The present invention relates to liquid delivery systems for supplying liquid from a portable container, and more particularly to liquid delivery systems for supplying liquid from a portable container and removing vapor from at least one selected remote destination.
It is common to store liquids, such as fuel, in portable containers for subsequent delivery into another container or the like, at a remote destination. The remote receptacle might be the fuel tank of an apparatus having an external combustion engine, such as a vehicle, a boat, a lawn mower, and so on, or might be another independent container.
Most of such portable containers have a rigid nozzle securely attached thereto at an upper outlet. In order to deliver liquid from the portable container, the portable container is lifted and tilted, and liquid is poured from the spout into the remote container.
Further, a few of such portable containers have an elongate hose attached to the portable container at an outlet, with a nozzle and spout attached to the free and of the hose. The spout is placed partially into the remote container, and liquid is delivered from the portable container to the remote container, typically by means of siphoning, and possibly pumping.
One problem that exists with the use of such portable containers is that vapor from the delivered liquid tends to escape from the remote destination. In the case of transferring liquid fuel, this is highly undesirable. Indeed, it is believed that legislation exists, or is about to be enacted, in some jurisdictions, to require the recovery of vapor when delivering fuel from a portable container. One such prior art device that attempts to recover such vapors is described in U.S. Pat. No. 5,711,355 entitled Portable Liquid Transfer Container and Dispensing Nozzle with Non-movable Part Free Flow, Vapor Recovery and Overfill Prevention System, issued Jan. 27, 1998, to Kowalczyk. This Portable Liquid Transfer Container and Dispensing Nozzle comprises a non-movable part portable liquid transfer container with the dispensing nozzle, and includes a fillpipe sealing device and internal conduit positioned in such a manner as to enable free-flow of liquid and recovery of vapors displaced during the gravity transfer of liquids to other containers, as well as automatic shutoff of liquid transfer when the receiving container is full to prevent overfill and spillage of liquid. Unfortunately, this portable liquid transfer container is limited to use where it is raised above the level of the receiving container, and tilted so that liquid flows from the dispensing nozzle into the receiving container. It cannot be used in a more convenient manner such as where liquids are siphoned or pumped from one container to another.
It is an object of the present invention to provide a liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from said at least one selected remote destination, wherein the liquid delivery system is not limited to use where it is raised above the level of the receiving container, and tilted so that liquid flows from the dispensing nozzle into the receiving container.
It is another object of the present invention to provide a liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from said at least one selected remote destination, wherein the liquid delivery system can be used in a more convenient manner such as where liquids are pumped from one container to another.
It is a further object of the present invention to provide a liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from said at least one selected remote destination, wherein the liquid delivery system can be used with or without a pump.
In accordance with one aspect of the present invention there is disclosed a novel liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from the at least one selected remote destination. The liquid delivery system comprises a portable container having a substantially hollow interior for retaining liquid therein. An elongate flexible liquid delivery hose has a liquid inlet and a liquid outlet. The elongate flexible liquid delivery hose is in fluid communication at the liquid inlet with the substantially hollow interior of the portable container for receiving liquid from the portable container, and in fluid communication at the liquid outlet with the at least one selected remote destination for delivering the received liquid to the at least one selected remote destination. An elongate flexible vapor recovery hose has a vapor inlet and a vapor outlet. The elongate flexible vapor recovery hose is in fluid communication at the vapor inlet with the at least one selected remote destination for receiving vapor from the at least one selected remote destination, and in fluid communication at the vapor outlet with the substantially hollow interior of the portable container for delivering the received vapor to the substantially hollow interior of the portable container. The elongate flexible liquid delivery hose and the elongate flexible vapor recovery hose permit the movement of the liquid outlet of the elongate flexible liquid delivery hose to the at least one selected remote destination while the container remains substantially stationary, to thereby permit the delivery of the liquid to the at least one selected remote destination. Reduced air pressure in the substantially hollow interior of the portable container resulting from the removal of the liquid from the substantially hollow interior of the portable container causes vapor to be suctioned via the elongate flexible vapor recovery hose into the substantially hollow interior of the portable container. In accordance with another aspect of the present invention there is disclosed a novel liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from the at least one selected remote destination. The liquid delivery system comprises a portable container having a substantially hollow interior for retaining liquid therein. There is a pump means operatively connected to the portable container for causing the liquid therein to be pumped from the portable container to the at least one selected remote destination when the pump means is pumped. An elongate flexible liquid delivery hose has a liquid inlet and a liquid outlet. The elongate flexible liquid delivery hose is in fluid communication at the liquid inlet with the pump means for receiving liquid from the pump means, and in fluid communication at the liquid outlet with the at least one selected remote destination for delivering the received liquid to the at least one selected remote destination. An elongate flexible vapor recovery hose has a vapor inlet and a vapor outlet. The elongate flexible vapor recovery hose is in fluid communication at the vapor inlet with the at least one selected remote destination for receiving vapor from the at least one selected remote destination, and being in fluid communication at the vapor outlet with the substantially hollow interior of the portable container for delivering the received vapor to the substantially hollow interior of the portable container. The elongate flexible liquid delivery hose and the elongate flexible vapor recovery hose permit the movement of the liquid outlet of the elongate flexible liquid delivery hose to the at least one selected remote destination while the container remains substantially stationary, to thereby permit the delivery of the liquid to the at least one selected remote destination. Reduced air pressure in the substantially hollow interior of the portable container resulting from the removal of the liquid from the substantially hollow interior of the portable container causes vapor to be suctioned via the elongate flexible vapor recovery hose into the substantially hollow interior of the portable container.
