1. Technical Field
The present invention relates to a liquid developer and an image forming apparatus.
2. Related Art
As a developer to be used for developing an electrostatic latent image formed on a latent image carrying member, a liquid developer obtained by dispersing a toner constituted by a material containing a colorant such as a pigment and a binder resin in an electrically insulating carrier liquid (insulating liquid) is known.
As the liquid developer, a negatively charged liquid developer and a positively charged liquid developer can be exemplified. In the case of using a negatively charged liquid developer, there were problems that ozone was generated in an image forming apparatus when an image was formed, resulting in causing an environmental problem or an adverse effect on peripheral units in the image forming apparatus, etc.
Therefore, recently, development of a method for forming an image using a positively charged liquid developer with which image formation can be performed by reducing a produced amount of a discharge product such as ozone has been advanced (see, for example, JP-A-2002-214849).
In the positively charged liquid developer described in JP-A-2002-214849, toner particles are positively charged by adding a charge control agent.
On the other hand, as a resin material constituting toner particles, a negatively charged resin material is widely used in general from the viewpoint of a fixing property, a charging characteristic, etc. However, when such a negatively charged resin material was used, it was difficult to positively charge toner particles (liquid developer). Further, it is conceivable that toner particles containing a negatively charged resin material are positively charged by adding a charge control agent, however, it was difficult to obtain a sufficient charge amount.
Further, it is also conceivable that a positively charged resin material is used as a constituent material of toner particles, however, in such a positively charged resin material, the resin itself has low stability and it was difficult to apply the positively charged resin material as a material constituting toner particles.
An advantage of some aspects of the invention is to provide a liquid developer excellent in positive charging characteristic, and an image forming apparatus using such a liquid developer.
A liquid developer according to a first aspect of the invention includes:
an insulating liquid;
toner particles mainly constituted by a resin material; and
a dispersant having an amine value,
wherein a power of hydrogen ion concentration pH of the liquid developer at 24° C. is from 4 to 7.
In accordance with the aspect of the invention, the amine value of the dispersant is preferably from 60 to 100 mg KOH/g.
In accordance with the aspect of the invention, the liquid developer preferably further contains a pH adjusting agent.
In accordance with the aspect of the invention, the resin material preferably contains a polyester resin.
In accordance with the aspect of the invention, an acid value of the polyester resin is preferably from 5 to 15 mg KOH/g.
In accordance with the aspect of the invention, the resin material preferably contains a rosin-modified resin.
In accordance with the aspect of the invention, an acid value of the rosin-modified resin is preferably from 10 to 40 mg KOH/g.
In accordance with the aspect of the invention, the insulating liquid preferably contains a vegetable oil.
In accordance with the aspect of the invention, the insulating liquid preferably contains a fatty acid monoester.
An image forming apparatus according to a second aspect of the invention includes:
plural developing units that form plural monochrome images corresponding to plural liquid developers of different colors using the plural liquid developers;
an intermediate transfer unit that transfers sequentially the plural monochrome images formed in the plural developing units and forms an intermediate transfer image by superimposing the transferred plural monochrome images;
a secondary transfer unit that transfers the intermediate transfer image to a recording medium and forms an unfixed color image on the recording medium; and
a fixing unit that fixes the unfixed color image on the recording medium,
wherein the liquid developers each contain:
an insulating liquid;
toner particles mainly constituted by a resin material; and
a dispersant having an amine value, and
a power of hydrogen ion concentration pH of the liquid developer at 24° C. is from 4 to 7.
In accordance with the aspect of the invention, preferably, the developing units each have a feed section that feeds the liquid developer for forming the monochrome image, a recovery section that recovers the excess liquid developer in the feed section, and a partition provided between the recovery section and the feed section, and the excess liquid developer in the feed section is recovered in the recovery section through the partition.
With the above-mentioned constitution, a liquid developer excellent in positive charging characteristic can be provided. Further, an image forming apparatus using such a liquid developer can be provided.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, preferred embodiments of the invention will be described in detail.
First, a liquid developer of an embodiment of the invention will be described.
The liquid developer of the invention contains an insulating liquid having dispersed therein toner particles, and further contains a dispersant having an amine value. Further, the liquid developer of the invention has a power of hydrogen ion concentration pH (in other words hydrogen ion exponent hereinafter simply referred to as pH) of from 4 to 7.
According to this constitution, the liquid developer of the invention is excellent in positive charging characteristic. This is presumably due to the following reasons.
On a surface of the toner particles, an acidic group (such as a carboxyl group) derived from a resin material is generally present. This acidic group is tonically bound to a dispersant having an amine value and the dispersant having an amine value is adhered or adsorbed to the surface of the toner particles.
Further, the dispersant having an amine value generally has a nitrogen atom derived from an amine structure or an amide structure in its molecule. When the pH of the liquid developer is in a range of from 4 to 7, this nitrogen atom is activated and attracts a charged substance such as a proton (H+) in the liquid developer.
As described above, the dispersant attracting the charged substance in the liquid developer in this manner is present on the surface of the toner particles, and therefore, the positive charging characteristic of the liquid developer is improved and excellent development efficiency and transfer efficiency are obtained.
On the other hand, when the pH of the liquid developer is lower than the lower limit, the stability of the liquid developer itself is decreased. Further, when the pH of the liquid developer is too low, it may sometimes affect members of an image forming apparatus. When the pH of the liquid developer exceeds the upper limit, the nitrogen atom of the dispersant is not activated, and therefore, it is difficult for the liquid developer to have a positive charging property.
The pH of the liquid developer of the invention is from 4 to 7, however, it is more preferably from 5 to 6.5, further more preferably from 5.8 to 6.3. According to this, a nitrogen atom present in a molecule of the dispersant can be more efficiently activated, and the positive charging characteristic of the liquid developer can be made particularly excellent.
Hereinafter, the respective constituent components of the liquid developer will be described.
The dispersant is a component which makes a contribution to the dispersion stability of the toner particles.
The dispersant to be used in the invention has an amine value. As described above, such a dispersant having an amine value is attracted by an acidic group on the surface of the toner particles and adhered or adsorbed to the surface of the toner particles. When the pH of the liquid developer is in the above-mentioned range, a nitrogen atom in a molecule of the dispersant is activated and the nitrogen atom attracts a charged substance (such as a proton) in the liquid developer, and therefore, the positive charging characteristic of the liquid developer can be improved. That is, in the invention, the dispersant having an amine value is a component which makes a contribution to the improvement of the positive charging characteristic of the liquid developer.
Examples of the dispersant having an amine value include EFKA-5044, EFKA-5244, EFKA-6220, EFKA-6225, EFKA-7564, EFKA-4080, etc. manufactured by CIBA Specialty Chemicals Co. Ltd., Anti-Terra-U, Disperbyk-101, Disperbyk-106, Disperbyk-108, Disperbyk-109, Disperbyk-116, Disperbyk-140 (“Disperbyk” is the registered trademark of BYK-Chemie GmbH), etc. manufactured by BYK-Chemie GmbH, and Agrisperse FA, Agrisperse 712, etc. manufactured by New Century Coatings. These can be used alone or in combination of two or more of them.
The amine value of the dispersant to be used in the invention is not particularly limited, however, it is preferably from 60 to 100 mg KOH/g, more preferably from 60 to 80 mg KOH/g. According to this, the positive charging characteristic of the liquid developer can be more effectively improved. On the other hand, when the amine value of the dispersant is too small, it may be difficult to sufficiently adhere the dispersant to the surface of the tone particles in some cases. On the other hand, when the amine value of the dispersant exceeds the above upper limit, the improvement of the characteristic commensurate with the increase in the amine value may not be obtained in some cases.
A content of such a dispersant in the liquid developer is preferably from 0.2 to 10 parts by weight, more preferably from 0.5 to 8 parts by weight, further more preferably from 1 to 6 parts by weight based on 100 parts by weight of the toner particles. According to this, the dispersion stability of the toner particles can be made more excellent and also the positive charging characteristic of the liquid developer can be more effectively improved.
Subsequently, the toner particles will be described.
The toner particles mainly contain a resin material.
In the invention, the resin material is not particularly limited, and for example, a known resin can be used.
In particular, it is preferred that a resin material containing a polyester resin is used as the resin material. The polyester resin is relatively rich in a carboxyl group which is an acidic group, therefore, it can allow more acidic groups to exist on the surface of the toner particles. As a result, the dispersant as described above can be more effectively adhered (adsorbed) to the surface of the toner particles, and thus, the positive charging characteristic of the liquid developer can be more effectively improved. Further, the polyester resin has a high transparency and when it is used as a binder resin, it exhibits characteristics that a color developing property of the resulting image is good and a high fixing property can be obtained.
Further, as the polyester resin, it is preferred that a low-molecular weight polyester resin having a weight average molecular weight Mw of from 3000 to 12000 and a high-molecular weight polyester resin having a weight average molecular weight Mw of from 20000 to 400000 are used in combination. According to this, the toner particles can be surely prevented from aggregating with one another during storage and also the toner particles can be fixed on a recording medium at a relatively low temperature during fixation.
The low-molecular weight polyester resin preferably has ethylene glycol (EG) and/or neopentyl glycol (NPG) as a constituent monomer component. Further, when the contents of EG and NPG in all constituent monomers to be used in the synthesis of the low-molecular weight polyester resin are denoted by W(EG) [wt %] and W(NPG) [wt %], respectively, a weight ratio of EG to NPG (W(EG)/W(NPG)) is preferably from 0 to 1.1, more preferably from 0.8 to 1.0. According to this, the storage stability of the toner particles can be made sufficiently excellent. Further, the toner particles can be fixed on a recording medium more stably at a low temperature. Also, such a liquid developer can be more preferably applied to high-speed image formation.
