The present invention relates generally to display glass substrates, and particularly to a system for edge finishing glass substrates.
The manufacturing process of flat panel display substrates requires specific sized glass substrates capable of being processed in standard production equipment. To obtain substrates having the proper size, mechanical scoring and breaking processes, or a laser scoring techniques are employed. Each of these sizing methods requires edge finishing. The finishing process involves grinding and/or polishing the edges to remove sharp edges and other defects that may degrade the strength and durability of the substrate. Furthermore, there are many processing steps that require handling in the manufacturing of an LCD panel. Thus, glass substrates used for Liquid Crystal Displays (LCD) require an edge that is sufficiently durable for mechanical handling and contact.
The finished edges are created by grinding the unfinished edge with an abrasive metal grinding wheel. In conventional systems, the glass substrate is disposed on a chuck and advanced through a series of grinding positions. Each position is equipped with a different abrasive grinding wheel based on the coarseness/fineness of the grit disposed on the wheel. The finishing process is complete after the glass substrate traverses each grinding position. However, when the glass is not properly aligned relative to the grinding wheel, the quality of the finished glass substrate is degraded. In particular, glass misalignment can adversely impact the dimensional accuracy of the glass. Second, glass misalignment may cause inferior edge quality, which usually results in a substrate of inferior strength. Accordingly, substrate breakage may occur during LCD processing steps. Further exacerbating the problems discussed above, is the demand for larger and larger display sizes. This demand, and the benefits derived from economies of scale, are driving AMLCD manufacturers to process larger display substrates. It is therefore critical that larger display substrates are provided having the requisite edge quality, dimensional accuracy, and strength.
There are three approaches that are being considered to address the above stated issues. In one approach, substrate manufacturers are evaluating grinding systems that offer improved alignment accuracy. Unfortunately, since LCD manufacturers are using larger and larger substrates, alignment tolerances become much more critical when the size of the substrate increases. Accurate alignment is more of a necessity because small skew angles translate into larger errors when larger substrates are being processed. One drawback to this approach relates to the fact that while alignment tools may be acquired having the requisite precision, the accuracy cannot be maintained over time due to wear.
In another approach that has been considered, grinding systems may be employed that compensate for lack of alignment accuracy by removing more material. Typically, edge finishing grinding systems need only remove approximately 100 microns of material. The concept is to provide a larger substrate and remove the right amount of material to meet dimensional requirements. One way to accomplish this is to use a system that includes multiple grinding steps. This translates into more grinding spindles and more grinding wheels. One drawback to this approach is the capital expense of the additional processing equipment. Further, once the equipment is obtained, more equipment requires more maintenance. Another way to remove more material is to employ coarser grinding wheels. Unfortunately, this option is not attractive because a rougher finish has a greater propensity for substrate breakage.
Yet another way to remove more material is to reduce the speed at which substrates traverse the finishing system. Unfortunately, this approach reduces production capacity and the ground edge quality. Further, increased capital expenditures would be required if the production volume is to be maintained.
In yet another approach that has been considered, a self-aligning grinding system may be used that tracks the substrate edge. The pressure feed grinding approach applies a predetermined force normal to the edge of the substrate. The grinding wheel moves, or tracks, with the instantaneous position of the edge by rotating about a pivot element. Because grinding wheel position is determined by the position of the substrate edge, the resultant substrate product has improved dimensional accuracy, relative to conventionally ground substrates. Unfortunately, there is a drawback to this technique as well. The cylindrical pivot employed in conventional pressure feed systems includes mechanical bearings. In order to overcome the frictional force of these mechanical bearings, a normal force of approximately 16N must be applied. This force exceeds the strength of the glass substrate and breakage will occur if that force is applied. While the pressure feed grinding approach appears to be promising, it cannot be employed unless the aforementioned problems are overcome.
In light of the foregoing, it is desirable to provide an edge finishing apparatus that is configured to remove a precise amount of glass and yet maintain the edge quality. It is also desirable to provide an edge finishing apparatus having improved dimensional accuracy. Furthermore, the edge finishing apparatus should finish the edge of a glass in a timely manner without degrading the desired strength and edge quality attributes of the glass. What is needed is a pressure feed grinding apparatus that provides the above described features while overcoming the limitations of conventional pressure feed grinding systems discussed above.