In accordance with yet another aspect of the present invention there is disclosed a novel method of supplying liquid from a portable container to at least one selected remote destination and removing vapor from the at least one selected remote destination. The method comprising the steps of supplying liquid to a remote destination via an elongate flexible liquid delivery hose that is in fluid communication with a portable container; and suctioning vapor from the remote destination to the portable container through an elongate flexible vapor recovery hose in fluid communication with the portable container, wherein low air pressure in the portable container, as caused by the removal of liquid from the portable container, causes the suctioning of the vapor.
In accordance with yet another aspect of the present invention there is disclosed a novel hose assembly for supplying liquid from a portable container to at least one selected remote destination and removing vapor from the at least one selected remote destination. The hose assembly comprises an elongate flexible liquid delivery hose having a liquid inlet and a liquid outlet, and is operatively connectable at the liquid inlet to be in fluid communication with the interior of a portable container, for supplying liquid from the portable container to the remote destination. An elongate flexible vapor recovery hose has a vapor inlet and a vapor outlet, and is operatively connectable at the vapor outlet to be in fluid communication with the interior of a portable container, for permitting the flow of vapor from at least one remote destination to the portable container.
In accordance with yet another aspect of the present invention there is disclosed a novel two-channel spout for use with a liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from the at least one selected remote destination. The two-channel spout comprises a main body, a liquid flow channel within the main body, and a vapor flow channel within the main body. The liquid flow channel and the vapor flow channel are separate and distinct one from the other.
In accordance with yet another aspect of the present invention there is disclosed a novel adaptable nozzle for use with a liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from the at least one selected remote destination. The adaptable nozzle comprises a two-channel spout coupler having an interior end and an exterior end, for removable and replaceable attachment of a two-channel spout. There is a nozzle body for housing portions of the two-channel spout coupler, an elongate flexible liquid delivery hose, and an elongate flexible vapor recovery hose. The elongate flexible liquid delivery hose and the elongate flexible vapor recovery hose are each operatively connectable in fluid communication to the two-channel spout coupler at the interior end.
Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter of which is briefly described herein below.
Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter of which is briefly described herein below.
The novel features which are believed to be characteristic of the liquid delivery system according to the present invention, as to its structure, organization, use and method of operation, together with further objectives and advantages thereof, will be better understood from the following drawings in which a presently preferred embodiment of the invention will now be illustrated by way of example. It is expressly understood, however, that the drawings are for the purpose of illustration and description only, and are not intended as a definition of the limits of the invention. In the accompanying drawings:
Referring to
Reference will now be made to
There is an elongate flexible liquid delivery hose 11 having a liquid inlet 14 and a liquid outlet 13. The elongate flexible liquid delivery hose 11 is in fluid communication at the liquid inlet 14 with the substantially hollow interior 7 of the portable container 20 for receiving liquid from the portable container 20, and in fluid communication at the liquid outlet 13 with the at least one selected remote destination 8 for delivering the received liquid to the at least one selected remote destination 8.
There is also an elongate flexible vapor recovery hose 12 having a vapor inlet 16 and a vapor outlet 15. The elongate flexible vapor recovery hose 12 is in fluid communication at the vapor inlet 16 with the at least one selected remote destination 8 for receiving vapor from the at least one selected remote destination 8, and is in fluid communication at the vapor outlet 15 with the substantially hollow interior 7 of the portable container 20 for delivering the received vapor to the substantially hollow interior 7 of the portable container 20. The elongate flexible liquid delivery hose 11 and the elongate flexible vapor recovery hose 12 together comprise a two line hose 10, and preferably are integrally formed one with the other.
