Cooling electronics in data centers often constrains the amount of processing that can be achieved in the data center. This is because devices may be damaged if they overheat. Thus, heat is typically siphoned away from electronic devices via a combination of air conditioning, fans, and heat sinks. This may create a tradeoff because as processing increases and more power is used, more cooling may be needed.
The present application may be more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings.
Apparatuses associated with liquid coolant supply are described. In various examples, processors and other heat generating components on a computing cartridge may be connected via a thermal couple to a liquid cooled cold plate. The cold plate may be inlaid with channels through which a liquid coolant may flow to facilitate heat transfer away from the heat generating components. The cartridge may also include fluid connectors to supply liquid coolant to the cold plate and to return heated coolant from the cold plate. Additionally, to incorporate liquid cooling into cartridges, chassis in which the cartridges are seated may also be configured with fluid connectors and corresponding fluid supply and return manifolds. To ensure supply of liquid coolant to chassis that facilitate supply of liquid coolant to its cartridges, a rack that facilitates supply of liquid coolant to the chassis is also disclosed. Fluid connectors described above may operate via blind mating, and may be hot plug capable to allow manipulation of a cartridge while other cartridges are operating.
It is appreciated that, in the following description, numerous specific details are set forth to provide a thorough understanding of the examples. However, it is appreciated that the examples may be practiced without limitation to these specific details. In other instances, well-known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of the examples. Also, the examples may be used in combination with each other.
Cartridge 100 includes a liquid cooled cold plate 110. Cartridge 100 also includes a first electronic device 120. First electronic device may be, for example, a processor, a graphical processing unit, memory (e.g., DRAM), systems on chip (SOC), system in package (SIP), and so forth. Cartridge 100 also includes a first thermal couple 130 between first electronic device 120 and cold plate 110, Thermal couple 130 may be, for example, a physical contact between first electronic device 120 and cold plate 110, thermal paste, a heat sink, and so forth. In
Cartridge 100 also includes an inlet fluid connector 140. Inlet fluid connector 140 may be hot-plug capable. Conventionally, a connector is considered hot plug capable if initiating or breaking a connection does not cause a disruption to other system components. Inlet fluid connector 140 may also be configured to operate via a blind mate. As used herein, a blind mate connector is a connector that automatically aligns itself to a corresponding connector when connection between the blind mate connector and the corresponding connector is initiated. Blind mate connectors may be used when it is difficult to feel or see that connectors are properly aligned. Thus, when cartridge 100 is inserted into a slot adapted to house cartridge 100, inlet fluid connector may automatically align itself with a corresponding blind mate fluid connector in the slot to ensure an effective connection between these two connectors. Inlet fluid connector 140 may facilitate supply of a liquid coolant to the cold plate 110. The liquid coolant may be, for example, water, dielectric fluid, refrigerant, and so forth.
Cartridge 100 also includes an outlet fluid connector 150. Outlet fluid connector may also be hot-plug capable and/or configured to operate via a blind mate. Outlet fluid connector 150 may facilitate return of the liquid coolant from the cold plate. In this example, inlet fluid connector 140 is attached to cold plate 110 at a first corner, and outlet fluid connector 150 is attached to cold plate 110 at a second corner, the first and second corners being diagonally opposite one another on cold plate 110. However, other configurations of inlet fluid connector 1413 and outlet fluid connector 150 relative to one another on cold plate 110 are possible.
In this example, liquid coolant may flow from inlet fluid connector 140 to outlet fluid connector 150 through cold plate 110. Here, flow paths 160 illustrate one possible path of liquid coolant flow through cold plate 110. Other flow paths are possible, and may depend on the placement of inlet fluid connector 140 and outlet fluid connector 150 relative to one another. By way of illustration, in
Additionally, as illustrated, flow paths 160 are intended to show a general path a liquid coolant may take through cold plate 110 for the configuration of inlet fluid connector 140 and outlet fluid connector 150 as illustrated in this example. Thus, though fluid channels may be embedded within cold plate 110 along illustrated flow paths 160, alternative fluid channels may also be embedded. For example, though flow paths 160 are shown as going around first electronic device 120, it may be possible to achieve improved heat transfer from first electronic device 120 to the liquid coolant if fluid channels are embedded within cold plate 110 over first electronic device 120 and/or first thermal couple 130. Further, flow path 160 may be achieved via a hollow cavity within cold plate 110 through which liquid coolant flows, rather than channels embedded within cold plate 110. The viability a hollow cavity may depend on the relative positions of inlet fluid connector 140 and outlet connector 150 to one another on cold plate 110.
