The present disclosure generally relates to linear actuators, such as a linear actuator that can be employed to selectively lock a locking differential. More particularly, the present disclosure relates to sensing systems for use in determining the state or position of a linear actuator.
U.S. patent application Ser. No. 11/507,311 entitled “Electronically Actuated Apparatus Using Solenoid Actuator With Integrated Sensor” discloses a device that includes an electrically activated solenoid and a sensing system that is integrated with the solenoid for sensing a state or position of a moving component of the solenoid, such as the armature or the plunger. Many of the examples described and illustrated in the '311 patent application employ a single sensor, such as a Hall-effect sensor, to determine a state or position of the moving component of the solenoid. While such configurations are highly desirable as they are both compact and relatively low-cost, we have noted that there are some instances in which additional resolution and/or redundancy would be desirable.
In one form, the present teachings provide an electromagnetic actuator assembly that includes a frame member, a coil assembly, a plunger, an armature, first and second sensor targets, first and second sensors and a controller. The frame member has an outer sidewall, an inner sidewall and a first end wall that is coupled to the inner and outer sidewalls. The frame member defines an interior annular cavity. The coil assembly is mounted in the annular cavity and includes a core and a coil. The plunger has an annular intermediate wall and a second end wall that extends radially inwardly from the intermediate wall. The intermediate wall is disposed between the coil assembly and the outer sidewall. The armature abuts the plunger. The first and second sensor targets are coupled to the plunger for movement therewith. The first and second sensors are mounted to the frame. The first sensor is configured to sense a position of the first sensor target and to produce a first sensor signal in response thereto. The second sensor is configured to sense a position of the second sensor target and to produce a second sensor signal in response thereto. The controller receives the first and second sensor signals and identifies three or more discrete points along a path of travel of the plunger.
In another form, the present teachings provide a differential assembly with a differential case, a gear set and a locking system. The gear set is received in the differential case and has a pair of side gears and a pair of pinion gears that are meshingly engaged to the side gears. The locking system is configured to selectively lock one of the side gears to the differential case. The locking system includes an electromagnetic actuator assembly with a frame member, a coil assembly, a plunger, an armature, first and second sensor targets, first and second sensors and a controller. The frame member has an outer sidewall, an inner sidewall and a first end wall that is coupled to the inner and outer sidewalls. The frame member defines an interior annular cavity. The coil assembly is mounted in the annular cavity and includes a core and a coil. The plunger has an annular intermediate wall and a second end wall that extends radially inwardly from the intermediate wall. The intermediate wall is disposed between the coil assembly and the outer sidewall. The armature abuts the plunger. The first and second sensor targets are coupled to the plunger for movement therewith. The first and second sensors are mounted to the frame. The first sensor is configured to sense a position of the first sensor target and to produce a first sensor signal in response thereto. The second sensor is configured to sense a position of the second sensor target and to produce a second sensor signal in response thereto. The controller receives the first and second sensor signals and identifies three or more discrete points along a path of travel of the plunger.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
With reference to
In the particular example provided, the actuating device 10 is associated with an electronically locking differential 198 of the type that is disclosed in the '311 patent application. Briefly, the differential 198 can include a differential case 200, a gear set 202, which can include a pair of side gears 204 and a pair of pinion gears 206, and a locking system 208. The gear set 202 can be mounted in the differential case 200 such that the pinion gears 206 meshingly engage the side gears 204. The locking system 208 can include a first dog ring 212, which can be integrally formed with one of the side gears 204, a second dog ring 214, which can be non-rotatably but axially movably mounted in the differential case 200, a return spring 216, a spacer ring 218, a thrust plate 220, the solenoid 12 and a retaining ring 222. The first dog ring 212 can include teeth 230 that can be meshingly engaged to teeth 232 on the second dog ring 214. The return spring 216 can bias the second dog ring 214 away from the first dog ring 212 so that the teeth 230 and 232 are not engaged to one another. The spacer ring 218 can be disposed between the differential case 200 and the second dog ring 214. The thrust plate 220, the solenoid 12 and the retaining ring 222 can be mounted on the differential case 200; the retaining ring 222 can inhibit the removal of the thrust plate 220 and the solenoid 12 from the differential case 200. The solenoid 12 can be operated to drive the thrust plate 220 away from the retaining ring 222 so that legs 238 formed on the thrust plate 220 move the spacer ring 218 (and consequently the second dog ring 214) toward the first dog ring 212 to cause the teeth 232 of the second dog ring 214 to meshingly engage the teeth 230 of the first dog ring 212 to thereby lock the differential 198.