As can be best seen in
Preferably, there is a check valve 31 disposed within the container coupling means 30 for precluding the flow of liquid back into the portable container 20, and a check valve 32 disposed in a co-operating annular orifice 33 that is axially aligned with the vapor passageway 35 of the vapor recovery nipple 39.
The elongate flexible liquid delivery hose 11 and the elongate flexible vapor recovery hose 12 permit the movement of the liquid outlet 13 of the elongate flexible liquid delivery hose 11 to the at least one selected remote destination 8 while the container remains substantially stationary, to thereby permit the delivery of the liquid to the at least one selected remote destination 8. Reduced air pressure in the substantially hollow interior 7 of the portable container 20 resulting from the removal of the liquid from the substantially hollow interior 7 of the portable container 20 causes vapor to be suctioned via the elongate flexible vapor recovery hose 12 into the substantially hollow interior 7 of the portable container 20.
Reference will now be made to
Reference will now be made to
Reference will now be made to
The second preferred embodiment liquid delivery system 2 is for supplying liquid, as indicated by the reference numeral 5 in the container, from a portable container 20 to at least one selected remote destination 8 and removing vapor from the at least one selected remote destination 8.
As mentioned above, the second preferred embodiment liquid delivery system further comprises a nozzle-and-spout assembly. The elongate flexible liquid delivery hose is operatively connected in supported relation to the nozzle-and-spout assembly, and the elongate flexible vapor recovery hose is operatively connected in supported relation to the elongate flexible liquid delivery hose. More specifically, the elongate flexible liquid delivery hose is operatively connected in liquid delivery relation to the nozzle-and-spout assembly and the elongate flexible vapor recovery hose is operatively connected in vapor receiving relation to the nozzle-and-spout assembly, as will be discussed in greater detail subsequently.
As can be seen in
Reference will now be made to
In the third preferred embodiment nozzle-and-spout assembly, the spout 650 comprises a two-channel spout that itself comprises a liquid flow channel 620 and a vapor flow channel 630. The liquid flow channel 620 has a liquid flow channel inlet 620a disposed at the nozzle connection end 600a of the spout 650 and a liquid flow channel outlet 620b disposed at the free end 600b of the spout 650. Similarly, the vapor flow channel 630 has a vapor flow channel inlet 630a disposed at the free end 600b of the spout 650 and a vapor flow channel outlet 630b disposed at the nozzle connection end 600a of the spout 650. As can be readily seen in
The elongate flexible liquid delivery hose 11 is operatively connected to the two-channel spout 650 at the liquid flow channel 620, specifically at the liquid flow channel inlet 620a in order to deliver liquid directly to the liquid flow channel 620. Similarly, the elongate flexible vapor recovery hose 12 is operatively connected to the two-channel spout 650 at the vapor flow channel 630, specifically at the vapor flow channel outlet 630b, in order to receive vapor directly from the vapor flow channel 630.
The free end 600b of the liquid flow channel 620 has an internally threaded tip 623 that receives a liquid channel plug 624 therein having a co-operating male thread. One skilled in the art will readily see that this is just an added feature and not necessary to the over all function of the two channel spout. As can be readily seen in
Reference will now be made to
Reference will now be made to
Accordingly, reference numerals used for describing the various components of the first preferred embodiment liquid delivery system 1 of
The liquid delivery system 3 is for supplying liquid, as indicated by the reference numeral 5 in
As mentioned above, the foot operable pump is operatively connected to the portable container for receiving liquid from the portable container 20 and for causing the liquid therein to be pumped from the portable container to the at least one selected remote destination when the foot operable pump 60 is pumped, as will be discussed in greater detail subsequently.
There is an elongate flexible liquid delivery hose 11 having a liquid inlet 14 and a liquid outlet 13. The elongate flexible liquid delivery hose 11 is operatively connected to the foot operable pump 60. More specifically, the elongate flexible liquid delivery hose 11 is in fluid communication at the liquid inlet 14 with the foot operable pump 60 for receiving liquid from the portable container 20, via a container coupling means in the form of a two-line container coupling means 61 that is shown in
The elongate flexible liquid delivery hose 11 is either in fluid communication at the liquid outlet 13 with the at least one selected remote destination 8 for delivering the received liquid to the at least one selected remote destination 8 or the liquid outlet 13 of the elongate flexible liquid delivery hose is operatively connected in supported relation to the nozzle-and-spout assembly, and the elongate flexible vapor recovery hose is operatively connected in supported relation to the elongate flexible liquid delivery hose. More specifically, the elongate flexible liquid delivery hose is operatively connected in liquid delivery relation to the nozzle-and-spout assembly and the elongate flexible vapor recovery hose is operatively connected in vapor receiving relation to the nozzle-and-spout assembly, as will be discussed in greater detail subsequently.