The present invention addresses the needs described above. The pressure feed grinding apparatus of the present invention provides a frictionless system that overcomes the limitations of conventional pressure feed grinding systems. The present invention provides an edge finishing apparatus that is configured to remove a precise amount of glass. As such, the dimensions of glass substrates finished by the present invention is much closer to the dimensions of the sheet as received when compared to glass substrates finished by conventional systems. Further, the present invention provides finished glass substrates that have comparable strength and edge quality.
One aspect of the present invention is an apparatus for grinding or polishing at least one edge of a glass substrate. The apparatus includes a grinding unit configured to remove a predetermined amount of material from the at least one edge when in an aligned position. An air bearing slide system is coupled to the grinding unit. The air bearing slide system is configured to slide along a predetermined axis on a thin film of pressurized air that provides a zero friction load bearing interface. A linear actuation motor is coupled to the air bearing slide system. The linear actuation motor is configured to control the movement of the air bearing slide system such that the grinding unit is moved from a non-aligned position to the aligned position. The grinding unit applies a predetermined force normal to the at least one edge. The predetermined force being directly proportional to the predetermined amount and less than a normal force resulting in glass substrate breakage.
In another aspect, the present invention includes a method for grinding or polishing at least one edge of a glass substrate. The method includes the step of providing an air bearing slide system configured to slide along a predetermined axis on a thin film of pressurized air that provides a zero friction load bearing interface. A grinding unit is coupled to the air bearing slide system. The grinding unit is configured to remove a predetermined amount of material from the at least one edge when in an aligned position. A movement of the air bearing slide system is controlled such that the grinding wheel is moved from a non-aligned position to the aligned position. A predetermined force is applied normal to the at least one edge. The predetermined force is directly proportional to the predetermined amount and less than a normal force resulting in glass substrate breakage. The glass substrate is moved in a tangential direction relative to the grinding unit to remove the predetermined amount of material from the at least one edge. As an alternative, the sheet of glass may be held stationary while the grinding unit is moved along the edge of glass being finished.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operation of the invention.
Reference will now be made in detail to the present exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. An exemplary embodiment of the apparatus of the present invention is shown in
In accordance with the invention, the present invention is directed to an apparatus for grinding or polishing at least one edge of a glass substrate. The apparatus includes a grinding unit configured to remove a predetermined amount of material from the at least one edge when in an aligned position. An air bearing slide system is coupled to the grinding unit. The air bearing slide system is configured to slide along a predetermined axis on a thin film of pressurized air that provides a zero friction load bearing interface. A linear actuation motor is coupled to the air bearing slide system. The linear actuation motor is configured to control the movement of the air bearing slide system such that the grinding unit is moved from a non-aligned position to the aligned position. The grinding unit applies a predetermined force normal to the at least one edge. The predetermined force being directly proportional to the predetermined amount and less than a normal force resulting in glass substrate breakage.
Thus, the pressure feed grinding apparatus of the present invention overcomes the limitations of conventional pressure feed grinding systems. The present invention provides an edge finishing apparatus that is configured to remove a minimum amount of glass. As such, the dimensional accuracy of glass substrates finished by the present invention is much closer to the dimension of the original sheet (as received) relative to glass substrates finished by conventional systems. Further, the present invention provides finished glass substrates that have comparable strength and edge quality to that of traditional fixed grinding process.
As embodied herein, and depicted in
Air bearing support structure 20 may be of any suitable type, as long as there is zero frictional resistance opposing the pivotal movement about axis 12. In one embodiment, air bearing support structure 20 is of a type manufactured by New Way Machine Components, Inc. In the present invention, air bearing cylinder 22 is supported by a thin film of pressurized air that provides a zero friction load bearing interface between surfaces that would otherwise be in contact with each other. The thin film air bearing is generated by supplying a flow of air through the bearing itself to the bearing surface. Unlike traditional ‘orifice’ air bearings, the air bearing of the present invention delivers air through a porous medium to ensure uniform pressure across the entire bearing area. Although the air constantly dissipates from the bearing site, the continual flow of pressurized air through the bearing is sufficient to support the working loads.
