Embodiments of the invention generally relate to optical discs rendered unreadable after a limited number of plays.
Conventional optical discs have reached widespread acceptance as a low-cost, reliable storage medium for digital information including music, video, and data. One of the traditional advantages of optical discs is their ability to be played thousands of times without degrading the digital information. However, in some applications, this aspect of the conventional optical disc represents a disadvantage by allowing the digital information to be used or copied more than the creator of the digital information desires. Although some discs have been provided with features to frustrate unlimited use, these discs have typically only temporarily rendered the disc unreadable. Further, known discs that are rendered permanently unusable have generally been rendered unreadable in response to time, such as by oxidation after the removal of a barrier layer. Such discs do not provide optimum qualities of rendering a disc permanently unreadable in response to the number of uses.
Some embodiments of the invention include a limited play optical disc comprising a substrate having machine-readable information encoding features and a coating comprising a dye irreversibly bleachable by light. In such embodiments, the information encoding features are machine-readable prior to bleaching of the dye, which may be activated by light. The bleached dye, however, alters the disc to inhibit further reading of the information encoding features. The dye can be bleached by a number of readings of the disc, as for example by exposure to light associated with reading of the disc. Embodiments of the optical discs have a relatively short effective life, limited by the number of times the disc is played (e.g. one, two, three or more times). Embodiments of the invention also include methods of making and using a limited play optical disc.
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered identically. The drawings, which are not necessarily drawn to scale, depict selected embodiments and are not intended to limit the scope of the invention. Several forms of the embodiments will be shown and described, and other forms will be apparent to those skilled in the art. It will be understood that embodiments shown in drawings and described are merely for illustrative purposes and are not intended to limit the scope of the embodiments as defined in the claims that follow.
Optical discs enable high storage capacity coupled with a reasonable price per megabyte of storage. Use of optical media has become widespread in audio, video, and computer data applications in such formats as, for example, compact disc (CD), compact disc read only memory (CD ROM), digital versatile disc (DVD) including multi-layer structures like DVD-5, DVD-9, and multi-sided formats such as DVD-10, and DVD-18, magneto-optical disc (MO), other write-once and re-writable formats such as CD-R, CD-RW, DVD-R, DVD-RW, DVD+RW, DVD-RAM, high definition optical discs such as Blu-ray and HD DVD, volumetric playback structures, and the like.
During use, the reading beam (sometimes referred to herein as an incident beam) 18 passes through the substrate 10, is reflected by the reflective layer 14, and passes out through the substrate 10 and the information encoding features as a reflected beam for detection by a reading device. In some embodiments the reading device is selected from the group consisting of a disc drive, CD player, and DVD player. The reading device may include an optical source, such as a laser, that directs the reading beam against the disc 4. A detector senses returning radiation (i.e., the reflected beam) from the disc 4.
As shown in
FIGS. 2(a)-(c), adapted from The Compact Disc Handbook by K. C. Pohlmann, A-R Editions, Inc., Madison, Wis., 1992, show the information encoding features being read on a typical optical disc. As an example,
Upon sufficient exposure to the reading beam, the dye in the coating 20 undergoes a change in index of refraction to sharply reduce the information encoding feature contrast, resulting in unrecoverable data. As shown in
Embodiments of the optical discs have a relatively short effective life, limited by the number of times the disc is played (e.g. one, two, three, five or more times). In some embodiments the disc is read more than once before further reading is inhibited. In some embodiments the disc is read more than twice before further reading is inhibited. Further, the dyes are useful for rendering the disc permanently unreadable after a limited number of uses. The number of times the disc is read before permanent bleaching may be predetermined by the selection of dye and the presence or absence of bleaching accelerators. The dye coating may be of a sufficient thickness and sensitivity to bleach in response to the laser intensity typically emitted from a standard disc reader, in contrast to dye coatings having a thickness and sensitivity that can only be activated in response to the typically higher intensity lasers utilized in disc writers.
In some embodiments, the dye irreversibly bleachable by light is selected from the group consisting of cyanines and triarylmethanes. For example, the cyanine may be selected from the group consisting of carbocyanines, styrlcyanines, and hemicyanines. Cyanine dyes are particularly photoactive and the optically induced changes are permanent. Also, there are many cyanine dyes that are readily available and easily soluble in and coat well from common coating solvents (e.g., alcohol) using common techniques (e.g. spin coating). In addition, cyanines are inherently light sensitive and become more sensitive in the presence of electron donors (e.g., borates).
