Liquid drug transfer devices

Information

  • Patent Grant
  • 9839580
  • Patent Number
    9,839,580
  • Date Filed
    Tuesday, August 20, 2013
    11 years ago
  • Date Issued
    Tuesday, December 12, 2017
    7 years ago
Abstract
Liquid drug transfer devices with universal drug vial adapters for use with a drug vial of a small drug vial and a large drug vial. Some universal drug vial adapters employ the same generally opposite upright flex members for clamping a small drug vial and a large drug vial. Other universal drug vial adapters include a set of minor flex members for clamping a small drug vial and a set of major flex members encircling the set of minor flex members for clamping a large drug vial whereupon the large drug vial underlies the set of minor flex members. Liquid drug transfer devices with a universal injection port connector for attachment on an injection port of an infusion bag.
Description
FIELD OF THE INVENTION

The invention relates to liquid drug transfer devices.


BACKGROUND OF THE INVENTION

Liquid drug transfer devices including universal drug vial adapters for telescopic mounting on a drug vial of a small drug vial and a large drug vial can be classified into one of two types as follows:


First, a universal drug vial adapter shaped and dimensioned to telescopically clamp equally on a small drug vial and a large drug vial. Exemplary prior art references include inter alia U.S. Pat. No. 5,334,179 to Poli et al, U.S. Pat. No. 6,656,433 to Sasso, U.S. Pat. No. 6,875,205 to Leinsing, and U.S. Pat. No. 8,469,939 to Fangrow.


And second, a universal drug vial adapter shaped and dimensioned to telescopically clamp on a large drug vial only and provided with a vial coupling adapter for insertion thereinto shaped and dimensioned to telescopically clamp on a small drug vial only. U.S. Pat. No. 5,893,397 to Peterson et al discloses a Medication Vial/Syringe Liquid Transfer Apparatus including a liquid transfer apparatus (20) with a liquid drug transfer device (24) and a vial coupling adapter (26).


Some liquid drug transfer devices are intended to be mounted on injection ports of infusion bags containing infusion liquid. Different suppliers of infusion bags provide injection ports of different sizes. U.S. Pat. No. 4,607,671 to Aalto et al. discloses a reconstitution device (10) including a plastic housing (52) for sealed mounting on an injection site (34). The plastic housing (34) includes a rigid tubular double pointed needle (54).


There is a need for liquid drug transfer devices with improved universal drug vial adapters for mixing, reconstitution and administration purposes and improved injection port connectors.


SUMMARY OF THE INVENTION

One aspect of the present invention is directed toward liquid drug transfer devices with universal drug vial adapters for telescopic clamping a drug vial of a so-called small drug vial and a so-called large drug vial. Large drug vials have the same shape as small drug vials but proportionally larger dimensions. In particular, large drug vials have a drug vial closure and a drug vial neck with wider diameters than their counterpart small drug vials. For the purpose of the present description, so-called small drug vials are widely commercially available 13 mm drug vials and so-called large drug vials are widely commercially available 20 mm drug vials. The present invention is equally applicable to larger so-called small drug vials and so-called large drug vials containing larger liquid volumes, for example, a 28 mm diameter drug vial closure and a 32 mm diameter drug vial closure, respectively.


Some preferred embodiments of the liquid drug transfer devices in accordance with the present invention include a universal drug vial adapter employing the same at least one pair of generally opposite upright flex members for clamping a small drug vial and a large drug vial by virtue of the inherent flexibility of the plastic material, for example, polycarbonate, and the like, from which the universal drug vial adapters are manufactured. The at least one pair of flex members are resiliently flexibly mounted on crosspieces towards a drug vial base as opposed to a drug vial head on telescopically clamping a universal drug vial adapter on a drug vial. The flex members have flex member free ends opposite their respective crosspieces which each include an inward radial directed drug vial grip. The inward radial directed drug vial grips underlie a drug vial head on telescopically clamping a universal drug vial adapter on a drug vial. Generally speaking, the flex members are outwardly resiliently flexed correspondingly at their crosspieces with respect to the longitudinal drug vial adapter axis to a greater extent on telescopically clamping the universal drug vial adapter on a large drug vial compared to telescopically mounting the universal drug vial adapter on a small drug vial.


Other preferred embodiments of the liquid drug transfer devices in accordance with the present invention include a universal drug vial adapter employing a set of minor flex members for telescopically clamping a small drug vial and a set of major flex members encircling the set of minor flex members for telescopically clamping a large drug vial whereupon the large drug vial underlies the set of minor flex members. The set of major flex members are preferably arranged such that the set of minor flex members are free to outwardly flex with respect to a longitudinal drug vial adapter axis on being telescopically clamped on a small drug vial without interference from the set of major flex members.


A wide range of liquid drug transfer devices can be formed with the universal drug vial adapters of the present invention for different liquid drug transfer purposes. The universal drug vial adapters can be optionally formed in vented and unvented versions. Some liquid drug transfer devices can include an integral access port and an integral puncturing member for puncturing a drug vial stopper on telescopically clamping a drug vial for enabling flow communication with its interior. Such liquid drug transfer devices include inter alia a female drug vial adapter with a female Luer connector, a male drug vial adapter including a male Luer connector, and the like.