The use of a pressure feed grinding system is made possible by the zero static friction air bearing. As discussed above in the background section, a normal force of approximately 16N must be applied to overcome the frictional force of conventional mechanical bearings. This force exceeds the strength of the glass substrate. Because of zero static friction, infinite resolution and very high repeatability are possible. For example, because the normal force applied to grinding wheel 34 does not have to overcome any frictional force, the applied normal force is substantially proportional to the amount of material that is removed (chuck speed being constant). The inventors of the present invention have determined that under typical system settings, every 1N applied translates to 25 microns of material removed. The normal force applied to the edge is typically within the range between 1N-6N. This translates to the removal of an amount of material in a range between 25-150 microns. In a typical application, a 4N force is applied, resulting in the removal of approximately 100 microns of material. Thus, the zero friction air bearing support 20 of the present invention offers distinct advantages in dimensional accuracy and precision positioning. There are other features and benefits associated with zero static friction air bearings.
Because a zero static friction air bearing is also a non-contact bearing, there is virtually zero wear. This results in consistent machine performance and low particle generation. Further, non-contact air bearings avoid the conventional bearing-related problem of lubricant handling. Simply put, air bearings do not use oil lubrication. Accordingly, the problems associated with oil are eliminated. In dusty environments (dry machining) air bearings are self-cleaning because the aforementioned positive air pressure generated by the air flow removes any ambient dust particles. In contrast, conventional oil-lubricated bearings are compromised when the ambient dust mixes with the lubricant to become a lapping slurry.
Referring to
Referring to
The standard grinding procedure used in conventional systems facilities is to dress the grinding wheel and grind to a fixed position to thereby ensure that the targeted size is met. During this process, the normal load will increase to a point that will require the wheel to be redressed to allow for further grinding. If the wheel is not dressed at a reasonable load, the grinding wheel will create defects in the glass. Typically, these defects are chipping and burning defects. These defects occur when the diamond particles in the wheel are not sufficiently sharp enough to remove the desired amount of material. On the other hand, one advantage of the present invention is that chipping and burning defects will not occur when using pressure feed type of grinding because, as explained above, the set normal force is always lower than the amount of force required to create these defects. The concern with pressure feed grinding is that as the grinding wheel 34 ages the removal rate diminishes to a point where an insufficient amount of material is removed.
Referring to
Each starting point was begun with a freshly stick dressed grinding wheel 34. Subsequently, almost 200 glass substrates 207 were finished. Initially, the system 10 removes, on average, about 150 microns of material. At the end of the run, the amount of material removed is in the 50 micron range. Experimental testing was conducted using a 150 diameter 600 grit grinding wheel 34 to determine if any differences or advantages could be achieved using a finer diamond mesh relative to conventional production capabilities.
Experiments have also shown that as the grinding wheel 34 ages, the friction of the grinding wheel 34 mesh decreases, resulting in a decrease in the tangential force component. Thus, as might be expected, the applied normal load should be increased during the course of the run to compensate for the decreased friction (tangential load).
Grit size may also play a factor in the surface roughness as the grinding wheel 34 ages. There is a slight improvement in the edges produced by the present invention using a 450 grit grinding wheel 34 relative the edge roughness of glass substrates 207 finished using conventional systems. There was a significant improvement seen when using a 600 grit grinding wheel 34 with the present invention. When the 450 grit grinding wheel 34 is used, roughness decreases as the number of units produced increases. Initially, surface roughness is in a range between 0.7-0.9 microns. At the end of the run (piece count=200), the roughness is in the 0.5-0.6 micron range. When a 600 grit grinding wheel 34 is employed in system 10, the surface roughness remains relatively stable (0.4-0.6 microns).
It is also noted that 600 grit grinding wheels 34 result in superior interfaces relative to 450 grit grinding wheels 34. The interface is the location where the ground edge meets the major surface of the glass substrate 207. 600 grit grinding wheels 34 provide smoother interfaces. A smoother interface improves a glass substrate's structural integrity and results in a stronger glass substrate 207. Thus, the glass substrate 207 having a smoother interface is more likely to avoid breakage during subsequent processing steps.