Representative examples of cyanines and their related absorbance curves are provided in FIGS. 5(a) and 5(b), and representative examples of triarylmethanes and their related absorbance curves are provided in FIGS. 6(a) and 6(b). For example, cyanines suitable for DVD embodiments include 3-butyl-2-[3-(3-butyl-1,3-dihydro-1,1-dimethyl-2H-benzo[e]indol-2-ylidene)-propenyl]-1,1-dimethyl-1H-benzo[e]indolium perchlorate, and cyanines useful for CD embodiments include 3-butyl-2-[5-(3-butyl-1,3-dihydro-1,1-dimethyl-2H-benzo[e]indol-2-ylidene)-penta-1,3-dienyl]-1,1-dimethyl-1H-benzo[e]indolium perchlorate. Other examples of suitable cyanines include 1-butyl-2-[5-(1-butyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-penta-1,3-dienyl]-3,3-dimethyl-3H-indolium perchlorate, 2-[3-(1,3-dihydro-1,3,3-trimethyl-2-indol-2-ylidene)-propenyl]-1,3,3-trimethyl-3H indolium perchlorate, 3-ethyl-2-[5-(3-ethyl-3-benzothiazol-2-ylidene)-penta-1,3-dienyl]-benzothiazol-3-ium iodide and 3-ethyl-2-[3-(3-ethyl-3H-benzothiazol-2-ylidene)-propenyl]-benzothiazolium iodide. An example of a cyanine particularly useful for DVD applications includes 3-Butyl-2-[3-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-propenyl]-1,1-dimethyl-1H-benzo[e]indolium perchlorate, which has an absorption maximum of about 565 nm, and is available as S360 from FEW Chemicals Germany. The structure of S360 is shown below:
Suitable triarylmethanes may include, for example, sodium 3-{[4-[(E)-[4-(diethylamino)phenyl]((4Z)-4-{(Z)-ethyl[(Z)-(3-sulfonatophenyl)methyl]iminio}-2-methyl-2,5-cyclohexadien-1-ylidene)methyl](ethyl)-3-methylanilino]methyl}benzenesulfonate, N-(4-{[4-(dimethylamino)phenyl][4-(dimethyl-lambda-5-azanylidene)-2,5-cyclohexadien-1-ylidene]methyl}phenyl)-N,N-dimethylamine hydrochloride, 4-([4-(dimethylamino)phenyl]{4-[ethyl(methyl)iminio]-2,5-cyclohexadien-1-ylidene}methyl)-N,N,N-trimethylbenzenaminium dichloride, 2-[6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl]-5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoate, N-(4-{[4-(diethylamino)phenyl][4-(diethyl-lambda-5˜-azanylidene)-2,5-cyclohexadien-1-ylidene]methyl}phenyl)-N,N-diethylamine hydrochloride, N-(4-{[2-(acetylamino)-4-(diethylamino)phenyl][4-(dimethylamino)phenyl]methylene}-2,5-cyclohexadien-1-ylidene)-N-methylmethanaminium chloride compound with dichlorozinc (1:1), sodium 2-{[4-(dimethylamino)phenyl][4-(dimethyliminio)-2,5-cyclohexadien-1-ylidene]methyl}-5-[ethyl(3-sulfonatobenzyl)amino]benzenesulfonate, 4-{[4-(dimethylamino)phenyl][4-(dimethyliminio)-2,5-cyclohexadien-1-ylidene]methyl}-N-ethyl-N,N-dimethylbenzenaminium bromide chloride compound with dichlorozinc (1:1), sodium 3-{[4-([4-(dimethylamino)phenyl]{4-[ethyl(3-sulfonatobenzyl)iminio]-2,5-cyclohexadien-1-ylidene}methyl)(ethyl)anilino]methyl}benzenesulfonate, acid violet 17, and sodium 3-{[4-([4-(diethylamino)-2-methylphenyl]{4-[ethyl(3-sulfonatobenzyl)iminio]-2,5-cyclohexadien-1-ylidene}methyl)(ethyl)anilino]methyl}benzenesulfonate.