Other liquid drug transfer devices can be so-called ready-to-use medical devices including a pre-attached intact, namely, not punctured, drug vial. Such liquid drug transfer devices can include a discrete liquid transfer member with a puncturing member for puncturing a drug vial on actuation. The universal drug vial adapters of the present invention are preferably designed such that an intact drug vial can be readily released by a drug vial release tool for subsequent use, thereby avoiding possible drug waste. Intact drug vials can be possibly returned to suitable storage conditions without a bulky liquid drug transfer device.


Another aspect of the present invention is directed to liquid drug transfer devices with a universal injection port connector for attachment to a conventional injection port of an infusion bag. Conventional injection ports include an injection port tip with a trailing injection port tip rim disposed behind an exposed plug surface of a self-sealing plug for needle injection of syringe contents into an infusion bag. The universal injection port connectors include a multitude of curved connector members which are outwardly urged from their non-flexed position on forced inward insertion of an injection port tip therethrough such that the multitude of curved connector members snap behind the trailing injection port tip rim, thereby precluding sliding withdrawal of the injection port tip from the universal injection port connector. By virtue of their curved shape, the connector members of the universal injection port connector of the present invention are capable of countering a greater withdrawal force compared to straight connector members. Moreover, the curved connector members facilitate mounting on different sizes of injection ports typically of different suppliers of infusion liquid containers.





BRIEF DESCRIPTION OF DRAWINGS

In order to understand the invention and to see how it can be carried out in practice, preferred embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings in which similar parts are likewise numbered, and in which:



FIG. 1 is a pictorial view of a syringe, a small drug vial, a large drug vial, and a first preferred embodiment of a liquid drug transfer device in accordance with the present invention;



FIG. 2 is a front perspective view of FIG. 1's liquid drug transfer device;



FIG. 3 is a rear perspective view of FIG. 1's liquid drug transfer device;



FIG. 4A is a right side elevation view of FIG. 1's liquid drug transfer device;



FIG. 4B is a longitudinal cross section of FIG. 1's liquid drug transfer device along line A-A in FIG. 4A;



FIG. 5A is a front elevation view of FIG. 1's liquid drug transfer device;



FIG. 5B is a longitudinal cross section of FIG. 1's liquid drug transfer device along line B-B in FIG. 5A;



FIG. 6 is a front elevation view of FIG. 1's liquid drug transfer device telescopically clamped on a small drug vial;



FIG. 7 is a longitudinal cross section of FIG. 6's assemblage along line C-C thereon;



FIG. 8 is a front elevation view of FIG. 1's liquid drug transfer device telescopically clamped on a large drug vial;



FIG. 9 is a longitudinal cross section of FIG. 8's assemblage along line D-D thereon;



FIG. 10 is a pictorial view showing syringe aspiration of liquid contents from FIG. 6's assemblage;



FIG. 11 is a pictorial view showing syringe aspiration of liquid contents from FIG. 8's assemblage;



FIG. 12 is a longitudinal cross section of a second preferred embodiment of a liquid drug transfer device in accordance with the present invention;



FIG. 13 is a longitudinal cross section of FIG. 12's liquid drug transfer device in a flow communication position;



FIG. 14 is a pictorial view of a third preferred embodiment of a liquid drug transfer device in accordance with the present invention;



FIG. 15 is a pictorial view of a fourth preferred embodiment of a liquid drug transfer device in accordance with the present invention and an infusion liquid container;



FIG. 16 is an exploded view of FIG. 15's liquid drug transfer device;



FIG. 17A is a longitudinal cross section of FIG. 15's liquid drug transfer device in an initial pre-actuated position along line E-E in FIG. 15;



FIG. 17B is a longitudinal cross section of FIG. 15's liquid drug transfer device in an intermediate position for puncturing a drug vial along line E-E in FIG. 15;



FIG. 17C is a longitudinal cross section of FIG. 15's liquid drug transfer device in an actuated position for puncturing an infusion liquid container along line E-E in FIG. 15;



FIG. 18A is a front elevation view of a drug vial release tool in its set-up position;



FIG. 18B is a longitudinal cross section of FIG. 18A's drug vial release tool along line F-F thereon;



FIG. 19A is a front elevation view of the drug vial release tool in its operative vial release position to release a drug vial;



FIG. 19B is a longitudinal cross section of FIG. 19A's drug vial release tool along line G-G thereon;



FIG. 20A is a front elevation view of the drug vial release tool in its set-up position mounted on FIG. 15's liquid drug transfer device with a pre-attached intact drug vial;



FIG. 20B is a longitudinal cross section of FIG. 20A's assemblage along line H-H thereon;



FIG. 21A is a front elevation view of the drug vial release tool in its operative vial release position mounted on FIG. 15's liquid drug transfer device with a pre-attached intact drug vial;



FIG. 21B is a longitudinal cross section of FIG. 21A's assemblage along line I-I thereon;



FIG. 22A is a front elevation view of the drug vial release tool mounted on FIG. 15's liquid drug transfer device and a detached intact drug vial;



FIG. 22B is a longitudinal cross section of FIG. 22A's assemblage along line J-J thereon;