With reference to
A plot illustrating a condition of a locking mechanism for a family of electronic locking differential assemblies as a function of a position (x) of the plunger 26 (
Given the data of
While the sensing system 14 has been illustrated and described thus far as including one or more Hall-effect sensors, it will be appreciated that the invention, in its broadest aspects, can be constructed somewhat differently. For example, the sensing system 14a can include one or more magneto-resistive sensors as shown in
The Wheatstone bridge 82 can include a first resistor R1, a second resistor R2, a third resistor R3 and an associated one of the magneto-resistive sensors R4. As will be appreciated by those of skill in the art, the resistance of the magneto-resistive sensor R4 will vary based on the position of the magneto-resistive sensor R4 relative to a magnetic target that can be associated with the plunger 26 (
The switching system 14b of
In the example of
While specific examples have been described in the specification and illustrated in the drawings, it will be understood by those of ordinary skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure as defined in the claims. Furthermore, the mixing and matching of features, elements and/or functions between various examples is expressly contemplated herein so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one example may be incorporated into another example as appropriate, unless described otherwise, above. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular examples illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out the teachings of the present disclosure, but that the scope of the present disclosure will include any embodiments falling within the foregoing description and the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/861,196 entitled “Linear Actuator With Position Sensing System” filed Nov. 27, 2006.
Number | Name | Date | Kind |
---|---|---|---|
4733101 | Graham et al. | Mar 1988 | A |
5593132 | Hrytzak | Jan 1997 | A |
5600237 | Nippert | Feb 1997 | A |
5602732 | Nichols et al. | Feb 1997 | A |
5621320 | Yokotani et al. | Apr 1997 | A |
6109408 | Ikeda et al. | Aug 2000 | A |
6581748 | Streibig et al. | Jun 2003 | B2 |
6769524 | Yasui et al. | Aug 2004 | B2 |
6771472 | Mao et al. | Aug 2004 | B1 |
6958030 | DeGowske | Oct 2005 | B2 |
7211020 | Gohl et al | May 2007 | B2 |
7384359 | Pinkos | Jun 2008 | B2 |
7425185 | Donofrio et al. | Sep 2008 | B2 |
7602271 | York et al. | Oct 2009 | B2 |
20050215394 | Bolander et al. | Sep 2005 | A1 |
20050250613 | Ludwig et al. | Nov 2005 | A1 |
20050277508 | DeGowske | Dec 2005 | A1 |
20050279607 | Fusegi | Dec 2005 | A1 |
20060270509 | Pinkos | Nov 2006 | A1 |
20080042791 | York et al. | Feb 2008 | A1 |
20080182702 | Donofrio et al. | Jul 2008 | A1 |
20090011889 | Haske et al. | Jan 2009 | A1 |
20090261931 | York et al. | Oct 2009 | A1 |
20090264243 | York et al. | Oct 2009 | A1 |
20100013582 | York et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
1 628 029 | Feb 2006 | EP |
1 679 219 | Jul 2006 | EP |
1 726 851 | Nov 2006 | EP |
2 270 958 | Mar 1994 | GB |
2006053384 | May 2006 | WO |
WO 2007069042 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080122436 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60861196 | Nov 2006 | US |