Further, cyanines also possess large refractive indices and produce large index changes upon bleaching, allowing for relatively thinner coatings than dyes exhibiting smaller changes in index of refraction. As shown in
The coating may have any thickness sufficient to provide the operable change in index of refraction without obscuring the information encoding features. In some embodiments, the coating has a thickness of less than about one micron. In some embodiments, the coating has a thickness of about 50 to about 300 nanometers. In yet further embodiments, the coating has a thickness of between about 100 to about 250 nanometers. The coating thickness may be chosen to correspond with the pit depth to achieve the one-half wave phase shift discussed above.
Further, the coating may be relatively conformal with the information encoding features. Conformality can be defined as the depth of the dye coated pit divided by the depth of the undyed pit. In some embodiments, the coating is about 25% to about 100% conformal with the information encoding features, and in some embodiments may be about 35% to about 65% (e.g., 50%) conformal. In such embodiments, the resulting dye filled pit depth may be a corresponding percentage of the uncoated pit depth.
In addition, in some embodiments the coating 20 does not significantly decrease the reflectivity of the optical disc. For example, in some embodiments, the reflectively of the disc and coating is greater than about 65%. Such embodiments are useful for reflecting light to be read by a common beam reader.
Suitable cyanine dyes are available commercially, from sources such as Sigma-Aldrich, FEW and H. W. Sands. These sources may also provide the wavelengths at which the dyes are most active, thereby making them readily selectable by wavelength activity for certain applications. The source may list the wavelength data of the dye in solution. However, applicants have determined that some of these dyes have an optimum activity wavelength that depends on whether the dye is in solution or provided in a coating. As an example, absorbance curves for the cyanine dye shown in
The coating 20 may be placed in any suitable position on or within the disc 4. In some embodiments the coating is in apposition to the substrate and/or information encoding features. Further, the coating 20 may be in apposition to the reflective layer 14, as shown in
In some embodiments, the coating is activated in response to light having a wavelength of about three hundred nanometers to about eight hundred nanometers. In some embodiments the coating is activated in response to light having a wavelength of about four hundred nanometers to about eight hundred nanometers (e.g., about 600 nm to about 800 nm). For example, the coating may show optimal change of index of refraction at about 650 nm in embodiments where the coating is provided on a DVD. In examples where the coating is provided on a CD, the coating may have an optimal change of index of refraction at about 780 nm. Of course, other wavelengths may be chosen. For example, activity in wavelength ranges of about 400 to about 425 nm may be useful in Blu-ray and/or HD DVD applications. In embodiments having a substrate comprising polycarbonate, the wavelength at which the polycarbonate absorbs an unacceptable amount of the light can set the lower limit of the wavelength.
In some embodiments, the coating may include one or more additives. For example, a photobleach accelerator may be provided. Such accelerators are useful for optimizing the rate at which the dye will bleach in response to light. An example of such an accelerator includes a borate as shown in
Embodiments of the invention also include a method for inhibiting reading of an optical disc comprising the steps of providing any of the various embodiments of optical discs described above. In some embodiments the information encoding features are stamped into the substrate and the coating is deposited onto the substrate in apposition to the information encoding features. The coating may be deposited by any suitable method (e.g., spin coating), and the dye may be suspended in solution of various suitable solvents (e.g., alcohol) to facilitate deposition. The solvent may then be evaporated to leave behind a coating containing the dye.
Some embodiments of the invention include a method for inhibiting reading of an optical disc comprising the steps of acquisitioning any of the various discs described above and reading the disc with a reading device comprising a source of light and concurrently bleaching the dye to inhibit further reading of the information encoding features. The reading device comprises a source of optical radiation to read the disc and concurrently activate the coating to inhibit further reading of the information encoding features.
Embodiments of the invention as described above may be utilized in many applications. For example, in the DVD movie rental industry, the need for the customer to return the DVD after viewing is obviated because the disc would be rendered unreadable after a predetermined number of viewings. Another example of a suitable application includes CDs. Such coated CDs would be useful for sending promotional CDs to a target audience, who would be able to play the songs a limited number of times before deciding whether to buy the uncoated version of the CD. As another example, unauthorized software downloading and file sharing could be reduced. For discs in accordance with embodiments of the invention containing software, a user would have a limited number of plays (e.g., three) to fully download the software before the disc is rendered unreadable. Therefore, the user would be discouraged from allowing others to download the software because it would permanently lose one of the plays.
Thus, embodiments of the Limited Play Optical Disc are disclosed. One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/685,547, filed May 27, 2005, and titled Limited Play Optical Discs, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60685547 | May 2005 | US |