There is also an elongate flexible vapor recovery hose 12 having a vapor inlet 16 and a vapor outlet 15. The elongate flexible vapor recovery hose 12 is in fluid communication at the vapor inlet 16 either directly or via a nozzle-and-spout assembly with the at least one selected remote destination 8 for receiving vapor from the at least one selected remote destination 8, and is in fluid communication at the vapor outlet 15 with the substantially hollow interior 7 of the portable container 20 for delivering the received vapor to the substantially hollow interior 7 of the portable container 20. The elongate flexible liquid delivery hose 11 and the elongate flexible vapor recovery hose 12 together comprise a two line hose 10, and preferably are integrally formed one with the other.
The vapor outlet 15 is in fluid communication with the substantially hollow interior 7 of the portable container 20 via the two-line container coupling means 61.
There is also liquid inlet nipple 67 axially aligned with and in fluid communication with the threaded pump end 68. A liquid supply hose 26 is connected in fluid communication to the liquid inlet nipple 67 for receiving liquid from the portable container 20.
Preferably, there is a check valve 31 disposed within the container coupling means 60 for precluding the flow of liquid back into the portable container 20. The check valve 31 is disposed in a co-operating passageway 66 that is axially aligned with the passageway 65 of the liquid inlet nipple 67 and also with the threaded pump end 68.
There is also a check valve 32 disposed in a co-operating aperture 64 that is axially aligned with the vapor passageway 62 of the vapor recovery nipple 63.
The elongate flexible liquid delivery hose 11 and the elongate flexible vapor recovery hose 12 permit the movement of the liquid outlet 13 of the elongate flexible liquid delivery hose 11 to the at least one selected remote destination 8 while the container remains substantially stationary, to thereby permit the delivery of the liquid to the at least one selected remote destination 8. Reduced air pressure in the substantially hollow interior 7 of the portable container 20 resulting from the removal of the liquid from the substantially hollow interior 7 of the portable container 20 causes vapor to be suctioned via the elongate flexible vapor recovery hose 12 into the substantially hollow interior 7 of the portable container 20.
As can be seen in
In use, the third preferred embodiment liquid delivery system 3 is assembled, as can be seen in
It can also readily be seen that the present invention comprises a method of supplying liquid from a portable container to at least one selected remote destination and removing vapor from the at least one selected remote destination. The method basically comprises the steps of first supplying liquid to a remote destination via an elongate flexible liquid delivery hose, wherein the elongate flexible liquid delivery hose is in fluid communication with a portable container, preferably by pumping liquid to the remote destination via the elongate flexible liquid delivery hose, and delivering the liquid from a nozzle-and-spout assembly. Further, this step preferably comprises the step of moving the nozzle-and-spout assembly while the portable container remains stationary. In this manner, it is easy and convenient to fill just about any type of remote destination container, at any convenient height, or fill more than one remote destination container, without having the inconvenience of moving, lifting and/or tilting portable container.
The subsequent step basically involves suctioning vapor from the destination to the portable container through an elongate flexible vapor recovery hose, wherein the elongate flexible vapor recovery hose is in fluid communication with the portable container, and wherein low air pressure in the portable container, as caused by the removal of liquid from the portable container, causes the suctioning of the vapor.
Reference will now be made to
Reference will now be made to
Reference will now be made to
Reference will now be made to
The two-channel spout coupler 320 also has an annular wall 324 that terminates in a front rim 321 and defines an air reservoir 640. A circular flange 326 extends peripherally outwardly from the base of the annular wall 324. The annular wall 324 extends through a front opening 351 in the front wall portion 352 of the nozzle body 350. The circular flange 326 seats between the front wall portion 352 of the nozzle body 350 and an annular flange 305, to preclude the two-channel spout coupler 320 from falling out of the nozzle body 350. A screw cap 310 threadibly engages the cooperating threads 322 on the annular wall 324 to secure a spout to the two-channel spout coupler 320.
The two-channel spout 600 has an annular flange 610 that is trapped in place between the front rim 321 and the annular wall 324 and the inwardly directed annular flange 311 of the screw cap 310. The end plug 621 at the nozzle connection end of the two-channel spout 600 has an AO@-ring 622 thereon. The AO@-ring 622 engages the inner sealing surface 331 of the annular seat 333, to preclude the escape of liquid from the liquid passageway 330 into the air reservoir 640.
The two-channel spout coupler 320 conveys the liquid from the elongate flexible liquid delivery hose 11 directly to the liquid flow channel 620 of the two-channel spout 600 via the liquid passageway 330. The two-channel spout coupler 320 also conveys the vapor from the vapor flow channel inlet 631, through the vapor flow channel 630 of the two-channel spout 600, through the air reservoir 640, and to the elongate flexible vapor recovery hose 12 via the vapor flow passageway 340 through nipple 341.
