The present invention relates to a linkage brick assembly and an assembly method of the linkage brick assembly. In particular, the present invention relates to a linkage brick assembly and assembly method by which linkage bricks (also called interlocking bricks or interlocking paving bricks) can be quickly and easily assembled.
The conventional linkage brick assembly is formed by assembling linkage bricks having structures that can match one another in an integral way, such that the advantage of convenient delivery and assembly can be obtained. However, the conventional linkage brick still has many shortcomings, for example, excessive weight, complicated assembling steps and not being able to be assembled simultaneously at multiple positions, which results in re-assembly that requires taking all portions apart once erroneous assembly occurs.
A conventional linkage brick can be seen in U.S. Pat. No. 7,429,144 and Taiwanese utility model patent TWM470115. In linkage bricks disclosed in the above patents or other conventional linkage bricks, the demand for assembly makes the linkage bricks comprise too many unnecessary engaging structures, for example, a linkage brick being polygonal requires that the engaging structure be formed on every side in order to satisfy the requirement for assembly.
Due to the polygonal configuration of the conventional linkage brick mentioned above, the areas of side faces thereof are relatively small, which further leads to a smaller engaging structure allowed to be formed on each side face and thus has a serious impact on the strength of the engaging structure. If the strength provided by the engaging structure is not sufficient, an up-and-down relative displacement of each linkage brick may result from pedestrians or vehicles passing through the linkage brick assembly, which will diminish the flatness of the linkage brick assembly.
Though an elastic latch is added to Taiwanese utility model patent TWM470115 to prevent the linkage bricks from disengagement and protrusion, such elastic latch increases the difficulty in disassembling, exchanging or repairing the linkage brick assembly because an additional tool is required for these activities.
Furthermore, the engaging structure (especially the engaging recess) of the conventional linkage brick extends so long that it forms an opening on the surface of the linkage brick, which will remain on the top face of the linkage brick and form an opening after the assembly of the linkage bricks. Such opening will cause rain to leak out or danger to walking pedestrians (for example, falling due to a heel of a shoe being trapped in the opening).
The linkage brick assembly of the subject invention is intended to solve the long-standing problems and defects of the conventional linkage bricks aforementioned. In addition, the subject invention uses special structural designs to obtain the advantage of easy and fast assembly.
According to one aspect of the subject invention, the subject invention provides a linkage brick assembly, comprising: at least one first linkage brick comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of the side faces forming a traverse engaging groove extending laterally; at least one second linkage brick comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of two opposite side faces of the side faces forming a traverse engaging protrusion extending laterally, and each of the other two opposite side faces of the side faces forming a vertical engaging protrusion extending vertically; and at least one third linkage brick comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of the side faces forming a vertical engaging groove extending vertically; wherein each of the traverse engaging grooves of the first linkage brick is used to engage with each of the traverse engaging protrusions of the second linkage brick through lateral sliding, and each of the vertical engaging grooves of the third linkage brick is used to engage with each of the vertical engaging protrusions of the second linkage brick through downward sliding; and wherein a top face and an outer side face of each of the vertical engaging protrusions of the second linkage brick define a wedged corner, and each of the vertical engaging grooves of the third linkage brick correspondingly forms a wedged grooved portion, the wedged corner of each of the vertical engaging protrusions being used to engage with the wedged grooved portion of each of the vertical engaging grooves.