Further, a glass transition point Tg of the low-molecular weight polyester resin is preferably from 30 to 55° C., more preferably from 35 to 50° C. By using the low-molecular weight polyester resin that satisfies the above-mentioned conditions as a constituent material of the toner particles, aggregation and fusion of the toner particles can be more surely prevented during storage and the storage stability of the liquid developer becomes more excellent. Further, the toner particles can be more preferably fixed on a recording medium at a low temperature.
Further, a softening point T1/2 of the low-molecular weight polyester resin is preferably from 60 to 120° C., more preferably from 80 to 110° C. By using the polyester resin that satisfies the above-mentioned conditions as a constituent material of the toner particles, aggregation and fusion of the toner particles can be more surely prevented during storage and the storage stability of the liquid developer becomes more excellent. In addition, during fixation, the toner particles can be fused with a smaller amount of heat. According to this, the toner particles can be fixed more stably at a low temperature. Also, such a liquid developer can be more preferably applied to high-speed image formation.
In this specification, the term “glass transition point Tg” refers to a temperature of an intersection of the extension of the baseline of equal to or lower than the glass transition point and the tangential line showing the maximum inclination between the kick-off of the peak and the top of the peak which is determined using a differential scanning calorimeter DSC-220C (manufactured by Seiko Instruments, Inc.) under the following measurement conditions: sample amount: 10 mg; temperature increasing rate: 10° C./min; and measurement temperature range: 10 to 150° C.
Further, the term “softening point” refers to a softening initiation temperature defined by using a koka-type flow tester (manufactured by Shimadzu Corporation) under the following measurement conditions: temperature increasing rate: 5° C./min; and die diameter: 1.0 mm.
Further, when the polyester resin is contained in the toner particles, a content of the low-molecular weight polyester resin in the polyester resin is preferably from 50 to 90 wt %, more preferably from 60 to 80 wt %. According to this, the liquid developer is particularly excellent in storage stability and low-temperature fixing property.
The high-molecular weight polyester resin as described above preferably has ethylene glycol (EG) and/or neopentyl glycol (NPG) as a constituent monomer component. Further, when the contents of EG and NPG in all constituent monomers to be used in the synthesis of such a polyester resin are denoted by W(EG) [wt %] and W(NPG) [wt %], respectively, a weight ratio of EG to NPG (W(EG)/W(NPG)) is preferably from 1.2 to 3.0, more preferably from 1.5 to 2.0. According to this, the liquid developer is particularly excellent in storage stability. Further, during fixation, the toner particles can be more preferably fixed on a recording medium at a low temperature. In addition, the fixed toner particles are more excellent in adhesiveness to a recording medium and weather resistance, and thus, a resulting toner image has particularly excellent durability.
Further, a glass transition point Tg of the high-molecular weight polyester resin is preferably from 45 to 70° C., more preferably from 50 to 65° C. By using the high-molecular weight polyester resin that satisfies the above-mentioned conditions as a constituent material of the toner particles, aggregation and fusion of the toner particles can be more surely prevented during storage and the storage stability of the liquid developer becomes more excellent. In particular, even when the liquid developer is stored at a high temperature, the toner particles are more surely prevented from aggregating with one another, and the liquid developer is particularly excellent in high-temperature storage stability. Further, the toner particles can be more preferably fixed on a recording medium at a low temperature.
Further, a softening point T1/2 of the high-molecular weight polyester resin is preferably from 60 to 220° C., more preferably from 80 to 190° C. By using the polyester resin that satisfies the above-mentioned conditions as a constituent material of the toner particles, aggregation and fusion of the toner particles can be more surely prevented during storage and the storage stability of the liquid developer becomes more excellent. In addition, during fixation, the toner particles can be more rigidly fixed on a recording medium at a low temperature.
A glass transition point Tg of the polyester resin containing the low-molecular weight polyester resin and the high-molecular weight polyester resin as described above is preferably from 35 to 60° C., more preferably from 40 to 50° C. By using the polyester resin that satisfies the above-mentioned conditions as a constituent material of the toner particles, aggregation and fusion of the toner particles can be more surely prevented during storage and the storage stability of the liquid developer becomes more excellent. Further, the toner particles can be more preferably fixed on a recording medium at a low temperature.
Further, when the polyester resin is contained in the toner particles, a content of the high-molecular weight polyester resin in the polyester resin is preferably from 10 to 50 wt %, more preferably from 20 to 40 wt %. According to this, the liquid developer is particularly excellent in storage stability and low-temperature fixing property.
An acid value of the polyester resin to be used in the invention is preferably from 5 to 15 mg KOH/g, more preferably from 5 to 10 mg KOH/g. According to this, an appropriate number of acidic groups can be allowed to exist on the surface of the toner particles, and the positive charging characteristic of the liquid developer can be made more excellent. When the acid value of the polyester resin is lower than the above lower limit, depending on the type of dispersant, it may be difficult to sufficiently adhere the dispersant to the surface of the toner particles in some cases. On the other hand, when the acid value of the polyester resin exceeds the above upper limit, a phenomenon that the stability of the resin itself is decreased, the charging stability is decreased, or the like is observed in some cases, and the durability of the toner particles may sometimes be decreased.
A content of the polyester resin in the resin material is preferably 50 wt % or more, more preferably 80 wt % or more.
Further, it is preferred that a resin material containing a rosin-modified resin is used as the resin material.
The rosin-modified resin is a component plasticized by the insulating liquid as mentioned below. Accordingly, in the case of the toner particles containing the rosin-modified resin as a constituent component, the dispersant can be rigidly adhered (adsorbed) to their surface. As a result, the dispersion stability of the toner particles can be made particularly excellent and also the positive charging characteristic of the liquid developer can be made particularly excellent.
Further, in the case where the resin material contains the polyester resin, since there is a tendency that the rosin-modified resin has a low compatibility with the polyester resin, by using the polyester resin and the rosin-modified resin in combination, the rosin-modified resin can be localized on the surface of the toner particles. By localizing the rosin-modified resin in this manner, the dispersant can be allowed to more surely exist on the surface of the toner particles, and the positive charging characteristic can be made particularly excellent.
Examples of the rosin-modified resin -include rosin-modified phenol resins, rosin-modified maleic resins, rosin-modified polyester resins, fumaric acid-modified rosin resins, and ester gums. These can be used alone or in combination of two or more of them.
A softening point of the rosin-modified resin as described above is preferably from 80 to 190° C., more preferably from 80 to 160° C., further more preferably from 80 to 130° C. According to this, the charging characteristic and the dispersibility of the toner particles can be made excellent, and also the fixing property and the heat resistant storage stability of the toner particles can be achieved at a high level.
Further, a weight average molecular weight of the rosin resin is preferably from 500 to 100000, more preferably from 1000 to 80000, further more preferably from 1000 to 50000. According to this, the long-term dispersion stability and the charging characteristic of the toner particles can be made excellent, and also the fixing property and the heat resistant storage stability of the toner particles can be achieved at a high level.
Further, an acid value of the rosin resin is preferably from 10 to 40 mg KOH/g, more preferably from 10 to 30 mg KOH/g, further more preferably from 10 to 25 mg KOH/g. According to this, the dispersant can be more efficiently adhered (adsorbed) to the surface of the toner particles and the positive charging characteristic of the liquid developer can be more effectively improved.
Further, a content of the rosin resin in the resin material constituting the toner particles is preferably from 1 to 50 wt %, more preferably from 5 to 40 wt %. According to this, the rosin resin can be allowed to more surely exist on the surface of the toner particles, and the dispersant can be more rigidly adhered (adsorbed) to the surface of the toner particles.
A glass transition point Tg of the total resin material as described above is preferably from 15 to 70° C., more preferably from 20 to 55° C. According to this, in the liquid developer containing the produced toner particles, aggregation and fusion of the toner particles can be more surely prevented during storage, and thus, the storage stability of the liquid developer becomes more excellent. Further, the toner particles can be more preferably fixed on a recording medium at a low temperature.
Further, a softening point T1/2 of the total resin material is not particularly limited, however, it is preferably from 50 to 130° C., more preferably from 50 to 120° C., further more preferably from 60 to 115° C.
Further, the toner particles may contain a colorant. The colorant is not particularly limited, and for example, a known pigment, dye, or the like can be used.
Further, the toner particles may also contain components other than the above-mentioned components. Examples of such components include known waxes and magnetic powder.
Further, as a constituent material (component) of the toner particles, for example, a metal soap such as zinc stearate, zinc oxide, cerium oxide, silica, titanium oxide, iron oxide, a fatty acid, a fatty acid metal salt, or the like may be used other than the above-mentioned components.
An average particle diameter of the toner particles of the invention constituted by the material as described above is preferably from 0.7 to 3 μm, more preferably from 0.8 to 2.5 μm, further more preferably from 0.8 to 2.0 μm. When the average particle diameter of the toner particles falls within the above-mentioned range, a variation in properties among the toner particles can be made small, whereby a resolution of a toner image formed with the liquid developer can be made sufficiently high while making the reliability of the obtaining liquid developer as a whole high. Further, the dispersibility of the toner particles in the insulating liquid can be made favorable and the storage stability of the liquid developer can be made high. The term “average particle diameter” as used herein refers to an average particle diameter by volume unless otherwise stated.
A content of the toner particles in the liquid developer is preferably from 10 to 60 wt %, more preferably from 20 to 50 wt %.
Subsequently, the insulating liquid will be described.
The insulating liquid may be any as long as it is a liquid having a sufficiently high insulating property, however, specifically, the insulating liquid has an electric resistance at room temperature (20° C.) of preferably 1011 Ωcm or more, more preferably 1012 Ωcm or more, further more preferably 1013 Ωcm or more.
Further, a relative dielectric constant of the insulating liquid is preferably 3.5 or less.