Reference will now be made to
Reference will now be made to
The two-channel spout comprises a main body, a liquid flow channel within the main body 717 & 743 and a vapor flow channel 736 within the main body. The liquid flow channel 717 & 743 has a liquid flow channel inlet 717a and a liquid flow channel outlet 745b. The vapor flow channel has a vapor flow channel inlet 737 and a vapor flow channel outlet 722. The liquid flow channel and the vapor flow channel are separate and distinct one from the other, and thereby permit liquid within the liquid flow channel and vapor within the vapor flow channel to be kept separate and distinct one from the other.
The spout 700 is the same as the fourth preferred embodiment two-channel spout 600 in that it mounts to the nozzle body assembly 300 in the same manner. A screw cap 310 threadibly engages the cooperating threads 322 on the annular wall 324 to secure the spout 700 to the two-channel spout coupler 320.
The two-channel spout 700 has an annular flange 720 that is trapped in place between the front rim 321 of the annular wall 324 and the inwardly directed annular flange 311 of the screw cap 310 creating air reservoir 727. The back end of the trunk at the nozzle connection end 717a of the two-channel spout 700 has an AO@-ring 715 thereon. The AO@-ring 715 engages the inner sealing surface 331 of the annular seat 333, to preclude the escape of liquid from the liquid passageway 330 into the air reservoir 727.
The spout 700 is different from the fourth preferred embodiment two-channel spout 600 in that it further comprises an auto-closure mechanism built into the two-channel spout 700. The two-channel spout 700 has two major cylindrical elements that move with respect to each other, namely a trunk and a slidable trigger. The slidable trigger 730 is slidably movable with respect to the trunk 710 between a forward closed position, as best seen in
The trunk has a foreword reduced cylindrical portion, and an openable and closable fluid flow valve having an elongate cylindrical core 750 with fins 755 extending radially outwardly from the back half of the elongate cylindrical core 750, where the core 750 has widened head 753 with an AO@-ring 754 at the front end which seals against trigger opening 733. The fluid flow valve is opened as the trigger 730 is slid rearwardly to unseat o-ring 754 from trigger opening 733 and closed as spring 723 reaserts itself to push the trigger 730 forward. The core 750 is securely retained within the reduced cylindrical portion of the trunk 710 and is retained in place by an annual or flange 721 at its back that engages retension clips 756 on the core fins an annular shoulder at the trunks tip 711 which engage steps 757 on the fins 755.
The slidable trigger has an enlarged rearward cylindrical portion and a reduced foreword cylindrical portion. The enlarged rearward cylindrical portion defines an air cavity 738, through which vapor passes, as will discussed subsequently. A portion of the trunk is surrounded by the enlarged rearward cylindrical portion of the slidable trigger and a forward portion of the trunk is surrounded by the reduced foreword cylindrical portion of the slidable trigger. The fluid flow valve that extends forwardly from the trunk is surrounded by a portion of the reduced foreword cylindrical portion of the slidable trigger. An AO@-ring 713 retained on the foreword reduced cylindrical portion of the trunk seals against the inner surface of the reduced foreword cylindrical portion of the slidable trigger, to preclude liquid from entering the air cavity 738.
A trunk spring 723 is operatively mounted between the trunk and the slidable trigger bias the slidable trigger to its forward closed position, as best seen in
There are two air valve pins 742 extending rearwardly from the enlarged rearward cylindrical portion of the slidable trigger. The air valve pins 742 each have a grommet gasket 744 retained in place on the end thereof by means of an enlarged grommet retaining portion 743. The air valve pins 742 each extend through a cooperating air hole 722 in the flange 720 of the trunk 710.
In use, when the slidable trigger is in its forward closeded position, as best seen in
The air valve feature in the two channel auto closure spout 700 is not necessary if the two channel auto closure spout is used in conjunction with two channel spout couplers 360, 460, which incorporate air check valves or container couplers (30,36,61,82), which incorporate air check valves.
Reference will now be made to
The sixth preferred embodiment spout 800 comprises a two-channel spout for delivering liquid to at least one selected remote destination (not specifically shown) and removing vapor from the at least one selected remote destination. The two-channel spout 800 is connectable to a nozzle body 300 in removable and replaceable relation.
The spout 800 is the same as the fourth preferred embodiment two-channel spout 600 in that it mounts to the nozzle body assembly 300 in the same manner. A screw cap 310 threadibly engages the cooperating threads 322 on the annular wall 324 to secure the spout 800 to the two-channel spout coupler 320.