FIG. 23A is a front elevation view of the drug vial release tool in an inoperative position mounted on FIG. 15's liquid drug transfer device with a punctured drug vial after a partial manual actuation rotation;



FIG. 23B is a longitudinal cross section of FIG. 23A's assemblage along line K-K thereon;



FIG. 24 is a front top perspective view of a fifth preferred embodiment of a liquid drug transfer device in accordance with the present invention;



FIG. 25 is a front elevation view of FIG. 24's liquid drug transfer device;



FIG. 26 is a right side elevation view of FIG. 24's liquid drug transfer device;



FIG. 27 is a longitudinal cross section of FIG. 24's liquid drug transfer device along line L-L on FIG. 26;



FIG. 28 is a right side elevation view of FIG. 24's liquid drug transfer device telescopically clamped on a small drug vial;



FIG. 29 is a longitudinal cross section of FIG. 28's assemblage along line M-M thereon;



FIG. 30 is a front elevation view of FIG. 24's liquid drug transfer device mounted on a large drug vial;



FIG. 31 is a longitudinal cross section of FIG. 30's assemblage along line N-N thereon;



FIG. 32 is a pictorial view showing syringe aspiration of liquid contents from FIG. 28's assemblage;



FIG. 33 is a pictorial view showing syringe aspiration of liquid contents from FIG. 30's assemblage;



FIG. 34 is a front perspective view of a conventional liquid drug transfer device for attaching to an injection port;



FIG. 35 is a longitudinal cross section of FIG. 34's liquid drug transfer device along line O-O thereon deployed with a conventional injection port connector for attaching to an injection port;



FIG. 36 is a top view of FIG. 35's conventional injection port connector;



FIG. 37 is a perspective view of a universal injection port connector in accordance with the present invention;



FIG. 38 is a longitudinal cross section of FIG. 37's universal injection port connector along line P-P thereon;



FIG. 39 is a front perspective view of an infusion bag with a so-called small injection port;



FIG. 40 is a longitudinal cross section of FIG. 34's liquid drug transfer device with FIG. 37's universal injection port connector mounted on FIG. 39's small injection port;



FIG. 41 is a front perspective view of an infusion bag with a so-called large injection port tip; and



FIG. 42 is a longitudinal cross section of FIG. 34's liquid drug transfer device with FIG. 37's universal injection port connector mounted on FIG. 41's large injection port.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION


FIG. 1 shows a syringe 10, a small drug vial 20A, a large drug vial 20B, and a liquid drug transfer device 100 constituted as a female vial adapter for use with the syringe 10 and a drug vial 20 of the small drug vial 20A and the large drug vial 20B.


The syringe 10 includes a barrel 11 with a plunger rod 12 and a male Luer lock connector 13. The syringe 10 can be formed with other types of male connectors, for example, a slip Luer connector, and the like. The syringe 10 is typically filled with diluent. Alternatively, the syringe 10 can include an active liquid component.


The drug vials 20 have a longitudinal drug vial axis 21 and include a drug vial body 22 having a drug vial base 23, a drug vial head 24 defining a drug vial opening 26, and a narrow diameter drug vial neck 27 between the drug vial body 22 and the drug vial head 24. The drug vials 20 have a drug vial interior 28 for storing a powder or liquid medicament 29. The drug vials 20 are sealed by a drug vial stopper 31 inserted into the drug vial opening 26. The drug vial stopper 31 has an uppermost drug vial surface 32. The drug vials 20 are hermetically sealed by a drug vial closure 33 constituted, for example, by an aluminum band, and the like.


Widely commercially available small drug vials 20A have a drug vial closure 33 with an external diameter D1 of between 13 mm and 14 mm and widely commercially available large drug vials 20B have a drug vial closure 33 with an external diameter D2>D1 and typically between 20 mm and 21 mm.



FIGS. 1 to 11 show the liquid drug transfer device 100 includes a universal drug vial adapter 200A and a female Luer connector 101 for engagement with the syringe's male Luer lock connector 13. The liquid drug transfer device 100 includes a tubular puncturing member 102 in flow communication with the female Luer connector 101 for enabling flow access to a drug vial interior 28.


The universal drug vial adapter 200A has a longitudinal drug vial adapter axis 201 and a skirt 202 for defining a drug vial cavity 203 for snugly telescopically receiving at least a top part of the drug vial 20B therein and therefore inherently a top part of the drug vial 20A. The skirt 202 includes a top wall 204 constituted by an annular centerpiece 206 with a first pair of two radial directed struts 207 and a second pair of two radial directed struts 208. The annular centerpiece 206 is formed with the upright female Luer connector 101.


The skirt 202 includes a first pair of axial directed spaced apart flex member supports 209 and 211 downward depending from the radial directed struts 207. The skirt 202 includes a second pair of axial directed spaced apart flex member supports 212 and 213 downward depending from the radial directed struts 208. The first pair of axial directed flex member supports 209 and 211 are opposite the second pair of axial directed flex member supports 212 and 213.