Cartridge 100 also includes latches 199 to facilitate securing cartridge 100 to a chassis in which cartridge 100 resides. Cartridge 100 also includes electronic connectors 197 which may connect to corresponding electronic connectors within the chassis, Electronic connectors 197 may facilitate communication between electronic devices residing on cartridge 100 (e.g., first electronic device 120) and other devices external to cartridge 100. These may include other devices within the chassis within which cartridge 100 resides, other devices within a rack within which cartridge 100 resides, other devices connected to a network (e.g., the Internet) to which cartridge 100 is connected, and so forth. Cartridge 100 also includes an interface 198 which may display information regarding the status (e.g., on, off, health information) of components (e.g., first electronic device 120) of cartridge 100. Interface 198 may also include, for example, buttons (e.g., power on, power off) to control operation of components of cartridge 100. Cartridge 100 may also include additional components including circuits, connectors, chipsets, and so forth (not shown) to support functionality of first electronic device 120, and/or other components on electronic device 120.
Using liquid coolants to cool electronic devices may allow more electronic devices to operate within a single cartridge, chassis, and/or rack. By way of illustration, air cooling a rack using some conventional techniques may use 100 cubic feet per minute (CFM) of air to cool 1 kilowatt (kW) of power consumed by the rack. Thus, a rack consuming 60 kW may require 6000 CFM of air to cool the rack, If a data center can deliver 800-1000 CFM of air flow across the approximate area that the space of a rack takes up, the space of 6-7 racks may be required to cool a 60 kW rack using only air cooling. If only one eighth of the space in a data center is usable for racks, air cooling may be space inefficient, thereby increasing the costs of building a data center. On the other hand, using liquid coolants may reduce the amount of power that is siphoned off via air cooling to as little as 20% to 30% or lower. Thus for the 60 kW rack reduced to 20% air cooling, only 1200 CFM of air may be necessary, thereby saving data center space.
This level of cooling via liquid cooling may be achieved because, for example, cooling electronic devices using water may achieve a thermal resistance of 0.1 centigrade/watt. Thus, even a cartridge outputting up to 250 watts of power may only increase water temperature 25 degrees, which may even allow room temperature or above (e.g., 30° centigrade) fluids to be used as liquid coolants. In fact, temperature rise of the water may be even lower because power consumption, and therefore temperature rise, may be spread out over face the cartridge, which may cause heat to transfer to water flowing along different flow paths 160 across cartridge 100.
Cartridge 200 also includes several additional electronic devices including second electronic device 222, third electronic device 224, and fourth electronic device 226. These electronic devices are attached to cold plate 210 via thermal couples 232, 234, and 236 respectively. In one example, electronic devices 220, 222, 224, and 226 may be a set of electronic devices configured to optimize performance of a specific application. By way of illustration, if cartridge 200 is designed to serve as a web server, first electronic device 220 may serve as a data store (e.g., hard disk, solid state drive) on which web content is stored, and electronic devices 222, 224, and 226 may be processors that receive and/or respond to incoming requests for system resources.
Cartridge 200 also includes an air-cooled electronic device 270. In one example, air cooled electronic device 270 may consume less power than electronic devices (e.g. 220, 222, 224, 226) which are cooled via cold plate 210.
Chassis 300 also includes a chassis supply manifold 335 to facilitate supply of liquid coolant to supply fluid connectors (e.g., supply fluid connector 325). Chassis 300 also includes a chassis return manifold 330 to facilitate return of liquid coolant from return fluid connectors (e.g., return fluid connector 320).