As embodied herein and depicted in
During an edge finishing operation, linear actuation motor 204 positions grinding wheel 334 at the appropriate position on the y-axis and the vacuum chuck moves the glass edge along the z-axis. An alternative method holds the glass substrate 601 stationary and moves the grinding unit 301 in an axis along the edge of glass substrate 601 being finished. System 600 also provides a coolant nozzle (not shown) at the location where grinding wheel 334 interfaces the vacuum chuck and the glass substrate 601 to manage the heat generated by the grinding/polishing operations. The vacuum chuck and conveyance system employed during this operation may be similar to the system/chuck employed in the embodiments discussed above (See
The linear air bearing slide 200 may be of any suitable type, as long as there is substantially zero frictional resistance as glide member 200 travels along rail member 202. In one embodiment, the air bearing slide 200 is of a type manufactured by New Way Machine Components, Inc. In the present invention, the air bearing slide 200 is supported by a thin film of pressurized air that provides a zero friction load bearing interface between the air bearing slide 200 and rail member 202. The thin film air bearing is generated by supplying a flow of air through the bearing itself to the bearing surface. Unlike traditional ‘orifice’ air bearings, the air bearing of the present invention delivers air through a porous medium to ensure uniform pressure across the entire bearing area. Although the air constantly dissipates from the bearing site, the continual flow of pressurized air through the bearing is sufficient to support the working loads. Again, because there is no contact between the air bearing slide 200 and rail member 202, traditional bearing-related problems of friction, wear, and lubricant handling are eliminated. Further, because of the “stiffness” and stability of the air bearing slide 200, and the precision of linear actuation motor 204, precision loading is achievable.
By mounting the grinder support member 304 to the air bearing slide 200, a heavier spindle motor 302 may be employed. This conveniently allows the designer to employ an “off-the-shelf” spindle motor package. In one embodiment of the present invention, the spindle motor 302 operates the grinding wheel 334 at 7,500 surface-feet per minute.
In one embodiment, the linear actuation motor 204 may be manufactured by Systems, Machines, Automation Components Corporation. However, it will be apparent to those of ordinary skill in the pertinent art that modifications and variations can be made to the linear actuation motor 204 of the present invention depending on the size, weight, force, and positioning precision. For example, the linear actuation motor 204 may be a voice coil motor. As those of ordinary skill in the art will appreciate, a voice coil motor is an electromagnetic positioning motor. During operation, electrical current is applied to the winding of an electromagnetic coil to generate a magnetic field around the coil. The generated magnetic field around the coil interacts with the permanent magnetic field in the actuator. The permanent magnetic field is generated by a magnet disposed in the actuator. The interaction generates a force which moves the coil. The magnitude and direction of the force is manipulated by the selective application of current. The force imparts a reciprocating motion to the actuator. The reciprocating force is transmitted to a linkage, such as a rod, to thereby move air bearing slide 200 along the y-axis. In one embodiment, the linear actuation motor 204 may apply a peak force of up to 65 N, and a continuous force of up to 42 N. The voltage applied to the linear actuation motor 204 may be 24V or 48V.
The embodiment of
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a divisional of U.S. patent application Ser. No. 12/582,103, filed Oct. 20, 2009, now pending, which claimed the benefit of priority to U.S. Provisional Application No. 61/110,184, filed on Oct. 31, 2008, and entitled “LINEAR PRESSURE FEED GRINDING WITH VOICE COIL”. The contents of these documents are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3030744 | Mueller | Apr 1962 | A |
4493166 | Lange et al. | Jan 1985 | A |
4575970 | Kozai et al. | Mar 1986 | A |
5143196 | Henn et al. | Sep 1992 | A |
5146715 | Bando | Sep 1992 | A |
5148632 | Adler et al. | Sep 1992 | A |
5423717 | Boaz | Jun 1995 | A |
5655956 | Ferreira et al. | Aug 1997 | A |
6099385 | Stock et al. | Aug 2000 | A |
6196902 | Gazca-Ortiz et al. | Mar 2001 | B1 |
6216491 | Fehlner | Apr 2001 | B1 |
6325704 | Brown et al. | Dec 2001 | B1 |
6428390 | Clark et al. | Aug 2002 | B1 |
7018272 | Allaire et al. | Mar 2006 | B2 |
7207866 | Allaire et al. | Apr 2007 | B2 |
8585467 | Brown et al. | Nov 2013 | B2 |
20050026541 | Allaire et al. | Feb 2005 | A1 |
20060121832 | Allaire et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0 601 748 | Nov 1993 | EP |
05-092362 | Apr 1993 | JP |
07-060626 | Mar 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20140030959 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61110184 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12582103 | Oct 2009 | US |
Child | 14046202 | US |