Examples of the insulating liquid that satisfies the above-mentioned conditions include mineral oils (hydrocarbon liquids) such as Isopar E, Isopar G, Isopar H, and Isopar L (“Isopar” is the trade name of Exxon Chemical Company), Shellsol 70 and Shellsol 71 (“Shellsol” is the trade name of Shell Oil Company), Amsco OMS and Amsco 460 solvents (“Amsco” is the trade name of Spirits Co.), and low-viscosity/high-viscosity liquid paraffins (Wako Pure Chemical Industries, Ltd.), vegetable oils such as fatty acid glycerides and medium-chain fatty acid esters, fatty acid monoesters which are esters of a fatty acid and a monohydric alcohol, octane, isooctane, decane, isodecane, decalin, nonane, dodecane, isododecane, cyclohexane, cyclooctane, cyclodecane, benzene, toluene, xylene, and mesitylene. These can be used alone or in combination of two or more of them. Among these, especially, the vegetable oil can improve the dispersion stability of the toner particles because it has a particularly high affinity for (compatibility with) the resin material (particularly the polyester resin). As a result, a variation in charging characteristic among the toner particles can be prevented. Further, the vegetable oil is an environmentally benign component. Accordingly, a load on the environment of the insulating liquid caused by, for example, leakage of the insulating liquid outside the image forming apparatus and disposal of the used liquid developer can be reduced. As a result, an environmentally benign liquid developer can be provided.
Further, among the above-mentioned insulating liquids, it is preferred to use one containing a fatty acid monoester as the insulating liquid. The fatty acid monoester is a component having an effect of plasticizing the toner particles (plasticizing effect) during fixation. The plasticized toner particles can be easily adhered to a recording medium, and the fixing property of the toner particles can be made higher. Further, by plasticizing the toner particles in this manner, the dispersant as described above can be rigidly adhered (adsorbed) to the surface of the toner particles, and the positive charging characteristic of the toner particles can be further improved.
Examples of such a fatty acid monoester include alkyl (such as methyl, ethyl, propyl, or butyl) monoesters of an unsaturated fatty acid typified by oleic acid, palmitoleic acid, linoleic acid, α-linolenic acid, γ-linolenic acid, arachidonic acid, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), etc., and alkyl (such as methyl, ethyl, propyl, or butyl) monoesters of a saturated fatty acid typified by butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidinic acid, behenic acid, lignoceric acid, etc. These can be used alone or in combination of two or more of them.
When the insulating liquid contains the fatty acid monoester, a content of the fatty acid monoester in the insulating liquid is preferably from 1 to 50 wt %, more preferably from 5 to 45 wt %. According to this, the toner particles can be preferably plasticized, and the above-mentioned dispersant can be more surely adhered (adsorbed) to the surface of the toner particles. As a result, the dispersion stability of the toner particles can be further improved, and also the positive charging characteristic can be made particularly excellent.
A viscosity of the insulating liquid is not particularly limited, however, it is preferably from 5 to 1000 mPa·s, more preferably from 50 to 800 mpa·s, further more preferably from 50 to 500 mPa·s. In the case where the viscosity of the insulating liquid falls within the above-mentioned range, when the liquid developer is drawn out of a developer vessel by a coating roller, an adequate amount of the insulating liquid is adhered to the toner particles, and the developing property and transferring property of a toner image can be made particularly excellent. Further, in the image forming apparatus as mentioned below, the liquid developer can be more uniformly fed to the coating roller, and further, the liquid developer can be more effectively prevented from dripping or the like from the coating roller or the like. In addition, the toner particles can be more effectively prevented from aggregating and precipitating, and thus, the dispersibility of the toner particles in the insulating liquid can be made higher. On the other hand, when the viscosity of the insulating liquid is less than the above lower limit, in the image forming apparatus as mentioned below, a problem such as dripping or the like of the liquid developer from the coating roller or the like may arise. Meanwhile, when the viscosity of the insulating liquid exceeds the above upper limit, the dispersibility of the toner particles cannot be made sufficiently high, and in the image forming apparatus as mentioned below, the liquid developer cannot be more uniformly fed to the coating roller in some cases. In this connection, the term “viscosity” as used herein refers to a value obtained by measurement at 25° C. unless otherwise stated.
Further, the liquid developer may also contain a pH adjusting agent other than the above-mentioned components.
Examples of the pH adjusting agent include acetic acid, citric acid, tartaric acid, propionic acid, hydrochloric acid, fumaric acid, adipic acid, benzoic acid, malic acid, phosphoric acid, lactic acid, and gluconic acid. These can be used alone or in combination of two or more of them.
A content of the pH adjusting agent in the liquid developer varies depending on a pH value to be adjusted, however, it is preferably 2 parts by weight or less, more preferably 0.5 parts by weight or less based on 100 parts by weight of the insulating liquid. When an addition amount of the pH adjusting agent falls within the above-mentioned range, the pH of the liquid developer can be more preferably adjusted to a value in the above-mentioned range while maintaining the storage stability of the liquid developer. As a result, the positive charging characteristic of the liquid developer can be made more excellent.
Further, the liquid developer (insulating liquid) may contain a known antioxidant, charge control agent and the like other than the above-mentioned components.
Subsequently, a preferred embodiment of the process for producing the liquid developer as described above will be described.
The process for producing the liquid developer according to this embodiment includes a dispersion liquid preparation step of preparing a dispersion liquid in which a resin material as described above and a colorant are dispersed in an aqueous dispersion medium; a coalescence step of obtaining coalescent particles by coalescing plural dispersoids; a solvent removal step of removing an organic solvent contained in the coalescent particles to obtain toner particles containing the resin material and the colorant; and a dispersion step of dispersing the toner particles in an insulating liquid to which the dispersant described above and if necessary, a pH adjusting agent are added.
Hereinafter, the respective steps constituting the process for producing the liquid developer will be described in detail.
First, a dispersion liquid (aqueous dispersion liquid) is prepared.
The aqueous dispersion liquid may be prepared by any method, and for example, it can be prepared as follows. A constituent material (toner material) of toner particles such as a resin material and a colorant is dissolved or dispersed in an organic solvent to obtain a resin liquid (resin liquid preparation treatment) and an aqueous dispersion medium constituted by an aqueous liquid is added to the resin liquid to form dispersoids (dispersoids in a liquid state) containing the toner material in the aqueous liquid, whereby a dispersion liquid (aqueous dispersion liquid) in which the dispersoids are dispersed is obtained (dispersoid formation treatment).
First, a resin liquid in which a toner material is dissolved or dispersed in an organic solvent is prepared.
The prepared resin liquid contains a constituent material of the toner particles as described above and an organic solvent as described below.
The organic solvent may be any as long as it can dissolve at least a portion of the resin material, however, it is preferred to use an organic solvent having a boiling point lower than that of an aqueous liquid mentioned below. According to this, the organic solvent can be easily removed.
Further, the organic solvent preferably has a low compatibility with an aqueous dispersion medium (aqueous liquid) mentioned below (for example, an organic solvent having a solubility in 100 g of the aqueous dispersion medium at 25° C. of 30 g or less). According to this, the toner material can be finely dispersed in an aqueous emulsion liquid in a stable state.
Further, a composition of the organic solvent can be appropriately selected depending on, for example, the composition of the resin material as described above and the colorant, the composition of the aqueous dispersion medium, or the like.
Such an organic solvent is not particularly limited, however, examples thereof include ketone solvents such as MEK and aromatic hydrocarbon solvents such as toluene.
The resin liquid can be obtained by mixing, for example, a resin material, a colorant, an organic solvent, and the like using a stirrer or the like. Examples of the stirrer which can be used in the preparation of the resin liquid include high-speed stirrers such as DESPA (manufactured by Asada Iron Works Co., Ltd.) and T.K. Robomix/T.K. Homo Disper Model 2.5 (manufactured by Primix Corporation).
Further, a temperature of the material during stirring is preferably from 20 to 60° C., more preferably from 30 to 50° C.
A solid content in the resin liquid is not particularly limited, however, it is preferably from 40 to 75 wt %, more preferably from 50to 73 wt %, further more preferably from 50 to 70 wt %. When the solid content falls within the above-mentioned range, dispersoids constituting a dispersion liquid (emulsified suspension liquid) mentioned below can be made to have a higher sphericity (a shape close to a sphere), and the shape of the finally obtained toner particles can be more surely made favorable.
Further, in the preparation of the resin liquid, all constituent components of the resin liquid to be prepared may be mixed simultaneously, or part of the constituent components of the resin liquid to be prepared are mixed to obtain a mixture (master mix) and thereafter, the mixture (master mix) may be mixed with the other components.
Subsequently, an aqueous dispersion liquid (dispersion liquid) is prepared.
By adding an aqueous dispersion medium constituted by an aqueous liquid to the resin liquid, dispersoids (dispersoids in a liquid state) containing the toner material are formed in an aqueous liquid, whereby a dispersion liquid (aqueous dispersion liquid) in which the dispersoids are dispersed is obtained.
The aqueous dispersion medium is constituted by an aqueous liquid.
As the aqueous liquid, a liquid which is mainly constituted by water can be used.
In the aqueous liquid, for example, a solvent excellent in compatibility with water (for example, a solvent having a solubility in 100 parts by weight of water at 25° C. of 50 parts by weight or more) may be contained.
Further, to the aqueous dispersion medium, an emulsifying dispersant may be added as needed. By adding an emulsifying dispersant thereto, the aqueous emulsion liquid can be more easily prepared.
The emulsifying dispersant is not particularly limited, and for example, a known emulsifying dispersant can be used.
Further, when the aqueous dispersion liquid is prepared, for example, a neutralizing agent may be used. By using the neutralizing agent, for example, a functional group (such as a carboxyl group) in the resin material can be neutralized, and the uniformity of the shape and size of the dispersoids in the aqueous dispersion liquid to be prepared, and the dispersibility of the dispersoids can be made particularly excellent. Consequently, the resulting toner particles have a particularly narrow particle size distribution.
The neutralizing agent may be added, for example, to the resin liquid, or to the aqueous liquid.
Further, in the preparation of the aqueous dispersion liquid, the neutralizing agent may be added in divided portions.