The flex member support 209 has a proximate end 209A adjacent the top wall 204 and a distal end 209B remote therefrom. The flex member support 211 has a proximate end 211A adjacent the top wall 204 and a distal end 211B remote therefrom. The flex member support 212 has a proximate end 212A adjacent the top wall 204 and a distal end 212B remote therefrom. The flex member support 213 has a proximate end 213A adjacent the top wall 204 and a distal end 213B remote therefrom.


The skirt 202 includes a single continuous annular support 214 including a first crosspiece 216 extending between the distal ends 209B and 211B, a second crosspiece 217 extending between the distal ends 212B and 213B, a third crosspiece 218 extending between the distal ends 209B and 212B and a fourth crosspiece 219 extending between the distal ends 211B and 213B.


The skirt 202 includes an axial directed first flex member 221 resiliently flexibly mounted on the first crosspiece 216, an axial directed second flex member 222 resiliently flexibly mounted on the second crosspiece 217 and opposite the first flex member 221, an axial directed third flex member 223 resiliently flexibly mounted on the third crosspiece 218 between the first flex member 221 and the second flex member 222, and an axial directed fourth flex member 224 resiliently flexibly mounted on the fourth crosspiece 219 and opposite the third flex member 223.


The first flex member 221 has a first flex member free end 221A remote from the first crosspiece 216 and an inward radial directed first drug vial grip 221B theretoward. The second flex member 222 has a second flex member free end 222A remote from the second crosspiece 217 and an inward radial directed second drug vial grip 222B theretoward. The third flex member 223 has a third flex member free end 223A remote from the third crosspiece 218 and an inward radial directed third drug vial grip 223B theretoward. The fourth flex member 224 has a fourth flex member free end 224A remote from the fourth crosspiece 219 and an inward radial directed fourth drug vial grip 224B theretoward.


The first drug vial grip 221B and the second drug vial grip 222B define a separation S therebetween where S<D1 and similarly the third drug vial grip 223B and the fourth drug vial grip 224B define the separation S therebetween such that they underlie a drug vial closure 33 of a drug vial 20A on telescopically clamping the liquid drug transfer device 100 thereon. Since D2>D1, the drug vial grips 221B, 222B, 223B and 224B also underlie a drug vial closure 33 of a drug vial 20B.


The flex members 221, 222, 223 and 224 are generally parallel to the longitudinal drug vial adapter axis 201 before telescopically clamping the liquid drug transfer device 100 on a drug vial 20A. On telescopically clamping the liquid drug transfer device 100 on a drug vial 20A, the flex members 221, 222, 223 and 224 are outwardly resiliently flexed at their respective crosspieces 216, 217, 218 and 219 with respect to the longitudinal drug vial adapter axis 201 as the drug vial closure 33 passes from beneath the drug vial grips 221B, 222B, 223B and 224B to thereabove under the top wall 204 whereupon the flex members 221, 222, 223 and 224 revert to being generally parallel to the longitudinal drug vial adapter axis 201 as depicted by dashed lines A in FIGS. 6 and 7.


In the case of telescopically clamping the liquid drug transfer device 100 on a drug vial 20B, the flex members 221, 222, 223 and 224 are further outwardly resiliently flexed at their respective crosspieces 216, 217, 218 and 219 with respect to the longitudinal drug vial adapter axis 201 relative to the drug vial 20A due to the former 20B have a wide diameter drug vial closure 33 than the latter 20A. In the case of the drug vial 20B, the flex members 221, 222, 223 and 224 are prevented from fully reverting to being generally parallel to the longitudinal drug vial adapter axis 201 but rather remain outwardly flexed with respect to their original unflexed position as depicted by dashed lines B in FIGS. 8 and 9.



FIG. 10 shows a syringe 10 attached to the liquid drug transfer device 100 mounted on a drug vial 20A for mixing, reconstitution and aspiration purposes.



FIG. 11 shows a syringe 10 attached to the liquid drug transfer device 100 mounted on a drug vial 20B for mixing, reconstitution and aspiration purposes.



FIGS. 12 and 13 show a liquid drug transfer device 110 including a universal drug vial adapter 200B and intended for use with a discrete dual ended liquid transfer member 111 formed with a female Luer connector 112 and a puncturing cannula 113 in flow communication therewith. The liquid drug transfer device 110 is similar in construction to the liquid drug transfer device 100 and differs therefrom insofar as its universal drug vial adapter 200B has a top wall 204 formed with the annular centerpiece 206 and a retainer arrangement 226 for retaining the liquid transfer member 111 above the annular centerpiece 206 ready for actuation. The puncturing cannula 113 is covered by a sheath 114 which maintains sterile conditions during storage and for use as a sealing member for use with a drug vial 20. The liquid drug transfer device 110 can be telescopically mounted on a drug vial 20 ready for subsequent actuation by downward depression of the liquid transfer member 111.



FIG. 14 shows a liquid drug transfer device 120 as disclosed in commonly owned U.S. Pat. No. 6,238,372 to Zinger et al. including a fluid control device 121 and a universal drug vial adapter 200C for screw thread engagement thereon.