The two-channel spout 800 has an annular flange 805 that is trapped in place between the front rim 321 of the annular wall 324 and the inwardly directed annular flange 311 of the screw cap 310 creating air reservoir 881. The back end of the trunk at the nozzle connection end 810 of the two-channel spout 800 has an AO@-ring 811 thereon. The AO@-ring 811 engages the inner sealing surface 331 of the annular seat 333, to preclude the escape of liquid from the liquid passageway 330 into the air reservoir 881.
The auto-closure auto-shutoff spout 800 has a fluid channel defined by fluid channel 821 the fluid channel 820 and the Sliders fluid channel 830 and a vapor channel defined by air inlet 850, air channel 851, piston cylinder 860, hole in the bottom of the cylinder 861, Hole through trunk 822, Jets air cavity 813, Flange airway through the jets threads 814 which leads to the two channel spout couplers 320 air reservoir 881.
When the auto-closure auto-shutoff spout 800 is in the open orientation see
The two-channel spout 800 has three major cylindrical elements that move with respect to each other, namely casing 823, a slider assembly 832 and a trigger assembly 871. The slidable trigger is slidably movable with respect to the trunk between a forward closed position, as best seen in
The spout 800 comprises a casing 823 having a liquid flow channel inlet 815 to receive liquid from the elongate flexible vapor recovery hose 12, and a liquid flow channel 821, also referred to as the trunk tip opening, to dispense liquid to a remote destination (not specifically shown), either a permanent or portable container or receptacle, or the like, such as a portable fuel container, a fuel tank, and so on. The liquid flow channel inlet 815 and the liquid flow channel 821 are connected in fluid communication by a fluid channel discussed above.
There is an openable and closable valve, as indicated by the general reference numeral 101, for permitting and precluding, resectively, the dispensing of liquid from the dispensing outlet 821 of the casing 823. The valve 101 preferably comprises a closure member 840 such as a core for closing and opening the dispensing outlet 821. The closure member 840 is slidably retained with in the casing 823 for movement between its open position and its closed position. The valve 101, specifically, the closure member 840, is biased closed by means of a coil spring, specifically trunk spring 824, which is in compression. The trunk spring 824, which is compressed in between the jet 812 and the closure member 840, provides a force that pushes the closure member 840, towards the trunk tip 821. The trunk tip 821 is tapered to channel the flow of liquid to the closure member 840.
The closure member 840 has an “O”-ring 841 seated in a cooperating annular groove towards the front of the closure member 840. When the closure member 840 is in its closed position, as biased by the trunk spring 824, the “O”-ring 841 seats against the inner annular surface of the tip of 821 of the casing 823, which is the dispensing outlet of the casing 823. The dispensing opening 823 is sealed as the force of the trunk spring 824 compresses the “O”-ring 841 between the closure member 840 and the trunk tip 821 interior, thereby providing an airtight leak-proof seal.
When the closure member 840 is in its open position (see
The spout 800 further comprises a slider assembly 832 mounted in sliding relation around the casing 823. The slider assembly 832 is movable between a forward position, and a rearward position. The forward position and the rearward position of the slider assembly 832 corresponds to the closed position and the open position, respectively, of the closure member 840. Accordingly, in order to open the valve generally referred to by 101, the slider assembly 832 is moved rearwardly, in an indirect manner, as will be discussed in greater detail subsequently.
The spout 800 also comprises a receptacle engaging trigger means generally referred to by 871 operatively mounted on the casing 823. More specifically, the receptacle engaging trigger means 871 comprises a trigger assembly disposed in sliding relation on the slider assembly 832. The receptacle engaging trigger means 871 includes an upper hook 833 and a lower hook 834 for engaging the inlet rim of a container 8. Each of the upper hook 833 and the lower hook 834 is connected to, and preferably formed as an integrally molded part of thereceptacle engaging trigger means 871.
The receptacle engaging trigger means 871, and more specifically the trigger assembly, are movable along the casing 823 between a valve-open position, and a valve-closed position. The trigger assembly 871 is biased to the forward valve-closed position by means of a trigger return spring 825 mounted in substantially surrounding relation on a trigger spring guide shaft 826 that extends rearwardly from the upper hook 833, and also seats in a trigger spring guide 827 on the slider assembly 832.