As the neutralizing agent, a basic compound can be used. Specific examples thereof include inorganic bases such as sodium hydroxide, potassium hydroxide, and ammonia; and organic bases such as diethylamine, triethylamine, and isopropylamine, and these can be used alone or in combination of two or more of them. Further, the neutralizing agent may be an aqueous solution containing a compound as described above.
An addition amount of the basic compound is preferably an amount corresponding to 1 to 3 times (1 to 3 equivalents), more preferably an amount corresponding to 1 to 2 times (1 to 2 equivalents) the amount necessary for neutralizing all the carboxyl groups in the resin material. According to this, the formation of irregularly shaped dispersoids can be effectively prevented, and further, a particle size distribution of particles obtained in the coalescence step mentioned in detail below can be made sharper.
The addition of the aqueous liquid to the resin liquid may be performed by any method, however, it is preferred that the aqueous liquid containing water is added to the resin liquid while stirring the resin liquid. That is, it is preferred that the aqueous liquid is gradually added (dropwise) to the resin liquid while applying a shearing force to the resin liquid using a stirrer or the like to cause phase conversion from a W/O-type emulsion liquid into an O/W-type emulsion liquid, and the aqueous dispersion liquid in which dispersoids derived from the resin liquid are dispersed in the aqueous liquid is finally obtained.
Examples of the stirrer which can be used in the preparation of the aqueous dispersion liquid include high-speed stirrers and high-speed dispersers such as DESPA (manufactured by Asada Iron Works Co., Ltd.), T.K. Robomix/T.K. Homo Disper Model 2.5 (manufactured by Primix Corporation), Slasher (manufactured by Mitsui Mining Co., Ltd.), and Cavitron (manufactured by Eurotec, Ltd.).
Further, during the addition of the aqueous liquid to the resin liquid, stirring is preferably performed such that a peripheral velocity of the stirring blade falls within a range from 10 to 20 m/sec, more preferably from 12 to 18 m/sec. When the peripheral velocity of the stirring blade falls within the above-mentioned range, the aqueous dispersion liquid can be efficiently obtained and also a variation in shape and size of the dispersoids in the aqueous dispersion liquid can be made particularly small, and the uniform dispersibility of the dispersoids can be made particularly excellent while preventing the generation of too small dispersoids and coarse particles.
A solid content in the aqueous dispersion liquid is not particularly limited, however, it is preferably from 5 to 55 wt %, more preferably from 10 to 50 wt %. According to this, the productivity of the toner particles can be made particularly excellent while more surely preventing unwanted aggregation of the dispersoids in the aqueous dispersion liquid.
Further, a temperature of the material in this treatment is preferably from 20 to 60° C., more preferably from 20 to 50° C.
Subsequently, coalescent particles are obtained by coalescing the plural dispersoids (coalescence step). The coalescence of the dispersoids usually proceeds by colliding the dispersoids containing an organic solvent and combining them with one another.
The coalescence of the plural dispersoids is performed by adding an electrolyte to the dispersion liquid while stirring the dispersion liquid. According to this, coalescent particles can be easily and surely obtained. Further, by controlling an addition amount of the electrolyte, the particle diameter and particle size distribution of the coalescent particles can be easily and surely controlled.
The electrolyte is not particularly limited, and known organic and inorganic water-soluble salts and the like can be used alone or in combination of two or more of them.
Further, the electrolyte is preferably a monovalent cationic salt. According to this, the particle size distribution of the resulting coalescent particles can be made narrow. In addition, by using a monovalent cationic salt, the generation of coarse particles can be surely prevented in this step.
Further, among the monovalent cationic salts, the electrolyte is preferably a sulfate (such as sodium sulfate or ammonium sulfate) or a carbonate, and particularly preferably a sulfate. According to this, the particle diameter of the coalescent particles can be particularly easily controlled.
An amount of the electrolyte to be added in this step is preferably from 0.5 to 3 parts by weight, more preferably from 1 to 2 parts by weight based on 100 parts by weight of the solid content in the dispersion liquid to which the electrolyte is added. According to this, the particle diameter of the coalescent particles can be particularly easily and surely controlled, and also the generation of coarse particles can be surely prevented.
Further, the electrolyte is preferably added in a state of an aqueous solution. According to this, the electrolyte can be promptly diffused in the entire dispersion liquid and also an addition amount of the electrolyte can be easily and surely controlled. As a result, the coalescent particles having a desired particle diameter and a particularly narrow particle size distribution can be obtained.
When the electrolyte is added in a state of an aqueous solution, a concentration of the electrolyte in the aqueous solution is preferably from 2 to 10 wt %, more preferably from 2.5 to 6 wt %. According to this, the electrolyte can be particularly promptly diffused in the entire dispersion liquid and also an addition amount of the electrolyte can be easily and surely controlled. Further, by adding such an aqueous solution, a content of water in the dispersion liquid after completion of addition of the electrolyte is made preferable. Accordingly, a growing rate of the coalescent particles after addition of the electrolyte can be made adequately slow to such an extent that the productivity is not decreased. As a result, the particle diameter thereof can be more surely controlled. In addition, unwanted coalescence of the coalescent particles can be surely prevented.
Further, when the electrolyte is added in a state of an aqueous solution, an addition rate of the aqueous electrolyte solution is preferably from 0.5 to 10 parts by weight/min, more preferably from 1.5 to 5 parts by weight/min based on 100 parts by weight of the solid content in the dispersion liquid to which the aqueous electrolyte solution is added. According to this, the occurrence of uneven electrolyte concentration in the dispersion liquid can be prevented, and the generation of coarse particles can be surely prevented. In addition, the particle size distribution of the coalescent particles becomes particularly narrow. Further, by adding the electrolyte at such a rate, the coalescence rate can be particularly easily controlled, and controlling of the average particle diameter of the coalescent particles becomes particularly easy, and also the productivity of toner can be made particularly excellent.
The electrolyte may be added in divided portions. According to this, the coalescent particles having a desired size can be easily and surely obtained, and also the degree of circularity of the resulting coalescent particles can be surely made sufficiently high.
Further, this step is performed while stirring the dispersion liquid. According to this, the coalescent particles having a particularly small variation in shape and size among the particles can be obtained. As a result, the obtained toner particles have a small variation in properties (particularly a charging characteristic) among the toner particles.
For stirring the dispersion liquid, a stirring blade such as an anchor blade, a turbine blade, a pfaudler blade, a full zone blade, a maxblend blade, or a crescentic blade can be used, and in particular, a maxblend blade or a fullzone blade is preferred. According to this, the added electrolyte can be promptly and uniformly dispersed or dissolved, and the occurrence of uneven electrolyte concentration can be surely prevented. Further, the dispersoids can be efficiently coalesced, and also disintegration of once formed coalescent particles can be more surely prevented. As a result, the coalescent particles having a small variation in shape and particle diameter among the particles can be efficiently obtained.
A peripheral velocity of the stirring blade is preferably from 0.1 to 10 m/sec, more preferably from 0.2 to 8 m/sec, further more preferably from 0.2 to 6 m/sec. When the peripheral velocity of the stirring blade falls within the above-mentioned range, the added electrolyte can be uniformly dispersed or dissolved, and the occurrence of uneven electrolyte concentration can be surely prevented. Further, the dispersoids can be more efficiently coalesced, and also disintegration of once formed coalescent particles can be more surely prevented.
An average particle diameter of the resulting coalescent particles is preferably from 0.5 to 5 μm, more preferably from 1.5 to 3 μm. According to this, the particle diameter of the finally obtained toner particles can be made adequate.
Thereafter, the organic solvent contained in the dispersion liquid is removed. According to this, resin fine particles (toner particles) dispersed in the dispersion liquid can be obtained.
The removal of the organic solvent may be performed by any method. However, for example, it can be performed under reduced pressure. According to this, the organic solvent can be efficiently removed while sufficiently preventing degeneration, etc. of the constituent material such as resin material.
Further, a treatment temperature in this step is preferably lower than the glass transition point (Tg) of the resin material constituting the coalescent particles.
Further, this step may be performed in a state in which an antifoaming agent is added to the dispersion liquid. According to this, the organic solvent can be efficiently removed.
As the antifoaming agent, for example, a lower alcohol, a higher alcohol, an oil and fat, a fatty acid, a fatty acid ester, a phosphoric acid ester or the like as well as a mineral oil antifoaming agent, a polyether antifoaming agent, or a silicone antifoaming agent can be used.
An addition amount of the antifoaming agent is not particularly limited, however, it is preferably from 20 to 300 ppm by weight, more preferably from 30 to 100 ppm by weight based on the solid content in the dispersion liquid.
Further, in this step, at least a portion of the aqueous liquid may be removed along with the organic solvent.
Further, in this step, it is not necessary that all the organic solvent (the total amount of the organic solvent contained in the dispersion liquid) should be removed. Even if all the organic solvent is not removed, the remaining organic solvent can be sufficiently removed in another step mentioned below.
Subsequently, the thus obtained resin fine particles (toner particles) are washed (washing step).
By performing this step, even in the case where an organic solvent and the like are contained as impurities, these can be efficiently removed. As a result, the total volatile organic compound (TVOC) concentration in the finally obtained resin fine particles can be made extremely low.
This step can be performed by, for example, separating the resin fine particles through solid-liquid separation (separation from the aqueous liquid), and thereafter redispersing the solid matter (resin fine particles) in water and then performing solid-liquid separation (separation of the resin fine particles from the aqueous liquid). The procedure of redispersion of the solid matter in water and solid-liquid separation may be repeated more than once.
Thereafter, by subjecting the thus obtained resin fine particles to a drying treatment, toner particles can be obtained (drying step).
The drying step can be performed using, for example, a vacuum dryer (such as Ribocone (manufactured by Okawara MFG. CO., LTD.) or Nauta mixer (manufactured by Hosokawa Micron Corporation)), a fluidized bed dryer (manufactured by Okawara MFG. CO., LTD.) or the like.