FIGS. 15 to 17 show a liquid drug transfer device 130 for use with an infusion liquid container 40 exemplary shown as an IV bag. The IV bag 40 includes an injection port 41, an administration port 42 and liquid contents 43. The IV bag ports 41 and 42 are in the form of plastic tubing. The injection port 41 terminates in an injection port tip 44 containing a self-sealing plug 46 with an exposed plug surface 47 intended for needle injection of syringe contents into the IV bag 40. The injection port tip 44 has a trailing injection port tip rim 48. The administration port 42 is typically sealed by a twist off cap 49 for insertion of an IV spike for administration purposes.


The liquid drug transfer device 130 has a longitudinal liquid drug transfer device axis 131 and includes an injection port adapter 132, a dual ended liquid transfer member 133 and a universal drug vial adapter 200D. The injection port adapter 132 is preferably provided with a universal injection port connector 250 for attachment on the injection port 41. The liquid transfer member 133 is provided with a needle 134 for puncturing the injection port 41 and terminates in a puncturing tip 136 for puncturing a drug vial stopper 31. The needle 134 is protected by a sheath 134A and the puncturing tip 136 is protected by a sheath 136A.


The liquid transfer member 133 is formed with a leading drill like bit 137 and a trailing pair of outward directed pins 138. The universal drug vial adapter 200D differs from the universal drug vial adapter 200A insofar that it has a top wall 204 formed with an axial directed tubular stem 227 on the annular centerpiece 206. The stem 227 has a pair of opposite generally helical tracks 228 for corresponding engagement by the pair of outward radial pins 138. The tracks 228 each have a start track end 228A remote from the top wall 204 and a final track end 228B adjacent the top wall 204.


The drill like bit 137 has a leading stopper 139A and a trailing stopper 139B. The injection port adapter 132 has an internal surface 141 formed with an inward radial directed leading flange 142A and an inward directed trailing flange 142B.



FIG. 17A shows the leading stopper 139A is disposed on the leading flange 142A in an initial pre-actuated position of the liquid drug transfer device 130. The puncturing tip 136 is deployed above or at the top wall 204 such that an intact drug vial 20 can be telescopically clamped in the universal drug vial adapter 200D for subsequent use. On telescopic mounting a drug vial in the universal drug vial adapter 200D, the puncturing tip 136 is spaced apart from its uppermost drug vial surface 32. The liquid drug transfer device 130 has a height H1 in its initial pre-actuated position.



FIG. 17B shows initial manual actuation rotation of the universal drug vial adapter 200D in a clockwise tightening direction around the longitudinal axis 131 as depicted by arrow A in FIG. 15 leads to the universal drug vial adapter 200D traveling along the liquid transfer member 133 until the outward directed pins 138 stop at the final track ends 228B. This linear movement causes the puncturing tip 136 to puncture through a drug vial stopper 31 into a drug vial interior 28 of a previously clamped drug vial 20 for establishing flow communication with its drug vial interior 28. The liquid drug transfer device 130 has a height H2 in its intermediate drug vial puncturing position where H2<H1.



FIG. 17C shows continuing manual actuation rotation of the universal drug vial adapter 200D in the same clockwise tightening direction leads to the combined movement of the liquid transfer member 133 and the universal drug vial adapter 200D until the trailing stop 141B stops against the trailing flange 142. This linear movement urges the needle 134 towards the universal injection port connector 250 for puncturing an injection port 41, thereby establishing flow communication between an infusion liquid container 40 and a drug vial 20. The liquid drug transfer device 130 has a height H3 in its actuated infusion liquid container puncturing position where H3<H2.


The liquid drug transfer device 130 is preferably provided with a pre-attached intact drug vial 20. The liquid drug transfer device 130 can optionally be pre-attached to an infusion liquid container 40. Accordingly, a user is required to execute a single manual actuation rotation for establishing flow communication between an infusion liquid container and a drug vial.



FIGS. 18 to 23 show a drug vial release tool 300 for releasing an intact drug vial 20 from the liquid drug transfer device 130 in its initial set-up state before having undergone a manual actuation rotation. The construction and operation of the drug vial release tool 300 is shown with reference to a drug vial 20B and equally applies to a drug vial 20A.


The drug vial release tool 300 has a longitudinal tool axis 301 and includes an open-topped housing 302 having a peripheral wall 303, a bottom wall 304 and a top rim 306. The housing 302 is intended to slidingly receive the universal drug vial adapter 200D with a pre-attached intact drug vial 20. The peripheral wall 303 has an internal surface 307 having with four longitudinal directed slots 308 for slidingly receiving the four equispaced downward depending flex member supports 209, 211, 212 and 213 for ensuring correct rotational alignment of the universal drug vial adapter 200D in the drug vial release tool 300. The longitudinal directed slots 308 are each formed with a stopper 309 for stopping the sliding insertion of the universal drug vial adapter 200D into the drug vial release tool 300 such that an intact drug vial 20 is at a height H4 above the inside bottom wall 304 (see FIG. 20B). In the case of manual actuation rotation of the liquid drug transfer device 130, the universal drug vial adapter 132 prevents full insertion of the universal liquid drug adapter 200D into the drug vial release tool 300 as shown in FIGS. 23A and 23B in which the punctured drug vial is at a height H5 above the bottom wall 304.