According to another aspect of the subject invention, the subject invention provides a unit assembled brick, comprising: four first linkage bricks, each comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of the side faces forming a traverse engaging groove extending laterally; four second linkage bricks each comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of two opposite side faces of the side faces forming a traverse engaging protrusion extending laterally, and each of the other two opposite side faces of the side faces forming a vertical engaging protrusion extending vertically; and a third linkage brick comprising a top face, a bottom face and four side faces between the top face and the bottom surface, each of the side faces forming a vertical engaging groove extending vertically; wherein a top face and an outer side face of each of the vertical engaging protrusions of the second linkage bricks defines a wedged corner, and each of the vertical engaging grooves of the third linkage brick correspondingly forms a wedged grooved portion; wherein the first linkage bricks engage with the second linkage bricks alternately, adjacent traverse engaging grooves of the first linkage bricks engage with adjacent traverse engaging protrusions of the second linkage bricks to form a hollow square ring that is arranged into a 3×3 array, and inner sides of the square ring have four vertical engaging protrusions of the second linkage bricks; wherein the third linkage brick is placed in the center of the hollow square ring and each of four vertical engaging grooves of the third linkage brick respectively engages with each of four vertical engaging protrusions of the second linkage bricks facing the inner sides of the square ring; and wherein the wedged corner of each of the vertical engaging protrusions of the second linkage bricks engages with the wedged grooved portion of each of the vertical engaging grooves of the third linkage brick.
According to another aspect of the subject invention, the subject invention provides a linkage brick assembly, comprising: a plurality of the unit assembled bricks, wherein each of the plurality of unit assembled bricks defines a top face, a bottom face and four side faces between the top face and the bottom face, each of the side faces forming a traverse engaging groove, a vertical engaging protrusion and a traverse engaging groove sequentially; a plurality of additional second linkage bricks, each comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of two opposite side faces of the side faces forming a traverse engaging protrusion extending laterally, and each of the other two opposite side faces of the side faces forming a vertical engaging protrusion extending vertically; a plurality of additional third linkage bricks, each comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of the side faces forming a vertical engaging groove extending vertically; wherein the traverse engaging protrusions of the plurality of second linkage bricks are used to engage with the traverse engaging grooves of the plurality of unit assembled bricks respectively through lateral sliding, and wherein the vertical engaging grooves of the plurality of third linkage bricks are used to engage with the vertical engaging protrusions of the plurality of unit assembled bricks through downward sliding in order to connect the plurality of unit assembled bricks.
According to another aspect of the subject invention, the subject invention provides a linkage brick assembly, comprising a plurality of second linkage bricks, each comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of two opposite side faces of the side faces forming a traverse engaging protrusion extending laterally, and each of the other two opposite side faces of the side faces forming a vertical engaging protrusion extending vertically; a plurality of third linkage bricks, each comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of the side faces forming a vertical engaging groove extending vertically; wherein a top face and an outer side face of each of the vertical engaging protrusions of the second linkage bricks defines a wedged corner, and each of the vertical engaging grooves of the third linkage bricks correspondingly forms a wedged grooved; portion; a plurality of unit linkage bricks, each comprising a top face, a bottom face and four side faces between the top face and the bottom face, each of the side faces forming a traverse engaging groove, a vertical engaging protrusion and a traverse engaging groove sequentially; wherein the traverse engaging protrusions of the plurality of second linkage bricks are used to engage with the traverse engaging grooves of the plurality of unit linkage bricks through lateral sliding respectively; and wherein the vertical engaging grooves of the plurality of third linkage bricks are used to engage with the vertical engaging protrusions of the plurality of unit linkage bricks through downward sliding in order to connect the plurality of unit linkage bricks.
To enable the persons familiar with the techniques of the field to better understand the specifics of the subject invention and carry out the claimed invention, detailed description for the embodiments is provided along with the drawings. The description only serves to describe the preferable embodiments of the subject invention and does not impose any restrictions thereon. Any modifications or variations made in the same spirit of the subject invention shall lie within the scope of protection of the subject invention.
The linkage brick assembly 3 of the subject invention comprises at least one first linkage brick 31, a least one second linkage brick 32 and at least one third linkage brick 33.
As shown in
As shown in
As shown in
In addition, as shown in
In the above embodiment, each of the traverse engaging grooves 3131, 3141, 3151, 3161 of the first linkage brick 31 engages with each of the traverse engaging protrusions 3231, 3251 of the second linkage brick 32 through lateral sliding. Each of the vertical engaging grooves 3331, 3341, 3351, 3361 engages with each of the vertical engaging protrusions 3241, 3261 of the second linkage brick 32 through sliding downward from the top.
