Whitlow, M. et al., "Multivalent Fvs: characterization of single-chain Fv oligomers and preparation of a bispecific Fv," Prot. Engin. 7(8):1017-1026 (Aug. 1994). |
Batra et al., "Anti-Tac(Fv)-PE40, a Single Chain Antibody Pseudomonas Fusion Protein Direction at Interleukin 2 Receptor Bearing Cells," J. Biol. Chem. 265(25) :15198-15202 (Sep. 5, 1990). |
Bedzyk et al., "Immunological and Structural Characterization of a High Affinity Anti-fluorescein Single-Chain Antibody," J. Biol. Chem. 265(30) :18615-18620. |
Bird et al., "Single-Chain Antigen-Binding Proteins," Science 242:423-426 (Oct. 21, 1988). |
Breitling et al., "A Surface Expression Vector for Antibody Screening," Gene 104:147-153 (1991). |
Chaudhary et al., "A Recombinant Immunotoxin Consisting of Two Antibody Variable Domains Fused to Pseudomonas Exotoxin," Nature 339:394-397 (Jun. 1, 1989). |
Clements, J., "Construction of a Nontoxic Fusion Peptide for Immunization against E. coli Strains That Produce Heat-Labile and Heat-Stable Enterotoxins," Infection and Immunity 58(5) :1159-1166 (May 1990). |
Colcher et al., "In Vivo Tumor Targeting of a Recombinant Single-Chain Antigen-Binding Protein," J. National Cancer Institute 82 (14) :1191-1197 (Jul. 18, 1990). |
Condra et al., "Bacterial Expression of Antibody Fragments That Block Human Rhinovirus Infection of Cultured Cells," J. Biol. Chem. 265(4) :2292-2295 (Feb. 5, 1990). |
Essig et al., "Crystallization of Single-Chain Fv Proteins," J. Mol. Biol. 234:897-901 (1993). |
Fuchs et al., "Targeting Recombinant Antibodies To The Surface of E. coli: Fusion To A Peptidoglycan Associated Lipoprotein," Bio/Technol. 9:1369-1372 (Dec. 1991). |
Harris and Emery, "Therapeutic Antibodies -- The Coming of Age," TiBTech 11:42-44 (Feb. 1993). |
Hird et al., "Immunotherapy with Monoclonal Antibodies" in: Genes and Cancer, eds. Carney et al., John Wiley & Sons Ltd., pp. 183-189 (1990). |
Holvoet et al., "Characterization of a Chimeric Plasminogen Activator Consisting of a Single-Chain Fv Fragment Derived from a Fibrin Fragment D-Dimer-specific Antibody and a Truncated Single-Chain Urokinase," J. Biol. Chem. 266 (29) :19717-19724 (Oct. 15, 1991). |
Huston et al., "Medical Applications of Single-Chain Antibodies," Int. Rev. Immunol 10(2-3) :195-217 (1993). |
Huston et al., "Protein Engineering of Single-Chain Fv Analogs and Fusion Proteins," Meth. in Enzymology 203:46-88 (1991). |
Kim et al., "Redesigning a Sweet Protein: Increased Stability and Renaturability," Protein Eng. 2(8) :571-575 (1989). |
Laroche et al., "Characterization of a Recombinant Single-chain Molecular Comprising the Variable Domains of a Monoclonal Antibody Specific for Human Fibrin Fragment D-Dimer," J. Biol. Chem. 266(25) :16343-16349 (Sep. 5, 1991). |
Lehninger, A.L., Principles of Biochemistry, Worth Publishers, Inc., NY, NY, pp. 150-155 (1982). |
Milenic et al., "Construction, Binding Properties, Metabolism, and Tumor Targeting of a Single-Chain Fv Derived from the Pancarcinoma Monoclonal Antibody CC49," Cancer Research 51:6363-6371 (Dec. 1991). |
Mottez et al., "A Single-Chain Murine Class I Major Transplantation Antigen," Eur. J. Immunol. 21:467-471 (1991). |
Novotny et al., "A Soluble, Single-Chain T-cell Receptor Fragment Endowed With Antigen-Combining Properties," Proc. Natl. Acad. Sci. USA 88:8646-8650 (1991). |
Pantoliano et al., "Conformational Stability, Folding, and Ligand-Binding Affinity of Single-Chain Fv Immunoglobulin Fragments Expressed in E. coli," Biochemistry 30 (42) :10117-10125 (1991). |
Schlom, J., "Monoclonal Antibodies: They're More and Less Than You Think" in : Molecular Foundations of Oncology, ed. S. Broder, Publ. Williams & Wilkins, Baltimore, MD, pp. 95-134 (1991). |
Scientific Report -- Ludwig Institute for Cancer Research -- 1991 Annual Scientific Report, Published Apr. 30, 1992. |
Seehaus et al., "A Vector for the Removal of Deletion Mutants from Antibody Libraries," Gene 114:235-237 (1992). |
Soo Hoo et al., "Characterization of a Single-Chain T-cell Receptor Expressed in E. coli," Proc. Natl. Acad. Sci. USA 89:4759-4763 (May 1992). |
Takkinen et al., "An Active Single-Chain Antibody Containing a Cellulase Linker Domain Is Secreted by E. coli," Protein Eng. 4(7) :837-841 (1991). |
Traunecker et al., "Bispecific Single-Chain Molecules (Janusins) Target Cytotoxic Lymphocytes on HIV Infected Cells," EMBO J. 10(12) :3655-3659 (1991). |
Waldmann, T., "Monoclonal Antibodies in Diagnosis and Therapy," Science 252:1657-1661 (Jun. 1991). |
Welt et al., "Quantitative Analysis of Antibody Localization in Human Metastatic Colon Cancer: A Phase I Study of Monoclonal Antibody A33," J. Clinical Oncology 8(11) :1894-1906 (Nov. 1990). |
Whitlow et al., "An Improved Linker for Single-Chain Fv with Reduced Aggregation and Enhanced Proteolytic Stability," Protein Eng. 6(8) :989-995 (1993). |
Whitlow et al., "Single Chain Fvs," in: Tumor Immunology: A Practical Approach, Publ. by Oxford University Press, pp. 279-291 (1993). |
Wootton et al., "The Q-Linker: A Class of Interdomain Sequences Found in Bacterial Multidomain Regulatory Proteins," Protein Eng. 2(7) :535-543 (1989). |
Yokota et al., "Rapid Tumor Penetration of a Single-Chain Fv and Comparison with Other Immunoglobulin Forms," Cancer Res. 52:3402-3408 (Jun. 15, 1992). |