Subsequently, the thus obtained toner particles are dispersed in the insulating liquid to which a dispersant as described above and if necessary a pH adjusting agent are added, whereby the liquid developer is obtained.
The dispersion of the toner particles in the insulating liquid may be performed by any method, and can be performed by, for example, mixing the insulating liquid to which the above dispersant is added and the toner particles using a bead mill, a ball mill, or the like. By mixing these components through such a method, the dispersant can be more surely adhered or adsorbed to the surface of the toner particles.
Further, in this dispersion step, a component other than the insulating liquid, the toner particles, the dispersant, and the pH adjusting agent may be mixed.
Further, the pH adjusting agent may not be added to the insulating liquid in advance, and may be added after the toner particles are dispersed in the insulating liquid.
Further, the dispersion of the toner particles in the insulating liquid may be performed using the total amount of the insulating liquid constituting the finally obtained liquid developer or using a portion of the insulating liquid.
In the case where the toner particles are dispersed using a portion of the insulating liquid, after completion of the dispersion, the same liquid as used in the dispersion may be added as the insulating liquid, or a liquid different from the liquid used in the dispersion may be added as the insulating liquid. In the latter case, the properties such as viscosity of the finally obtained liquid developer can be easily controlled.
When the liquid developer is produced by the method as described above, the constituent components of the toner particles contained in the liquid developer are uniformly dispersed and a variation in shape among the toner particles becomes small. Accordingly, a variation in charging characteristic among the toner particles can be made small. Further, a particle surface area is relatively uniform among the particles and the above-mentioned dispersant can be more uniformly adhered or adsorbed to the surface of the toner particles. As a result, the long-term dispersion stability of the toner particles can be made excellent and also a variation in charging characteristic among the toner particles can be made smaller.
Subsequently, a preferred embodiment of an image forming apparatus according to the invention will be described. The image forming apparatus according to the invention forms a color image on a recording medium using the liquid developer of the invention as described above.
As shown in
The developing units 30Y, 30M, and 30C have a function of developing latent images with a yellow liquid developer (Y), a magenta liquid developer (M), and a cyan liquid developer (C), respectively, to form monochrome images corresponding to the respective colors. Further, the developing unit 30K has a function of developing a latent image with a black liquid developer (K) to form a black monochrome image.
The developing units 30Y, 30M, 30C, and 30K have the same constitution, and therefore, the developing unit 30Y will be described below.
As shown in
The photoreceptor 10Y has a tubular substrate and a photoreceptor layer which is formed on an outer peripheral surface of the tubular substrate and made of a material such as amorphous silicon, and is rotatable about the center axis thereof. In this embodiment, the photoreceptor 10Y rotates clockwise as shown by the arrow in
The liquid developer is fed to the photoreceptor 10Y from the developing unit 100Y mentioned below, and a layer of the liquid developer is formed on the surface thereof.
The charging roller 11Y is a device for charging the photoreceptor 10Y, and the exposure unit 12Y is a device for forming a latent image on the charged photoreceptor 10Y by irradiating laser light. The exposure unit 12Y has a semiconductor laser, a polygonal mirror, an F-θ lens, and the like, and irradiates the charged photoreceptor 10Y with laser light modulated based on image signals input from a host computer (not shown) such as a personal computer or a word processor.
The developing unit 100Y is a device for developing a latent image formed on the photoreceptor 10Y with the liquid developer of the invention. The developing unit 100Y will be described in detail below.
The photoreceptor squeeze device 101Y is disposed to face the photoreceptor 10Y on the downstream side of the developing unit 100Y in the rotating direction, and is constituted by a photoreceptor squeeze roller 13Y, a cleaning blade 14Y that is in press-contact with the photoreceptor squeeze roller 13Y and removes the liquid developer adhered to the surface of the photoreceptor squeeze roller 13Y, and a developer recovery section 15Y that recovers the liquid developer removed by the cleaning blade 14Y. The photoreceptor squeeze device 101Y has a function of recovering an excess carrier (insulating liquid) and an essentially unnecessary fogging toner from the developer having been developed on the photoreceptor 10Y to increase a proportion of the toner particles in the developed image.
The primary transfer backup roller 51Y is a device for transferring the monochrome image formed on the photoreceptor 10Y to an intermediate transfer unit 40 mentioned below.
The charge removal unit 16Y is a device for removing remaining charge on the photoreceptor 10Y after transferring the intermediate transfer image to the intermediate transfer unit 40 by the primary transfer backup roller 51Y.
The photoreceptor cleaning blade 17Y is a rubber member in contact with the surface of the photoreceptor 10Y and has a function of scraping and removing the liquid developer remaining on the photoreceptor 10Y after transferring the image to the intermediate transfer unit 40 by the primary transfer backup roller 51Y.
The developer recovery section 18Y has a function of recovering the liquid developer removed by the photoreceptor cleaning blade 17Y.
The intermediate transfer unit 40 is an endless elastic belt member and is tensioned by a belt driving roller 41 to which a driving force of a driving motor (not shown) is transmitted and a pair of driven rollers 44 and 45. Further, the intermediate transfer unit 40 is rotationally driven in a counterclockwise direction by the belt driving roller 41 in contact with the photoreceptors 10Y, 10M, 10C, and 10K at respective positions of the primary transfer backup rollers 51Y, 51M, 51C, and 51K.
A predetermined tension is applied to the intermediate transfer unit 40 by a tension roller 49 so that the intermediate transfer unit 40 is prevented from loosening. The tension roller 49 is disposed on the downstream side of the driven roller 44 in the rotating (moving) direction of the intermediate transfer unit 40 and on the upstream side of the other driven roller 45 in the rotating (moving) direction of the intermediate transfer unit 40.
Monochrome images corresponding to the respective colors formed in the developing units 30Y, 30M, 30C, and 30K are transferred sequentially to the intermediate transfer unit 40 by the primary transfer backup rollers 51Y, 51M, 51C, and 51K, and the monochrome images corresponding to the respective colors are superimposed on one another. In this manner, a full color developer image (intermediate transfer image) is formed on the intermediate transfer unit 40.
The intermediate transfer unit 40 carries the monochrome images formed on the plural photoreceptors 10Y, 10M, 10C, and 10K in a state that these images are successively secondarily transferred so as to be superimposed on one another, and the superimposed images are secondarily transferred at one time to a recoding medium F5 such as paper, film, or cloth by a secondary transfer unit 60 mentioned below. In the meantime, when the toner image is transferred to the recording medium F5 in the secondary transfer process, there is a case that the recording medium F5 is not a flat sheet material due to fibers thereof. Therefore, as a method for increasing a secondary transfer characteristic for such a non-flat sheet material, an elastic belt member is employed.
Further, the intermediate transfer unit 40 is provided with a cleaning device including an intermediate transfer unit cleaning blade 46, a developer recovery section 47, and a non-contact type bias applying member 48.
The intermediate transfer unit cleaning blade 46 and the developer recovery section 47 are disposed on a side of the driven roller 45.
The intermediate transfer unit cleaning blade 46 has a function of scraping and removing the liquid developer adhered to the intermediate transfer unit 40 after transferring the image to the recording medium F5 by the secondary transfer unit 60.
The developer recovery section 47 has a function of recovering the liquid developer removed by the intermediate transfer unit cleaning blade 46.
The non-contact type bias applying member 48 is disposed apart from the intermediate transfer unit 40 at a position facing the tension roller 49. The non-contact type bias applying member 48 applies a bias voltage having a polarity opposite to that of the toner (solid matter) of the liquid developer remaining on the intermediate transfer unit 40 after the secondary transfer to the toner. This can remove electric charge from the remaining toner to decrease the electrostatic adhesion force of the toner to the intermediate transfer unit 40. In this example, a corona charging device is used as the non-contact type bias applying member 48.
In this connection, the non-contact type bias applying member 48 may not be necessarily disposed at the position facing the tension roller 49 and can be disposed at an arbitrary position on the downstream side of the driven roller 44 in the moving direction of the intermediate transfer unit 40 and on the upstream side of the other driven roller 45 in the moving direction of the intermediate transfer unit 40 such as a position between the driven roller 44 and the tension roller 49. Further, as the non-contact type bias applying member 48, any known non-contact type charging device other than the corona charging device can also be used.
Further, an intermediate transfer unit squeeze device 52Y is disposed on the downstream side of the primary transfer backup roller 51Y in the moving direction of the intermediate transfer unit 40.
The intermediate transfer unit squeeze device 52Y is provided as a device for removing the excess insulating liquid from the liquid developer transferred to the intermediate transfer unit 40 in the case where the transferred liquid developer is not in a favorable dispersed state.
The intermediate transfer unit squeeze device 52Y is constituted by an intermediate transfer unit squeeze roller 53Y, an intermediate transfer unit squeeze cleaning blade 55Y that is in press-contact with the intermediate transfer unit squeeze roller 53Y and cleans the surface thereof, and a developer recovery section 56Y that recovers the liquid developer removed by the intermediate transfer unit squeeze cleaning blade 55Y.
The intermediate transfer unit squeeze device 52Y has a function of recovering the excess insulating liquid from the developer primarily transferred to the intermediate transfer unit 40 to increase a proportion of the toner particles in the developed image, and also recovering an essentially unnecessary fogging toner.
The secondary transfer unit 60 has a pair of secondary transfer rollers disposed apart from each other at a predetermined distance along in the moving direction of the transfer member. Between these two secondary transfer rollers, a secondary transfer roller disposed on the upstream side in the moving direction of the intermediate transfer unit 40 is an upstream side secondary transfer roller 64. This upstream side secondary transfer roller 64 can come in press-contact with the belt driving roller 41 via the intermediate transfer unit 40.
In addition, between these two secondary transfer rollers, a secondary transfer roller disposed on the downstream side in the moving direction of the transfer member is a downstream side secondary transfer roller 65. This downstream side secondary transfer roller 65 can come in press-contact with the driven roller 44 via the intermediate transfer unit 40.