The housing 302 is formed with four longitudinal directed rectangular apertures 311 in registration with the four resiliently flexible upward depending flex members 221, 222, 223 and 224 on sliding insertion of the universal drug vial adapter 200D thereinto. The drug vial release tool 300 includes an annular railing 312 encircling the housing 302. The railing 312 supports four pivotal release members 313 each having a release member rim 314. The release members 313 have a set-up position enabling free sliding insertion of the universal drug vial adapter 200D into the housing 302 (see FIGS. 20A and 20B). The release members 313 are operable to an operative position such that their release member rims 314 are disposed in the separations between the top wall 204 and the flexible flex members 221, 222, 223 and 224 (see FIGS. 21A and 21B). The release members 313 are manually operated to outwardly flex the flex members 221, 222, 223 and 234 with respect to the longitudinal tool axis 301 thereby freeing the drug vial 20 which drops onto the bottom wall 304 (see FIGS. 22A and 22B).



FIGS. 23A and 23B show that in the case the liquid drug transfer device 130 has been partially actuated to puncture the drug vial 20, the universal drug vial adapter 200D rests on the top rim 306 on its insertion into the drug vial release tool 300, the release members 313 are not aligned with the separations between the top wall 204 and the flex members 221, 222, 223 and 224 but rather their release member tips 314 directly face the flex members 221, 222, 223 and 224 and are therefore inoperable to release the punctured drug vial 20.



FIGS. 24 to 33 show a liquid drug transfer device 150 for use with a syringe 10, and a drug vial of a small drug vial 20A and a large drug vial 20B. The liquid drug transfer device 150 is similar to the liquid drug transfer device 100 insofar it includes a universal drug vial adapter 200E, a female Luer connector 101, and a tubular puncturing member 102 in flow communication with the female Luer connector 101 for enabling flow access to a drug vial interior 28. The universal drug vial adapter 200E is similar to the universal drug vial adapter 200A insofar it has a longitudinal drug vial adapter axis 201, a skirt 202, a drug vial cavity 203 for snugly telescopically receiving at least a top part of a drug vial 20B therein and therefore inherently a top part of a drug vial 20A, and a top wall 204 transverse to the longitudinal drug vial adapter axis 201.


The puncturing member 102 has a pair of elongated flow apertures 151 each having a proximal end 152A adjacent the top wall 204 and a distal end 152B adjacent a puncturing tip 153. The proximal ends 152A are adjacent the top wall 204 to ensure that the entire liquid contents of a drug vial 20A can be aspirated therefrom on inversion of an assemblage of the liquid drug transfer device 150 and a drug vial 20A. The distal ends 152B are adjacent the puncturing tip 153 to ensure that the puncturing member 102 is in flow communication with a drug vial 20B's drug vial interior 28 in an assemblage of the liquid drug transfer device 150 and a drug vial 20B.


The liquid drug transfer device 150 includes a thin sheath 154 covering the puncturing member 102. The sheath 154 is urged towards the top wall 204 on mounting the liquid drug transfer device 150 on a drug vial 20A and a drug vial 20B. In the former case, FIG. 29 shows the sheath 154 is flattened between the top wall 204 and the drug vial 20A's uppermost drug vial surface 32. In the latter case, FIG. 31 shows the sheath 154 takes on a bellows like appearance between the top wall 204 and the drug vial 20B's uppermost drug vial surface 32. The sheath 154 acts as a sealing member for sealing the proximal ends 152A of the elongated flow apertures 151 which are exposed between the top wall 204 and the drug vial 20B's uppermost drug vial surface 32.


The skirt 202 includes a set of minor flex members 230 for telescopically clamping on a drug vial 20A's drug vial head. The set of minor flex members 230 includes a pair of opposite minor flex members 231A and 231B for telescopically clamping on a drug vial 20A's drug vial head 24. The minor flex members 231 each have a free minor flex member end 232A and 232B distal from the top wall 204 and an inner directed rim 233A and 233B for snap fitting on a drug vial 20A's drug vial head 24.


The skirt 202 includes a set of major flex members 234 for telescopically clamping on a drug vial 20B's drug vial closure 33. The set of major flex members 234 includes a first pair of adjacent major flex members 236A and 236B and a second pair of adjacent major flex members 237A and 237B opposite the first pair of adjacent major flex members 236A and 236B. The set of major flex members 234 includes pairs of adjacent major flex members 236 and 237 for ensuring they clamp two opposite major lengths of the periphery of a drug vial 20B's drug vial closure 33.


The major flex members 236 and 237 are each formed with a longitudinal directed window 238 and an inner directed rim 239 for snap fitting on a drug vial 20B's drug vial closure 33. The major flex members 236A and 237A are spaced apart to leave a separation 241A therebetween. The major flex members 236B and 237B are spaced apart to leave a separation 241B therebetween. The minor flex members 231 are aligned with the separations 241 whereby, on telescopically clamping the liquid drug transfer device 150 on a drug vial 20A, the minor flex members 231 are unhindered by the major flex members 236 and 237 to outwardly flex relative to the longitudinal drug vial adapter axis 201.



FIGS. 28 and 29 show the liquid drug transfer device 150 mounted on a drug vial 20A. The puncturing member 102 entirely punctures through its drug vial stopper 31 such that the proximal ends 152A are within its drug vial interior 28.