In the valve-closed position (see
The spout 800 according to the present invention further comprises linkage means 872 operatively connecting the receptacle engaging trigger means 871 and the valve 101. The linkage means generally referred by 872 has an enabled configuration, and a disabled configuration. In its enabled configuration, the receptacle engaging trigger means 871 and the valve 101 are operatively connected such that movement of the receptacle engaging trigger means 871 from the valve-closed position to the valve-open position causes the valve 101 to open. More specifically, as can be best seen in
In the disabled configuration, as in
More specifically, the linkage means 872 comprises a first linkage member 873 and a second linkage member 874 connected together in angularly variable relation at a linkage elbow 875, so as together to be movable between the enabled configuration, and the disabled configuration. The first linkage member 873 and the second linkage member 874 each have two parallel identical arms, for the sake of redundancy and strength.
In the preferred embodiment, as illustrated, the first linkage member 873 and the second linkage member 874 are connected together in pivotal relation at the linkage elbow 875. A “C”-shaped axis clasp 876 disposed at the back end of each of the arms of the first linkage member 873 receives and retains in pivotal relation a slider linkage axis shaft 877 disposed that the front end of the second linkage member 874.
The first linkage member 873 is operatively mounted on the receptacle engaging trigger means 871 and the second linkage member 874 is operatively mounted on the slider assembly 832. Accordingly, the first linkage member 873 may be referred to as the trigger linkage member and the second linkage member 874 may be referred to as the slider linkage member. The trigger linkage member 873 has a trigger linkage axis shaft 878 disposed at its front end, which is received and retained in pivoting relation within a trigger linkage axis shaft clasp 879 that is integrally formed on the trigger assembly 871.
The slider linkage member 874 has a “C”-shaped axis clasp 882 disposed at the back end of each of the arms of the silder linkage member 874, which is received and retained in pivoting relation a slider linkage axis shaft 883 that is integrally formed on the slider assembly 832. When assembled together, the trigger linkage member 873 and the slider linkage member 874 are spring biased to the enabled configuration by means of a reed spring 883 connected to the trigger linkage member 873. Preferably, the reed spring 883 is integrally formed as part of the trigger linkage member 873.
The spout 800 further comprises a deactivation means for changing the linkage means 872 from the enabled configuration to the disabled configuration. The deactivation means includes a venturi means 885 disposed within the casing 823. More specifically, the venture means comprises a venturi that is disposed at the tip of the jet 812. As liquid leaves the jet tip 886, which is an integral part of the venturi, it will expand becoming turbulent. The expansion and the turbulence of the flow will cause the liquid to collect and mix with air and that air will exit the spout 800 with the liquid being dispensed through the dispensing outlet 138. The liquid flowing through the casing 823 will create a negative pressure within the trunk body 823 which will continually draws air into the trunk body 823 through airway 822 as the liquid is flowing. This negative pressure is the force which is used to change the linkage means 872 from its enabled configuration to its disabled configuration, as will be explained in greater detail subsequently.
The deactivation means also comprises an air conduit having an air inlet 850 at a front end thereof and an air outlet 886. When the spout 800 is in the open orientation, the air conduit is in fluid communication with the fluid flow channel 820, to interact with the venturi means 885. More specifically, the air conduit is in fluid communication with the fluid flow channel 820 via an air hole 861 in the slider assembly 832 and an expandable and retractable chamber 860 between the air conduit 851 and the air hole 861. The expandable and retractable chamber 860 comprises a bellows 887. Arms 888 extend laterally outwardly from opposite sides of the bellows 887, so as to be able to engage the linkage elbows 875 on each side of the linkage means 872.
The air conduit 851 is in fluid communication with the fluid flow channel 820, as described above, to permit the drawing of air into the fluid flow channel 820 through the air inlet 850 when the air pressure is reduced by the venturi means 885, but inhibiting the flow of air into the fluid flow channel 820 when the liquid level of dispensed liquid reaches the air inlet 850 and blocks access of air into the air inlet 850. When the airflow into the fluid flow channel 820 is inhibited, the air pressure within the expandable and retractable chamber 860 or cylinder produces a downward force on the bellows 887, thus lowering the bellows arms 888 from a raised position, to a lowered position. As the bellows 887 moves downwardly, the bellows arms 888 push on the trigger linkage member 873 and the slider linkage member 874 of the linkage means 872 at the linkage elbow 875. The trigger linkage member 873 and the slider linkage member 874 go from their enabled configuration as in
In a more general sense, it can readily be seen that the deactivation means is an auto-shutoff feature for changing the linkage means 872 from the enabled configuration to the disabled configuration, in response to detecting the proximity of dispensed liquid in a receptacle, to thereby allow the valve 101 to close, thus precluding the delivery of liquid from the dispensing outlet 821 of the casing 823.