In
Chassis 300 also includes a movable mounting 360. Movable mounting 360 may allow chassis 300 to sit at a retracted position inside a rack structure and at an extend position granting access to the set of slots. in one example, the mountings may operate similarly to rails used in, for example, a kitchen drawer. However, other mountings are possible. Chassis 300 also includes an extending supply hose 345. Extending supply hose 345 may ensure connection of chassis supply manifold 335 to a rack supply manifold associated with the rack structure at both the retracted position and the extended position. Chassis 300 also includes an extending return hose 340. Extending return hose 340 may ensure connection of chassis return manifold 330 to a rack return manifold associated with the rack structure at both the retracted position and the extended position. In one example, extending supply hose 345 and extending return hose 340 may have accordion loop structures.
Chassis 300 also includes a fan 350. Fan 350 may air cool an electronic device on a top-loading computing cartridge (e.g., cartridge 100, cartridge 200) within a slot (e.g., slot 310). In addition to slots (e.g., 310, 312, 314) that house cartridges, chassis 300 also includes a module bay 399. Module bay 399 may serve as a bay for a power distribution unit, a switch, and/or other components depending on the configuration of chassis 300 and/or cartridges residing within chassis 300. A power distribution unit may distribute power to cartridges in their respective slots while the cartridges are operating. A switch may route communications between cartridges within chassis 300, between a cartridge within chassis 300 and cartridges external to chassis 300 (e.g., other cartridges within a rack within which chassis 300 resides), between a cartridge within 300 and a computer over a network (e.g., the Internet, a local area network, a virtual private network), and so forth.
Thus,
Chassis 400 also includes movable mountings 430. In this example, chassis 400 and mountings 430 are illustrated at a retracted position. At the retracted position, access to slots 410 and bay 420 may be difficult if several chassis are arranged on top of one another within rack structure 499. Thus, mountings for 430 may allow the chassis to extend out from rack structure 499 (e.g., at a position illustrated in
Chassis 400 may also have fluid supply and return manifolds (not shown) that facilitate transfer of liquid coolant to and from devices inserted into slots 410 and/or bay 420. To ensure connection of the chassis supply manifold to a rack supply manifold 490, and the chassis return manifold to a rack return manifold 492, chassis 400 may also have extendable hoses 440 to connect the respective manifolds, In one example, at the retracted position of chassis 400 within rack structure 499, the extendable hoses 440 may essentially reside within the structure of chassis 400. In some circumstances however, it may be appropriate for the hoses 440 to sit outside of chassis 400. Chassis 400 also includes several fans 450 which may serve to air cool electrical components (e.g., on cartridges within slots 410).
Because the supply (and return) of liquid coolant is facilitated by extendable hoses 540, cartridges within slots 510 may be able to continue receiving cooling even though other cartridges are being manipulated (e.g., inserted, removed. serviced).
Rack system 600 includes a fluid supply manifold 640 to facilitate supply of a liquid coolant to chassis 690. Similarly, rack system 600 includes a fluid return manifold 650 to facilitate return of the liquid coolant from the chassis. In one example, fluid supply manifold 640 and fluid return manifold 650 may permit unobstructed air flow to the chassis. Further, fluid supply manifold 640 and fluid return manifold 650 may be held separate from a signal line (not shown) that provides signal to the chassis (e.g., Ethernet) and/or a power line (not shown) that provides power to the chassis. In this example, fluid supply manifold 640 and fluid return manifold 650 may be affixed to first wall 610. However, different configurations may be appropriate.
Because chassis 690 may sit retracted within rack structure 600 and extended out from rack structure 600, rack system 600 also includes fluid supply and return hoses 695 to maintain respective connections between chassis supply and return manifolds within chassis 690, and supply manifold 640 and return manifold 650. Supply manifold 640 and return manifold 650 may also be attached to plumbing (e.g., pipes, hoses) in a data center within which rack structure 600 resides.
It is appreciated that the previous description of the disclosed examples is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these examples will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be limited to the examples shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/33756 | 4/11/2014 | WO | 00 |