Further, as shown in
In the above-mentioned embodiment of the subject invention, the mutual locking among each of the linkage bricks is achieved by means of the engaging structures (traverse engaging protrusion, traverse engaging groove, vertical engaging protrusion and vertical engaging groove) of the first linkage brick 31, the second linkage brick 32 and the third linkage brick 33. In particular, by means of the mutual locking of the engaging structures in the vertical direction and the lateral direction (horizontal direction), the assembly of the linkage brick assembly is easier and faster. Users therefore may choose the amount of the first linkage brick 31, the second linkage brick 32 and the third linkage brick 33 according to their demand and assemble them to obtain the desired structure of the linkage brick assembly 3.
The engaging structure of the conventional linkage brick disclosed in the U.S. Pat. No. 7,429,144 is a vertical engagement, and the female portion of the engaging structure goes through the linkage brick to the top face thereof. Consequently, when vehicles or pedestrians are passing the conventional linkage bricks, each of the linkage bricks of the conventional linkage brick assembly will generate relative vertical displacements, which makes the linkage bricks uneven and even further causes the linkage bricks to separate from one another.
In a preferable embodiment of the subject invention, the vertical engaging grooves 3331, 3341, 3351, 3361 of the third linkage brick 33 do not extend to the top face 331 of the third linkage brick 33 (as shown in
In addition, as shown in
In other possible embodiments, the traverse engaging protrusion 3231, 3251 of the second linkage brick 32 is configured to gradually enlarge outwardly from the side face 323, 325 and protrude to form a configuration such as a truncated triangular prism or a truncated triangular pyramid.
The vertical engaging protrusions 3241, 3261 and the vertical engaging grooves 3331, 3341, 3351, 3361 of the linkage brick assembly in some of the embodiments of the subject invention are structures specially designed so as to provide an engagement with high strength and, at the same time, are the structures which avoid extending to the top faces 321, 331 of the linkage bricks.
In the embodiments of the subject invention, the third linkage brick 33 serves as a so-called key stone, which is intended especially for the locking after the second linkage brick 32 (or the fourth linkage brick 32 mentioned hereinafter) slides laterally to engage with the first linkage brick 31.
Due to the third linkage brick 33, users may assemble four first linkage bricks 31 and four second linkage bricks 32 first and then use a third linkage brick 33 to engage with the second linkage bricks 32 through sliding the third linkage brick 33 from the top to the bottom to form a unit assembled brick 4 as shown in
In detail, a user may engage four first linkage bricks 31 with four second linkage bricks 32 alternately so that the adjacent traverse engaging grooves 3131, 3141, 3151, 3161 of the first linkage bricks 31 engage with the adjacent traverse engaging protrusions 3231, 3251 of the second linkage bricks to form a hollow square ring arranged in a 3×3 array. The inner sides of the square ring have four vertical engaging protrusions 3241, 3261 of the second linkage bricks 32. Then, through downward sliding, the user places a third linkage brick 33 in the center of the hollow square ring and respectively engages each of the four vertical engaging grooves 3331, 3341, 3351, 3361 of the third linkage brick 33 with each of the four vertical engaging protrusions 3241, 3261 of the second linkage bricks 32, which face the inner sides of the square ring, and engages the wedged corners 32E of each of the vertical engaging protrusions 3241, 3261 of the second linkage bricks 32 with the wedged grooved portions 33E of each of the vertical engaging grooves 3331, 3341, 3351, 3361 of the third linkage brick 33 so as to form a unit assembled brick 4.