The two-channel spout further comprises a vapor flow channel within the main body. The vapor flow channel has a vapor flow channel inlet 850 and a vapor flow channel outlet 850a. The liquid flow channel within the main body has liquid flow inlet 815 and liquid flow outlet 821. The liquid flow channel and the vapor flow channel are separate and distinct one from the other, and thereby permit liquid within the liquid flow channel and vapor within the vapor flow channel to be kept separate and distinct one from the other.
In use, when the slidable trigger assembly is in its forward closed position, as best seen in
Reference will now be made to
Reference will now be made to
Reference will now be made to
Reference will now be made to
As can be understood from the above description and from the accompanying drawings, the present invention provides a liquid delivery system for supplying liquid from a portable container to at least one selected remote destination and removing vapor from said at least one selected remote destination, which liquid delivery system is not limited to use where it is raised above the level of the receiving container, and tilted so that liquid flows from the dispensing nozzle into the receiving container, which liquid delivery system can be used in a more convenient manner such as where liquids are pumped from one computer container to another, and which liquid delivery system can be used with or without a pump, all of which features are unknown in the prior art.
Other variations of the above principles will be apparent to those who are knowledgeable in the field of the invention, and such variations are considered to be within the scope of the present invention. Further, other modifications and alterations may be used in the design and manufacture of the liquid delivery system of the present invention without departing from the spirit and scope of the accompanying claims.
This application claims the benefit of the filed U.S. Provisional Patent Application No. 60/757,227, filed Jan. 9, 2006, entitled Two Line Hose Vapor Recovery System, which is here by incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2495905 | Pogue | Jan 1950 | A |
3635264 | Milburn | Jan 1972 | A |
3774654 | Hjermstad | Nov 1973 | A |
3807465 | Ginsburgh et al. | Apr 1974 | A |
4095626 | Healy | Jun 1978 | A |
4570686 | Devine | Feb 1986 | A |
4649969 | McMath | Mar 1987 | A |
4746036 | Messner | May 1988 | A |
4834270 | Messner | May 1989 | A |
5156199 | Hartsell, Jr. et al. | Oct 1992 | A |
5230374 | Dawson et al. | Jul 1993 | A |
5244021 | Hau | Sep 1993 | A |
5341855 | Rabinovich | Aug 1994 | A |
5522440 | Mitchell | Jun 1996 | A |
5620030 | Dalhart et al. | Apr 1997 | A |
5694988 | Collins | Dec 1997 | A |
5711355 | Kowalczyk | Jan 1998 | A |
5967385 | Coates, III | Oct 1999 | A |
5988458 | Messner | Nov 1999 | A |
6068163 | Kihm | May 2000 | A |
6176275 | Hill | Jan 2001 | B1 |
6945286 | Freeman | Sep 2005 | B2 |
7077297 | Valentini et al. | Jul 2006 | B1 |
7089975 | Chrisco et al. | Aug 2006 | B2 |
7735672 | Voss, III | Jun 2010 | B2 |
7793801 | Drummond | Sep 2010 | B2 |
8100302 | Bonner | Jan 2012 | B2 |
20050274127 | Drube et al. | Dec 2005 | A1 |
20060081657 | Bonner | Apr 2006 | A1 |
20090194192 | Bonner | Aug 2009 | A1 |
20100236658 | Voss, III | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
0326842 | Sep 1989 | EP |
Entry |
---|
Intellectual Property Office of New Zealand, “Examination Report”, for corresponding New Zealand Patent Application No. 570357 dated Oct. 11, 2011, New Zealand. |
Saputra, Maruli—Australian Patent Office, “Examiner's First Report” for corresponding Australian Patent Application No. 2007204557, dated Nov. 8, 2010, Australia. |
Negler, Justin—Davies Collison Cave, “Response to Examiner's First Report” for corresponding Australian Patent Application No. 2007204557, dated Aug. 8, 2012, Australia. |
Fearn, Mike—Intellectual Property Office of New Zealand, Examination Report for corresponding New Zealand Patent Application No. 570357, dated Mar. 17, 2010, Australia. |
Negler, Justin—Davies Collison Cave, “Response to Examination Report” for corresponding New Zealand Patent Application No. 570357, dated Sep. 14, 2011, Australia. |
Graham, Benjamin—Intellectual Property Office of New Zealand, “Examination Report” for corresponding New Zealand Patent Application No. 570357, dated Oct. 11, 2011, New Zealand. |
Negler, Justin—Davies Collison Cave, “Response to Examination Report” for corresponding New Zealand Patent Application No. 570357, dated Apr. 27, 2012, Australia. |
Canadian Intellectual Property Office, “International Search Report” for corresponding International Application No. PCT/CA2007/000025, dated May 29, 2007, Canada. |
Number | Date | Country | |
---|---|---|---|
20070227621 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60757227 | Jan 2006 | US |