013 | EP |
1265471 | Mar 1972 | GB |
1508866 | Apr 1978 | GB |
H05-052075 | Mar 1993 | JP |
H05-097487 | Apr 1993 | JP |
H06-56497 | Mar 1994 | JP |
H06-56497 | Jun 1994 | JP |
08-150211 | Jun 1996 | JP |
H11-147777 | Jun 1999 | JP |
2004332401 | Nov 2004 | JP |
2008036549 | Feb 2008 | JP |
2008036549 | Feb 2008 | JP |
2008201613 | Sep 2008 | JP |
2132829 | Jul 1999 | RU |
2132829 | Jul 1999 | RU |
2411218 | Jan 2010 | RU |
2411218 | Feb 2011 | RU |
199105744 | May 1991 | WO |
WO-199105744 | May 1991 | WO |
2002031306 | Apr 2002 | WO |
2003004432 | Jan 2003 | WO |
2005105700 | Nov 2005 | WO |
2006138732 | Dec 2006 | WO |
2007051093 | May 2007 | WO |
2007053852 | May 2007 | WO |
2008144186 | Nov 2008 | WO |
2009038621 | Mar 2009 | WO |
2010141032 | Dec 2010 | WO |
WO-2010141032 | Dec 2010 | WO |
2011066192 | Jun 2011 | WO |
2012084716 | Jun 2012 | WO |
2013082524 | Jun 2013 | WO |
Entry |
---|
European Extended Search Report for EP 14854429.9 dated Jun. 1, 2017. |
EP 14759514.4 Extended European Search Report dated Sep. 23, 2016. |
Extended Search Report EP 13845068 dated Oct. 16, 2016. |
Kralj, D., “Experimental study of recycling lightweight concrete with aggregates containing expanded glass.” Process Safety and Environmental Protection, vol. 87, No. 4, Jul. 1 2809 (Jul. 1, 2009), pp. 267-273. |
Office Action [EP 13809252.3] dated Sep. 3, 2018. |
Office Action [EP 14788791.3] dated Jan. 8, 2019. |
Extended European Search Report for EP 13845068 dated Oct. 16, 2016. |
Extended European Search Report for EP 14759514.4 dated Sep. 23, 2016. |
International Search Report for PCT/US2007/004605 dated Oct. 4, 2007. |
International Search Report for PCT/US2012/059053 dated Mar. 21, 2013. |
International Search Report for PCT/US2013/048642 dated Sep. 2, 2013. |
International Search Report for PCT/US2013/048712 dated Sep. 10, 2013. |
International Search Report for PCT/US2014/035277 dated Sep. 2, 2014. |
International Search Report for PCT/US2014/035313 dated Aug. 19, 2014. |
Supplemental European Search Report for EP 15803724 dated Jan. 23, 2018. |
XP 000375896 6001 Chemical Abstracts 117 Aug. 24, 1992, No. 8, Columbus, Ohio, US. |
Office Action, EP 15746011.4 dated Mar. 2, 2020. |
Number | Date | Country | |
---|---|---|---|
20200039882 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
61935393 | Feb 2014 | US | |
62001753 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15116763 | US | |
Child | 16600858 | US |