That is, the upstream side secondary transfer roller 64 and the downstream side secondary transfer roller 65 each bring the recording medium F5 into contact with the intermediate transfer unit 40 which is tensioned by the belt driving roller 41 and the driven roller 44 and secondarily transfer the intermediate transfer image formed on the intermediate transfer unit 40 by superimposing the monochrome images to the recording medium F5.
In this case, the belt driving roller 41 and the driven roller 44 also function as backup rollers for the upstream side secondary transfer roller 64 and the downstream side secondary transfer roller 65, respectively. That is, the belt driving roller 41 also serves as an upstream side backup roller disposed on the upstream side of the driven roller 44 in the moving direction of the recording medium F5 in the secondary transfer unit 60. Further, the driven roller 44 also serves as a downstream side backup roller disposed on the downstream side of the belt driving roller 41 in the moving direction of the recording medium F5 in the secondary transfer unit 60.
Therefore, the recording medium F5 transported to the secondary transfer unit 60 is brought into close contact with the intermediate transfer unit 40 in a predetermined moving region of the transfer member from a position at which press-contact between the upstream side secondary transfer roller 64 and the belt driving roller 41 starts (nip start position) to a position at which press-contact between the downstream side secondary transfer roller 65 and the driven roller 44 ends (nip end position). Accordingly, the full color intermediate transfer image on the intermediate transfer unit 40 is secondarily transferred to the recording medium F5 in a state of being in close contact with the intermediate transfer unit 40 over a predetermined time, and thus, a favorable secondary transfer can be achieved.
Further, the secondary transfer unit 60 includes a secondary transfer roller cleaning blade 66 and a developer recovery section 67 with respect to the upstream side secondary transfer roller 64 and also includes a secondary transfer roller cleaning blade 68 and a developer recovery section 69 with respect to the downstream side secondary transfer roller 65. The secondary transfer roller cleaning blades 66 and 68 are in contact with the secondary transfer rollers 64 and 65, respectively, and scrape and remove the liquid developer remaining on the surface of the secondary transfer rollers 64 and 65, respectively, after secondary transfer. Further, the developer recovery sections 67 and 69 each recover and store the liquid developer scraped and removed from the respective secondary transfer rollers 64 and 65 by the respective secondary transfer roller cleaning blades 66 and 68.
The toner image (transfer image) F5a transferred to the recording medium F5 by the secondary transfer unit 60 is transported to a fixing unit (fixing device) F40 and fixed on the recording medium F5 by heating and pressing.
Specifically, a fixing temperature is preferably from 80 to 160° C., more preferably from 100 to 150° C., further more preferably from 100 to 140° C.
Subsequently, the developing units 100Y, 100M, 100C, and 100K will be described in detail. In the following description, the developing unit 100Y will be described as a representative example.
As shown in
The liquid developer reservoir section 31Y has a function of reserving the liquid developer for developing a latent image formed on the photoreceptor 10Y and is provided with a feed section 31aY that feeds the liquid developer to the developing unit, a recovery section 31bY that recovers the excess liquid developer occurring in the feed section 31aY and the like, and a partition 31cY that separates the feed section 31aY and the recovery section 31bY.
The feed section 31aY has a function of feeding the liquid developer to the coating roller 32Y and has a concave portion in which the developer stirring roller 34Y is installed. Further, to the feed section 31aY, the liquid developer is fed through the communication channel 35Y from a liquid developer mixing bath 93Y.
The recovery section 31bY recovers the liquid developer excessively fed to the feed section 31aY and the excess liquid developer occurring in the developer recovery sections 15Y and 24Y. The recovered liquid developer is transported to the liquid developer mixing bath 93Y mentioned below for reuse. Further, the recovery section 31bY has a concave portion and a recovery screw 36Y is installed in the vicinity of the bottom of the concave portion.
At the boundary between the feed section 31aY and the recovery section 31aY, the wall-like partition 31cY is provided. The partition 31cY separates the feed section 31aY and the recovery section 31aY and can prevent contamination of the fresh liquid developer with the recovered liquid developer. Further, when the liquid developer is excessively fed to the feed section 31aY, the excess liquid developer can be allowed to overflow from the feed section 31aY to the recovery section 31aY across the partition 31cY. Therefore, the amount of the liquid developer in the feed section 31aY can be maintained constant, and the amount of the liquid developer to be fed to the coating roller 32Y can be maintained constant. As a result, the quality of the finally formed image becomes stable.
Further, the partition 31cY has a notch, and the liquid developer can be allowed to overflow from the feed section 31aY to the recovery section 31aY through the notch.
The coating roller 32Y has a function of feeding the liquid developer to the developing roller 20Y.
The coating roller 32Y is a so-called anilox roller which is a roller made of a metal such as iron, having grooves formed uniformly and spirally on the surface thereof and plated with nickel, and has a diameter of about 25 mm. In this embodiment, plural grooves are formed slantwise with respect to the rotating direction of the coating roller 32Y by a so-called cutting process, rolling process, or the like. The coating roller 32Y is in contact with the liquid developer while rotating counterclockwise to retain the liquid developer in the feed section 31aY in the grooves, and transports the retained liquid developer to the developing roller 20Y. The control blade 33Y is in contact with the surface of the coating roller 32Y to control the amount of the liquid developer on the coating roller 32Y. That is, the control blade 33Y plays a role in measuring an amount of the liquid developer on the coating roller 32Y to be fed to the developing roller 20Y by scraping and removing the excess liquid developer on the coating roller 32Y. This control blade 33Y is formed of urethane rubber as an elastic material and supported by a control blade supporting member made of a metal such as iron. The control blade 33Y is disposed on a side where the coating roller 32Y rotates and comes out from the liquid developer (i.e., on a right side in
The developer stirring roller 34Y has a function of stirring the liquid developer to form a uniformly dispersed state. According to this, even in the case where plural toner particles are aggregated, the respective toner particles can be favorably dispersed. In particular, the liquid developer of the invention contains the dispersant as described above, therefore, the toner particles has high dispersibility and can be more favorably dispersed. In addition, even in the case of the reused liquid developer, the toner particles can be easily dispersed.
In the feed section 31aY, the toner particles in the liquid developer have a positive charge, and the liquid developer is in a uniformly dispersed state by stirring with the developer stirring roller 34Y and is drawn up from the liquid developer reservoir section 31Y through rotation of the coating roller 32Y, and then fed to the developing roller 20Y after controlling the amount of the liquid developer by the control blade 33Y. Further, through stirring of the liquid developer by the developer stirring roller 34Y, the liquid developer can be allowed to stably overflow across the partition 31cY to the side of the recovery section 31aY, whereby the liquid developer is prevented from being retained and compressed.
Further, the developer stirring roller 34Y is installed in the vicinity of the communication channel 35Y. Therefore, the liquid developer fed from the communication channel 35Y can be promptly diffused, and even in the case where the liquid developer is being supplied to the feed section 31aY, the level of the liquid in the feed section 31aY can be maintained constant. By installing such a developer stirring roller 34Y in the vicinity of the communication channel 35Y, a negative pressure is generated in the communication channel 35Y, and therefore, the liquid developer can be naturally sucked up.
The communication channel 35Y is provided vertically beneath the developer stirring roller 34Y and communicates with the liquid developer reservoir section 31Y, and through which the liquid developer is sucked up from the liquid developer mixing bath 93Y to feed section 31aY.
By installing the communication channel 35Y beneath the developer stirring roller 34Y, the liquid developer fed through the communication channel 35Y is held back by the developer stirring roller 34Y and the level of the liquid is prevented from rising due to ejection of the liquid developer and the liquid level is maintained substantially constant, whereby the liquid developer can be stably fed to the coating roller 32Y.
The recovery screw 36Y installed in the vicinity of the bottom of the recovery section 31aY is formed of a cylindrical material, has spiral ribs on the outer periphery thereof, and has a function of maintaining the fluidity of the recovered liquid developer and also has a function of accelerating the transport of the liquid developer to the liquid developer mixing bath 93Y.
The developing roller 20Y retains the liquid developer and transports it to the developing position facing the photoreceptor 10Y for developing the latent image carried on the photoreceptor 10Y with the liquid developer.
The developing roller 20Y has a liquid developer layer formed on the surface thereof by feeding the liquid developer from the coating roller 32Y mentioned above.
The developing roller 20Y includes an inner core made of a metal such as iron and an electroconductive elastic layer on the outer periphery of the core, and has a diameter of about 20 mm. The elastic layer has a two-layer structure including an urethane rubber layer having a rubber hardness of about 30 according to JIS-A and a thickness of about 5 mm as an inner layer, and an urethane rubber layer having a rubber hardness of about 85 according to JIS-A and a thickness of about 30 μm as a surface layer (outer layer). The developing roller 20Y is in press-contact with the coating roller 32Y and the photoreceptor 10Y while the surface layer is serving as a press-contact portion in an elastically deformed state.
Further, the developing roller 20Y is rotatable about the center axis thereof, and the center axis is located down below the rotation center axis of the photoreceptor 10Y. The developing roller 20Y rotates in the direction (i.e., the counterclockwise direction in
In the developing unit 100Y, the coating roller 32Y is driven by a power source (not shown) which is difference from a power source (not shown) for driving the developing roller 20Y. Therefore, by changing a ratio of a rotational speed (linear velocity) of the application roller 32Y to that of the developing roller 20Y, an amount of the liquid developer to be fed on the developing roller 20Y can be adjusted.
Further, the developing unit 100Y has a developing roller cleaning blade 21Y made of rubber and provided in contact with the surface of the developing roller 20Y and a developer recovery section 24Y. The developing roller cleaning blade 21Y is a device for scraping and removing the liquid developer remaining on the developing roller 20Y after the development of an image is carried out at the developing position. The liquid developer removed by the developing roller cleaning blade 21Y is recovered in the developer recovery section 24Y.