As shown in
Referring to the unit assembled brick 4 of the subject invention shown in
As shown in
In the embodiments of the subject invention, each of the traverse engaging grooves 3131, 3141, 3151, 3161 of the first linkage brick 31 is used to engage with each of the traverse engaging protrusions 3431, 3451 of the fourth linkage brick 34 through lateral sliding. Each of the vertical engaging grooves 3331, 3341, 3351, 3361 of the third linkage brick 33 is used to engage with the vertical engaging protrusion 3441 of the fourth linkage brick 34 through downward sliding in the vertical direction.
In addition, as shown in
In this embodiment, the side face 346 opposite to the vertical engaging protrusion 3441 of the fourth linkage brick 34 forms a traverse engaging groove 3461 extending laterally. The traverse engaging groove 3461 of the fourth linkage brick 34 is used to engage with each of the traverse engaging protrusions 3231, 3251 of the second linkage brick 32 through lateral sliding. The traverse engaging groove 3461 extends substantially horizontally.
In other possible embodiments, the vertical engaging protrusion 3431, 3451 of the fourth linkage brick 34 is configured to gradually enlarge outwardly from the corresponding side face 343, 345 and protrude to form a configuration such as a truncated triangular prism or a truncated triangular pyramid.
In other possible embodiments, it is also possible for the side face 346 opposite to the vertical engaging protrusion 3441 of the fourth linkage brick 34 to not comprise the traverse engaging groove 3461 or any groove of other configurations.
As shown in
The convenience and high efficiency of the assembly of the linkage brick assembly mentioned above are mainly attributed to the downward engagement of the vertical engaging grooves 3331, 3341, 3351, 3361 of the third linkage brick 33 with the vertical engaging protrusions 3241, 3261 of the second linkage brick 32.
Due to the engaging structure of the subject invention which includes vertical downward sliding and lateral sliding, the assembly of the linkage brick assembly of the subject invention may be able to proceed at multiple points on the ground to be paved simultaneously and thus the subject invention has an effect of quick assembly.
Additionally, since the third linkage brick 33 is engaged in a manner of downward sliding, when an error occurs during the assembly process of the linkage brick assembly, the third linkage brick 33 is allowed to be lifted so that certain portion(s) of area of the linkage brick assembly can be disassembled without disassembling all portions of the linkage brick assembly which have been accomplished.
Furthermore, when the linkage brick assembly is to be disassembled, the technical features mentioned above can allow the disassembly work to be done at multiple locations simultaneously, thereby enhancing the efficiency of the disassembly.
However, as shown in
In the second embodiment of the subject invention, the linkage brick assembly 3 further comprises at least one unit linkage brick 35 as illustrated in
Each of the traverse engaging grooves 3531, 3541, 3551, 3561 of the unit linkage brick 35 is used to engage with each of the traverse engaging protrusions 3231, 3251 of the second linkage brick 32 through lateral sliding. In addition, each of the vertical engaging grooves 3331, 3341, 3351, 3361 of the third linkage brick 33 is used to engage with each of the vertical engaging protrusions 3532, 3542, 3552, 3562 of the unit linkage brick 35 through downward sliding.
Similar to the second linkage brick 32 and the fourth linkage brick 34, a top face 35321, 35421, 35521, 35621 and an outer side face 35322, 35422, 35522, 35622 of each of the vertical engaging protrusions 3532, 3542, 3552, 3562 of the unit linkage brick 35 define a wedged corner 35E. The wedged corner 35E of each of the vertical engaging protrusions 3532, 3542, 3552, 3562 of the unit linkage brick 35 is used to engage with the wedged grooved portion 33E of each of the vertical engaging grooves 3331, 3341, 3351, 3361 of the third linkage brick 33. Preferably, each of the vertical engaging grooves 3331, 3341, 3351, 3361 mentioned above downwardly engages with each of the vertical engaging protrusions 3532, 3542, 3552, 3562 in the vertical direction. In addition, each of the vertical engaging protrusions 3532, 3542, 3552, 3562 of the unit linkage brick 35 does not extend to the top face 351 of the unit linkage brick 35.