FIGS. 30 and 31 show the liquid drug transfer device 150 mounted on a drug vial 20B. The set of minor flex members 230 acts as an abutment member to distance the drug vial 20B from the top wall 204 whereupon the drug vial 20B's uppermost drug vial surface 32 underlies the minor flex member free ends 232A and 232B.


The top portion of puncturing member 102 remains exposed between the top wall 204 and the drug vial's uppermost drug vial surface 32. The sheath 154 assumes a bellows like appearance between the top wall 204 and the drug vial 20B's uppermost drug vial surface 32 for acting as a sealing member for the exposed lengths of the elongated flow apertures 151.



FIG. 32 shows a syringe 10 attached to the liquid drug transfer device 150 mounted on a drug vial 20A for mixing, reconstitution and aspiration purposes.



FIG. 33 shows a syringe 10 attached to the liquid drug transfer device 150 mounted on a drug vial 20B for mixing, reconstitution and aspiration purposes.



FIG. 34 shows a liquid drug transfer device 160 with an injection port connector 230 for mounting on a particular sized injection port 41 having an injection port tip 44 with a self-sealing plug 46, an exposed plug surface 47 and a trailing injection port tip rim 48. The liquid drug transfer device is commercially available under the trade name VIAL-MATE Adaptor Device from Baxter Healthcare Corporation. The product sheet is available online at http://www.baxtermedicationdeliveryproducts.com/drug-delivery/vialmate.html.


The product sheet indicates that the VIAL-MATE Adaptor Device is suitable only for single dose vials with 20 mm closure and VIAFLEX containers also available from Baxter Healthcare Corporation.



FIG. 35 shows the liquid drug transfer device 160 includes an open-ended housing 161 having a longitudinal housing axis 162, an access aperture 163 and a vial adapter 164. The open ended housing 161 includes a needle 166 for puncturing an injection port 41 and a puncturing member 167 downward depending into the vial adapter 164 in flow communication with the needle 166.



FIG. 36 shows a conventional injector port connector 230 deployed in the open ended housing 161 towards the access aperture 163. The injector port connector 230 includes a longitudinal connector axis 231 in co-axial alignment with the longitudinal housing axis 162. The injection port connector 230 includes a circular support ring 232 defining a horizontal plane 233 transverse to the longitudinal housing axis 162. The support ring 232 includes a multitude of straight connector members 234 each terminating in a free connector member end 236 disposed toward the longitudinal housing axis 162. The free connector member ends 236 converge to define a generally circular connector aperture 237 underlying the horizontal plane 233. The connector aperture 237 has a connector aperture diameter D4 where D4<D3.


The liquid drug transfer device 160 is designed for a particular sized injection port 41 to be forcibly slidingly inserted through the connector aperture 237 from the direction of the access aperture 163 towards the vial adapter 164 whereupon the free connector member ends 236 snap behind the trailing injection port tip rim 48. However, the injection port 41 is undesirably capable of being readily withdrawn from the open-ended housing 161 on application of a relatively small outward longitudinal withdrawal force in the direction of the access aperture 163.



FIGS. 37 and 38 show a universal injection port connector 250 for mounting on different sizes of injection ports 41. The universal injection port connector 250 has the same basic construction as the injector port connector 230 as follows: The universal injection port connector 250 has a longitudinal axis 251, a closed support ring 252 defining a horizontal plane 253, a multitude of connector members 254 each resiliently flexibly mounted on the support ring 252 and terminating in a free connector member end 256 converging towards a connector aperture 257 parallel to the horizontal plane 253. The closed support ring 252 is preferably circular but can be formed in other closed shapes, for example, oval, and the like.


The universal injection port connector 250 differs from the conventional injection port connector 230 insofar as the former has curved connector members 254 as opposed to the latter's straight connector members 234 such that the universal injection port connector 250 assumes an overall bowl like shape. The connector aperture 257 has a connector aperture diameter D5 where D5<D3 such that forced sliding insertion of an injection port tip 44 through the connector aperture 257 from the direction of the support ring 252 outwardly flexes the connector members 254 from their non-flexed position relative to the longitudinal connector axis 251 for snapping behind the trailing injection port rim 48, thereby precluding sliding withdrawal of the injection port tip 44 in a reverse direction to the forced sliding insertion. By virtue of the curved shape of its connector members 254, the universal injection port connector 250 is capable of being attached on different sizes of injection ports 41. Moreover, by virtue of its curved connector members 254, the universal injection port connector 250 is more capable of withstanding an outward longitudinal withdrawal force than the conventional injection port connector 230.



FIG. 39 shows an infusion bag 40A having a so-called small injection port 41A having an injection port tip 44A with a self-sealing plug 46A, an exposed plug surface 47A and a trailing injection port tip rim 48. The injection port 41A has an external diameter D11. The injection port tip 44A has an external tip diameter D12 and a tip height H11. The trailing injection port tip rim 48A has an external diameter D13. D11 is 6.5 mm, D12 is 7.5 mm, H11 is 7.5 mm and D13 is 10.5 mm.