As shown in
In each of the liquid developer tanks 91Y, 91M, 91C, and 91K, a liquid developer of high concentration which corresponds to each of the different colors is stored. Further, in each of the insulating liquid tanks 92Y, 92M, 92C, and 92K, the insulating liquid is stored. Further, to each of the liquid developer mixing baths 93Y, 93M, 93C, and 93K, a predetermined amount of each liquid developer of high concentration is fed from each of the liquid developer tanks 91Y, 91M, 91C, and 91K and a predetermined amount of each insulating liquid is fed from each of the insulating liquid tanks 92Y, 92M, 92C, and 92K.
In each of the liquid developer mixing baths 93Y, 93M, 93C, and 93K, the fed liquid developer of high concentration and the fed insulating liquid are mixed while stirring by a stirrer installed in each bath to prepare a liquid developer corresponding to each of the different colors which is to be used in each of the feed sections 31aY, 31aM, 31aC, and 31aK. The liquid developers prepared in the respective liquid developer mixing baths 93Y, 93M, 93C, and 93K are fed to the corresponding feed sections 31aY, 31aM, 31aC, and 31aK, respectively.
Further, in the liquid developer mixing bath 93Y, the liquid developer recovered by the recovery section 31bY is recovered for reuse. The same shall apply to the liquid developer mixing baths 93M, 93C, and 93K.
In the above, the invention is described based on preferred embodiments, however, the invention is not limited to these embodiments.
For example, the liquid developer of the invention is not limited to those applied to the image forming apparatus as described above.
Further, the liquid developer of the invention is not limited to those produced by the production method as described above.
Further, in the above-mentioned embodiments, coalescent particles are obtained by preparing an aqueous emulsion liquid and adding an electrolyte to the prepared aqueous emulsion liquid, however, the invention is not limited thereto. For example, the coalescent particles may be prepared using an emulsion polymerization association method in which a colorant, a monomer, a surfactant, and a polymerization initiator are dispersed in an aqueous liquid, and an aqueous emulsion liquid is prepared by an emulsion polymerization, and then an electrolyte is added to the aqueous emulsion liquid to effect association. Further, the coalescent particles maybe prepared by subjecting the obtained aqueous emulsion liquid to spray drying.
A liquid developer was produced as described below.
First, toner particles were produced. Steps in which a temperature is not specified were performed at room temperature (25° C.)
First, 60 parts by weight of a polyester resin (acid value: 10 mg KOH/g, glass transition point (Tg): 55° C., softening point: 107° C.) was prepared as a resin material.
Subsequently, a mixture of the above resin material and a cyan pigment (Pigment Blue 15:3, manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd.) as a colorant at a mass ratio of 50:50 was prepared. The components were mixed using a 20-L Henschel mixer, whereby a raw material for producing a toner was obtained.
Then, the raw material (mixture) was kneaded using a twin-screw kneading extruder. The kneaded product extruded from the extrusion port of the twin-screw kneading extruder was cooled.
The thus cooled kneaded product was coarsely pulverized to prepare a colorant master batch having an average particle diameter of 1.0 mm or less. A hammer mill was used for coarse pulverization of the kneaded product.
175 parts by weight of methyl ethyl ketone, 172.3 parts by weight of the polyester resin, and 55.3 parts by weight of a rosin-modified phenol resin (trade name “KG2212”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 22 mg KOH/g or less, softening point: 172 to 182° C., weight average molecular weight: 100000) were mixed in 97.5 parts by weight of the colorant master batch using a high-speed disperser (T.K. Robomix/T.K. Homo Disper Model 2.5, manufactured by Primix Corporation). Then, 1.38 parts by weight of NEOGEN SC-F (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) as an emulsifying agent was added to the mixture to prepare a resin liquid. In this resin liquid, the pigment was uniformly and finely dispersed.
Subsequently, 72.8 parts by weight of 1 N ammonia water was added to the resin liquid in a vessel and the mixture was sufficiently stirred using a high-speed disperser (T.K. Robomix/T.K. Homo Disper Model 2.5, manufactured by Primix Corporation) by setting a peripheral velocity of the stirring blade to 7.5 m/s and then, a liquid temperature in the flask was adjusted to 25° C. Thereafter, while stirring the mixture by setting a peripheral velocity of the stirring blade to 14.7 m/s, 400 parts by weight of deionized water was added dropwise thereto to cause phase inversion emulsification. While continuing stirring, 100 parts by weight of deionized water was further added to the resin liquid, whereby an aqueous dispersion liquid in which dispersoids containing the resin material were dispersed was obtained.
Subsequently, the aqueous dispersion liquid was transferred to a stirring vessel having a max blend blade, and a temperature of the aqueous dispersion liquid was adjusted to 25° C. while stirring the dispersion liquid by setting a peripheral velocity of the stirring blade to 1.0 m/s.
Subsequently, coalescent particles were formed by adding 200 parts by weight of a 5.0% aqueous solution of sodium sulfate dropwise to the dispersion liquid while maintaining the same temperature and stirring conditions to coalesce the dispersoids. After the dropwise addition, the mixture was kept stirring until toner particles of the coalescent particles were grown to have a 50% volume particle diameter Dv(50) (μm) of 3.4 μm. When the Dv(50) of the coalescent particles reached 3.4 μm, 200 parts by weight of deionized water was added and coalescence was finished.
The organic solvent was distilled off from the thus obtained coalescent particle dispersion liquid under reduced pressure until the solid content became 23 wt %, whereby a resin fine particle slurry was obtained.
Subsequently, the thus obtained slurry was subjected to solid-liquid separation, and further a procedure of redispersion in water (reslurry) and solid-liquid separation was performed repeatedly to effect a washing treatment. Then, the washed slurry was subjected to suction filtration, whereby a wet cake of colored resin fine particles (resin fine particle cake) was obtained. A content of water in the wet cake was 35 wt %.
Thereafter, the thus obtained wet cake was dried using a vacuum dryer, whereby toner particles were obtained.
First, to a mixture of 90 parts by weight of rapeseed oil (trade name “high-oleic rapeseed oil” manufactured by The Nisshin Oillio Group, Ltd.) and 60 parts by weight of soybean oil fatty acid methyl ester (manufactured by The Nisshin Oillio Group, Ltd.), 1.5 parts by weight of Disperbyk-108 (manufactured by BYK-Chemie GmbH, amine value: 71 mg KOH/g) was added as a dispersant.
Further, 0.15 parts by weight of benzoic acid as a pH adjusting agent was added thereto, and the resulting mixture was stirred at 50° C. for 1 hour.
Subsequently, 37.5 parts by weight of the toner particles obtained by the above method were added thereto. The thus obtained mixture was placed in a ceramic pot (internal capacity: 600 mL), and further zirconia balls (ball diameter: 1 mm) were placed in the ceramic pot such that a volume filling ratio became 85%. Then, the mixture in the pot was dispersed using a desktop pot mill at a rotational speed of 230 rpm for
24 hours, and thus a liquid developer was obtained.
The toner particles in the thus obtained liquid developer had a Dv(50) of 3.0 μm. The 50% volume particle diameter Dv(50) (μm) of the obtained toner particles was measured using a particle analysis apparatus Mastersizer 2000 (manufactured by Malvern Instruments, Ltd.). Also, the particle diameters of particles obtained in the respective Examples and Comparative examples mentioned below were determined in the same manner.
Further, a pH of the thus obtained liquid developer at 23° C. was measured and found to be 5.98.
Further, a magenta liquid developer, a yellow liquid developer, and a black liquid developer were produced in the same manner as described above except that a magenta pigment (Pigment Red 238, manufactured by Sanyo Color Works, Ltd.), a yellow pigment (Pigment yellow 180, manufactured by Clariant), a black pigment (carbon black Printex L, manufactured by Degussa) were used, respectively, instead of the cyan pigment.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that a content of the pH adjusting agent was changed as shown in Table 1 and a pH of the liquid developer was adjusted as shown in Table 1.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that a content of the dispersant was changed as shown in Table 1.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that Disperbyk-109 (manufactured by BYK-Chemie GmbH, amine value: 140 mg KOH/g) was used as the dispersant.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 9 except that a content of the pH adjusting agent was changed as shown in Table 1 and a pH of the liquid developer was adjusted as shown in Table 1.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that Disperbyk-116 (manufactured by BYK-Chemie GmbH, amine value: 65 mg KOH/g) was used as the dispersant.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 11 except that a content of the pH adjusting agent was changed as shown in Table 1 and a pH of the liquid developer was adjusted as shown in Table 1.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that Agrisperse 712 (manufactured by New Century Coatings, amine value: 100 mg KOH/g) was used as the dispersant.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 13 except that a content of the pH adjusting agent was changed as shown in Table 1 and a pH of the liquid developer was adjusted as shown in Table 1.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that a rosin-modified phenol resin (trade name “Tamanor 135”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 18 mg KOH/g or less, softening point: 130 to 140° C., weight average molecular weight: 15000) was used as the rosin-modified resin.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that the pH adjusting agent was not added.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 9 except that the pH adjusting agent was not added.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 11 except that the pH adjusting agent was not added.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 13 except that the pH adjusting agent was not added.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 2 except that Arakyd 251 (manufactured by Arakawa Chemical Industries, Ltd., acid value: non) was used as the dispersant.
Liquid developers corresponding to the respective colors were produced in the same manner as in Comparative example 5 except that the pH adjusting agent was not added.
With regard to the respective Examples and Comparative examples, the compositions of the liquid developers and the like are shown in Table 1. In the table, the polyester resin is denoted by PES; the rosin-modified phenol resin (trade name “KG2212”) is denoted by RP1; the rosin-modified phenol resin (trade name “Tamanor 135”) is denoted by RP2; Disperbyk-108 is denoted by D108; Disperbyk-109 is denoted by D109; Disperbyk-116 is denoted by D116; Agrisperse 712 is denoted by A712; Arakyd 251 is denoted by A251; the soybean oil fatty acid methyl ester is denoted by MONO; and the rapeseed oil is denoted by VO.
The respective liquid developers obtained as described above were evaluated as follows.