When it is desired to use a few unit linkage bricks 35 to obtain a linkage brick assembly 3′ of the subject invention which has a large area, in the same way, a plurality of unit linkage bricks 35 may be paved on the ground in a substantially aligned manner, and the second linkage bricks 32 and the third linkage bricks 33 are alternately placed between the adjacent unit linkage bricks 35. Then the traverse engaging protrusion 3231, 3251 of the second linkage brick 32 engages with the corresponding traverse engaging groove 3531, 3541, 3551, 3561, 3533, 3543, 3553, 3563 of the adjacent unit linkage brick 35 through lateral sliding, and the vertical engaging groove 3331, 3341, 3351, 3361 of the unit linkage brick 35 engages with the corresponding vertical engaging protrusion 3532, 3542, 3552, 3562 of the adjacent unit linkage bricks 35 and the corresponding vertical engaging protrusion 3241, 3261 of the adjacent second linkage bricks 32 through downward sliding to accomplish the assembly of the desired linkage brick assembly 3′.
Referring to
In other possible embodiments, the vertical engaging protrusions 3241, 3261, 3441, 3535, 3542, 3552, 3562 may also be configured to gradually enlarge outwardly from the corresponding side face so as to form a configuration of, for example, a truncated triangular prism or a truncated triangular pyramid. The vertical engaging grooves 3331, 3341, 3351, 3361 may also be configured to gradually contract inwardly from the corresponding side face so as to be suitable to engage with the vertical engaging protrusions 3241, 3261, 3441, 3532, 3542, 3552, 3562.
Referring to
It is noteworthy that since the support rib H in the preferable embodiment of the subject invention is arched, it can provide the linkage bricks with better support and increase the strength of the linkage bricks.
Further referring to
In other possible embodiments, the plurality of support ribs H extends from each corner of the bottom faces 312, 322, 332, 342, 352 of the linkage bricks to the center thereof, and may also extend continuously from a corner to the opposite corner of the bottom faces 312, 322, 332, 342, 352.
Referring to
In a preferable embodiment of the subject invention, the drainage slope I may be each of the four triangles defined by the diagonals of the top face of the linkage bricks. Each of the triangles is configured to form an apex at the center of the top face of the linkage brick and tilts downward and outward in the direction indicated by the arrow in
In the drawings, the diagonals on the top face 311, 321, 331, 341, 351 of each linkage brick show the arris of the intersection of each drainage slope I, which is intended to illustrate a form of the drainage slope I in a preferable embodiment of the subject invention but should not be a limit to the structure of the linkage brick of the subject invention. That is, the top face of the linkage brick of the subject invention may also be the drainage slopes of other forms that can fulfill the purpose of enhancing water drainage.
Referring to
Still referring to
Referring to
In the preferable embodiments of the subject invention, the cross-section of the through groove L may be any shape suitable for a conduit to pass through (e.g., an arched shape).
It is noteworthy that, in a preferable embodiment, the through groove L does not extend to the traverse engaging grooves and the traverse engaging protrusions of the linkage bricks on side faces of the linkage bricks. In addition, the through groove L penetrates through the vertical engaging protrusion but does not go beyond any portion of the vertical engaging portion. Further, the though groove L preferably extends to the bottom face of the linkage bricks.
Referring to
In a preferable embodiment of the subject invention, every linkage brick has four planting holes M, each being located on each of the four triangular areas defined by the diagonals of the top face. In addition, the support ribs H extend along the diagonals.
In a preferable embodiment of the subject invention, the linkage bricks 31, 32, 33, 34, 35 are square. In addition, each of the linkage bricks is of the same size so that they can suitably match one another during the assembly process of the linkage brick assembly.
Furthermore, in a preferable embodiment of the subject invention, the linkage bricks 31, 32, 33, 34, 35 are preferably made of plastic, especially recycled plastic (for example: plastic bags, plastic containers) and thus have the advantage of being eco-friendly.
The embodiments set forth above may be liable to minor modifications based on the spirit of the subject invention. However, the subject invention with minor modifications based on the spirit of the subject invention should be deemed to lie within the scope of protection. Further, the above descriptions are intended only for elaboration but not to limit the subject invention.
Number | Date | Country | Kind |
---|---|---|---|
10711644.6 | May 2018 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
191273 | Waters | May 1877 | A |
1096267 | Sammis | May 1914 | A |
1186673 | Mallet | Jun 1916 | A |
7429144 | Lai | Sep 2008 | B1 |
8671640 | Thomas | Mar 2014 | B1 |
20040250495 | Manthei | Dec 2004 | A1 |
20090297267 | Glynn | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
1558031 | Dec 2004 | CN |
105862537 | Aug 2016 | CN |
206438362 | Aug 2017 | CN |
1116695 | Nov 1961 | DE |
2634586 | Sep 1977 | DE |
1210233 | Mar 1960 | FR |
1221611 | Feb 1971 | GB |
2342375 | Apr 2000 | GB |
S52-025436 | Aug 1975 | JP |
H01-167403 | Nov 1989 | JP |
H02-104439 | May 1992 | JP |
H05-047420 | Mar 1995 | JP |
H08-144213 | Jun 1996 | JP |
H09-302606 | Nov 1997 | JP |
3053479 | Oct 1998 | JP |
2001-011808 | Jan 2001 | JP |
2004-293175 | Oct 2004 | JP |
2008-099564 | May 2008 | JP |
3145860 | Oct 2008 | JP |
2011-106208 | Jun 2011 | JP |
2013-136935 | Jul 2013 | JP |
3187268 | Nov 2013 | JP |
2014-025275 | Feb 2014 | JP |
2015-124584 | Jul 2015 | JP |
100889252 | Mar 2009 | KR |
20210030196 | Mar 2021 | KR |
Entry |
---|
First Office Action and Search Report dated Jan. 27, 2021 issued by the China National Intellectual Property Administration for the counterpart China Patent Application No. 201810938103.0 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
First Office Action dated Nov. 27, 2020 issued by Japan Patent Office for the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
English Translation of the first Office Action dated Nov. 27, 2020 issued by Japan Patent Office for the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
JP3187268U is used to challenge the patentability of the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
JP2013-136935A is used to challenge the patentability of the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
JPH02-104439U (JPH04-061107U) is used to challenge the patentability of the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
JPH09-302606A is used to challenge the patentability of the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
JP2015-124584A is used to challenge the patentability of the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
JPH08-144213A is used to challenge the patentability of the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
JPH05-047420U (JPH07-17279U) is used to challenge the patentability of the counterpart Japan Patent Application No. 2019-066492 of the parent application (U.S. Pat. No. 10,676,874 B2) of this divisional application. |
U.S. Pat. No. 7429144B1 is a prior art reference, which only relate to the state of art. |
JP3145860U is a prior art reference, which only relate to the state of art. |
JP2014-025275A is a prior art reference, which only relate to the state of art. |
JP3053479U is a prior art reference, which only relate to the state of art. |
JP2001-011808A is a prior art reference, which only relate to the state of art. |
JP2004-293175A is a prior art reference, which only relate to the state of art. |
JP2008-099564A is a prior art reference, which only relate to the state of art. |
JPH01-167403U is a prior art reference, which only relate to the state of art. |
JP2011-106208A is a prior art reference, which only relate to the state of art. |
JPS52-025436U (JPS50-110519U) is a prior art reference, which only relate to the state of art. |
English Translation of JP3187268U. |
English Translation of JP2013-136935A. |
English Translation of JPH09-302606A. |
English Translation of JP2015-124584A. |
English Translation of JPH08-144213A. |
Number | Date | Country | |
---|---|---|---|
20200256020 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16368861 | Mar 2019 | US |
Child | 16859982 | US |