Using an image forming apparatus as shown in
Using an image forming apparatus as shown in
A zeta potential of each of the liquid developers obtained in the respective Examples and Comparative examples was measured using a microscope laser zeta potentiometer “ZC-2000” manufactured by Microtec Nition Corporation, which was then evaluated into the following five grades.
The measurement was performed as follows. Each liquid developer was diluted with a dilution solvent and placed in a transparent 10×10 mm square cell. Then, a voltage of 300 V was applied between electrodes (distance of electrodes: 9 mm), and at the same time, movement of the particles in the cell was observed with a microscope to calculate their moving speed, and a zeta potential was obtained based on the calculated moving speed value.
10 mL of each of the liquid developers obtained in the respective Examples and Comparative examples was placed in a test tube (diameter: 12 mm, length: 120 mm), and the test tube was left stand for 1 week. Then, a depth of sediment was measured, which was evaluated into the following four grades.
These results are shown in Table 2.
As is apparent from Table 2, the liquid developers of the invention were excellent in development efficiency, transfer efficiency, and positive charging characteristic. Further, they were also excellent in dispersion stability of toner particles. On the other hand, from the liquid developers of the respective Comparative examples, satisfactory results could not be obtained.
A liquid developer was produced as follows.
First, toner particles were produced. Steps in which a temperature is not specified were performed at room temperature (25° C.).
First, a mixture of 48 parts by weight of a low-molecular weight polyester resin L1 (acid value: 8.5 mg KOH/g, weight average molecular weight Mw: 5,200, glass transition point Tg: 46° C., softening point T1/2: 95° C.) and 12 parts by weight of a high-molecular weight polyester resin H1 (acid value: 16.0 mg KOH/g, weight average molecular weight Mw: 237,000, glass transition point Tg: 63° C., softening point T1/2: 182° C.) was prepared as a polyester resin.
Subsequently, a mixture of the above polyester resin mixture and a cyan pigment (Pigment Blue 15:3, manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd.) as a colorant at a mass ratio of 50:50 was prepared. The components were mixed using a 20-L Henschel mixer, whereby a raw material for producing a toner was obtained.
Then, the raw material (mixture) was kneaded using a twin-screw kneading extruder. The kneaded product extruded from the extrusion port of the twin-screw kneading extruder was cooled.
The thus cooled kneaded product was coarsely pulverized to prepare a colorant master batch having an average particle diameter of 1.0 mm or less. A hammer mill was used for coarse pulverization of the kneaded product.
175 parts by weight of methyl ethyl ketone, 172.3 parts by weight of the polyester resin mixture, and 55.3 parts by weight of a rosin-modified phenol resin (trade name “KG2212”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 22 mg KOH/g or less, softening point: 172 to 182° C., weight average molecular weight: 100000) were mixed in 97.5 parts by weight of the colorant master batch using a high-speed disperser (T.K. Robomix/T.K. Homo Disper Model 2.5, manufactured by Primix Corporation). Then, 1.38 parts by weight of NEOGEN SC-F (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) as an emulsifying agent was added to the mixture to prepare a resin liquid. In this resin liquid, the pigment was uniformly and finely dispersed.
Subsequently, 72.8 parts by weight of 1 N ammonia water was added to the resin liquid in a vessel and the mixture was sufficiently stirred using a high-speed disperser (T.K. Robomix/T.K. Homo Disper Model 2.5, manufactured by Primix Corporation) by setting a peripheral velocity of the stirring blade to 7.5 m/s and then, a liquid temperature in the flask was adjusted to 25° C. Thereafter, while stirring the mixture by setting a peripheral velocity of the stirring blade to 14.7 m/s, 400 parts by weight of deionized water was added dropwise thereto to cause phase inversion emulsification. While continuing stirring, 100 parts by weight of deionized water was further added to the resin liquid, whereby an aqueous dispersion liquid in which dispersoids containing the resin material were dispersed was obtained.
Subsequently, the aqueous dispersion liquid was transferred to a stirring vessel having a max blend blade, and a temperature of the aqueous dispersion liquid was adjusted to 25° C. while stirring the dispersion liquid by setting a peripheral velocity of the stirring blade to 1.0 m/s.
Subsequently, coalescent particles were formed by adding 200 parts by weight of a 5.0% aqueous solution of sodium sulfate dropwise to the dispersion liquid while maintaining the same temperature and stirring conditions to coalesce the dispersoids. After the dropwise addition, the mixture was kept stirring until toner particles of the coalescent particles were grown to have a 50% volume particle diameter Dv(50) (μm) of 3.4 μm. When the Dv(50) of the coalescent particles reached 3.4 μm, 200 parts by weight of deionized water was added and coalescence was finished.
The organic solvent was distilled off from the thus obtained coalescent particle dispersion liquid under reduced pressure until the solid content became 23 wt %, whereby a resin fine particle slurry was obtained.
Subsequently, the thus obtained slurry was subjected to solid-liquid separation, and further a procedure of redispersion in water (reslurry) and solid-liquid separation was performed repeatedly to effect a washing treatment. Then, the washed slurry was subjected to suction filtration, whereby a wet cake of colored resin fine particles (resin fine particle cake) was obtained. A content of water in the wet cake was 35 wt %.
Thereafter, the thus obtained wet cake was dried using a vacuum dryer, whereby toner particles were obtained.
First, to a mixture of 90 parts by weight of rapeseed oil (trade name “high-oleic rapeseed oil” manufactured by The Nisshin Oillio Group, Ltd.) and 60 parts by weight of soybean oil fatty acid methyl ester (manufactured by The Nisshin Oillio Group, Ltd.), 1.5 parts by weight of Disperbyk-108 (manufactured by BYK-Chemie GmbH, amine value: 71 mg KOH/g) was added as a dispersant.
Further, 0.15 parts by weight of benzoic acid as a pH adjusting agent was added thereto, and the resulting mixture was stirred at 50° C. for 1 hour.
Subsequently, 37.5 parts by weight of the toner particles obtained by the above method were added thereto. The thus obtained mixture was placed in a ceramic pot (internal capacity: 600 mL), and further zirconia balls (ball diameter: 1 mm) were placed in the ceramic pot such that a volume filling ratio became 85%. Then, the mixture in the pot was dispersed using a desktop pot mill at a rotational speed of 230 rpm for 24 hours, and thus a liquid developer was obtained.
The toner particles in the thus obtained liquid developer had a Dv(50) of 3.1 μm. The 50% volume particle diameter Dv(50) (μm) of the obtained toner particles was measured using a particle analysis apparatus Mastersizer 2000 (manufactured by Malvern Instruments, Ltd.). Also, the particle diameters of particles obtained in the respective Examples mentioned below were determined in the same manner.
Further, a pH of the thus obtained liquid developer at 23° C. was measured and found to be 5.98.
Further, a magenta liquid developer, a yellow liquid developer, and a black liquid developer were produced in the same manner as described above except that a magenta pigment (Pigment Red 238, manufactured by Sanyo Color Works, Ltd.), a yellow pigment (Pigment yellow 180, manufactured by Clariant), a black pigment (carbon black Printex L, manufactured by Degussa) were used, respectively, instead of the cyan pigment.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 16 except that a low-molecular weight polyester resin L2 and a high-molecular weight polyester resin H2 shown in Table 3 were used instead of the polyester resin L1 and the polyester resin H1, respectively.
Liquid developers corresponding to the respective colors were produced in the same manner as in Example 16 except that a low-molecular weight polyester resin L3 and a high-molecular weight polyester resin H3 shown in Table 3 were used instead of the polyester resin L1 and the polyester resin H1, respectively.
A ratio of terephthalic acid (TPA) to isophthalic acid (IPA), a ratio of ethylene glycol (EG) to neopentyl glycol (NPG) in all monomer components used in the synthesis of each of the polyester resins used in Examples 16 to 18 described above, and physical properties of each resin and the like are shown in Table 3. Further, the weight average molecular weight Mw, glass transition point Tg, and softening point T1/2 of each of the low-molecular weight polyester resins and high-molecular weight polyester resins used in the respective Examples 16 to 18 are shown in Table 3.
Further, the measurement of glass transition point Tg of each polyester resin in Table 3 was performed as follows using DSC (DSC-220C, manufactured by Seiko Instruments, Inc.) as a measurement device. About 10 mg of a resin material was placed on an aluminum pan and the measurement was performed under conditions of a temperature increasing rate of 10° C./min and a measurement temperature range of from 30 to 150° C. Incidentally, the measurement was performed twice by increasing the temperature from 10° C. to 150° C. and decreasing it from 150° C. to 10° C. The data obtained at the second measurement was employed.
Further, the softening point T1/2 of each polyester resin in Table 3 was measured using a koka-type flow tester (manufactured by Shimadzu Corporation) as a measurement device under conditions of a temperature increasing rate of 5° C./min and a die diameter of 1.0 mm.
Further, with regard to Examples 16 to 18, the compositions of the liquid developers and the like are shown in Table 4. In the table, the polyester resins L1, L2, and L3 are denoted by L1, L2, and L3, respectively; the polyester resins H1, H2, and H3 are denoted by H1, H2, and H3, respectively; the rosin-modified phenol resin (trade name “KG2212”) is denoted by RP1; Disperbyk-108 is denoted by D108; the soybean oil fatty acid methyl ester is denoted by MONO; and the rapeseed oil is denoted by VO.
Further, the respective liquid developers obtained in the above Examples 16 to 18 were evaluated in the same manner as in the above section 2 and these results are shown in Table 5.
As is apparent from Table 5, the liquid developers of the invention were excellent in development efficiency, transfer efficiency, and positive charging characteristic. Further, they were also excellent in dispersion stability of toner particles.
This application claims priority to Japanese Patent Application Nos. 2008-215835 file Aug. 25, 2008 and file Mar. 11, 2008 which are hereby expressly incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-061552 | Mar 2008 | JP | national |
2008-215835 | Aug 2008 | JP | national |