FIG. 40 shows the liquid drug transfer device 160 with the universal injection port connector 250 attached on the small injection port 41A.



FIG. 41 shows an infusion bag 40B having a so-called large injection port 41B with the same construction as the small injection port 41A but with larger dimensions as follows: The injection port 41B has an external diameter D21. The injection port tip 44B has an external tip diameter D22 and a tip height H21. The trailing injection port tip rim 48B has an external diameter D23. D21 is 10.5 mm, D22 is 10.5 mm, H21 is 10 mm and D23 is 13 mm.



FIG. 42 shows the liquid drug transfer device 160 with the universal injection port connector 250 attached on the large injection port 41B. The connector members 254 are more steeply inclined when attaching the liquid drug transfer device 160 on the injection port 41B than the injection port 41A since the former 41B has a wider injection port diameter D21 than the latter 41A's injection port diameter D11.


While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications, and other applications of the invention can be made within the scope of the appended claims.

Claims
  • 1. A liquid drug transfer device for use with a drug vial of a small drug vial and a large drug vial, the drug vial including a drug vial bottle, a drug vial interior, a drug vial stopper, an uppermost drug vial surface, and a drug vial closure, the small drug vial having a drug vial closure with an external diameter D1 and the large drug vial having a drug vial closure with an external diameter D2 where D2>D1 and the difference D2−D1 is in the range of between 4 mm and 7 mm,the liquid drug transfer device comprising an universal drug vial adapter having a longitudinal drug vial adapter axis and a skirt for telescopically clamping on the drug vial closure,said skirt including a top wall transverse to said longitudinal drug vial adapter axis, a first pair of axial directed, spaced apart flex member supports and a second pair of axial directed, spaced apart flex member supports opposite said first pair of axial directed flex member supports for defining a drug vial cavity for snugly telescopically receiving at least a top part of a large drug vial therein,each flex member support having a proximate end adjacent said top wall and a distal end remote from said top wall,said first pair of flex member supports including a first crosspiece extending between their corresponding distal ends, said first crosspiece integrally formed with an axial directed first flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said first flex member having a first flex member free end remote from said first crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis from said first crosspiece to said first flex member free end, said first flex member further having an inward radial directed first drug vial grip,said second pair of flex member supports including a second crosspiece extending between their corresponding distal ends, said second crosspiece integrally formed with an axial directed second flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said second flex member having a second flex member free end remote from said crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis from said second crosspiece to said second flex member free end, said second flex member further having an inward radial directed second drug vial grip,said first flex member and said second flex member being opposite such that said first drug vial grip and said second drug vial grip define a separation S therebetween where S<D1 whereupon said first drug vial grip and said second drug vial grip underlie a drug vial closure on telescopically clamping said universal drug vial adapter on the drug vial,said first flex member and said second flex member being outwardly resiliently flexed correspondingly at said first crosspiece and said second crosspiece with respect to said longitudinal drug vial adapter axis to a greater extent on telescopically clamping said universal drug vial adapter on the large drug vial compared to telescopically clamping said universal drug vial adapter on the small drug vial.
  • 2. The device according to claim 1, wherein said skirt includes a single continuous annular support including said first crosspiece, said second crosspiece, a third crosspiece extending between said first crosspiece and said second crosspiece, and a fourth crosspiece extending between said first crosspiece and said second crosspiece and opposite said third crosspiece, said third crosspiece integrally formed with a third flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said third flex member having a third flex member free end remote from said third crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis between said third crosspiece and said third flex member free end, said third flex member further having an inward radial directed third drug vial grip, andsaid fourth crosspiece integrally formed with a fourth flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said fourth flex member having a fourth flex member free end remote from said fourth crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis between said fourth crosspiece and said fourth flex member free end, said fourth flex member further having an inward radial directed fourth drug vial grip,said third flex member and said fourth flex member being opposite such that said third drug vial grip and said fourth drug vial grip define said separation S therebetween whereupon said third drug vial grip and said fourth drug vial grip underlie the drug vial closure on telescopically clamping said universal drug vial adapter on the drug vial.
  • 3. The device according to claim 1, wherein said top wall is constituted by an annular centerpiece and a radial strut from said annular centerpiece to each said flex member support.
  • 4. The device according to claim 1, wherein said flex members are arranged to be generally parallel to said longitudinal drug vial adapter axis prior to telescopically clamping said universal drug vial adapter on a drug vial such that said first flex member and said second flex member are generally parallel to said longitudinal drug vial adapter axis on telescopically clamping said universal drug vial adapter on a small drug vial and are outwardly flexed with respect to said longitudinal drug vial adapter axis on telescopically mounting said universal drug vial adapter on a large drug vial.
  • 5. The device according to claim 1, wherein said top wall includes an integral access port and an integral puncturing member in flow communication with said integral access port for puncturing a drug vial stopper on telescopic clamping said universal drug vial adapter on the drug vial for enabling flow communication with the drug vial interior.
  • 6. The device according to claim 1, wherein said universal drug vial adapter is capable of being telescopically clamped on a pre-attached initially intact drug vial, said top wall including an axial directed tubular stem overlying the uppermost drug vial surface of the pre-attached initially intact drug vial, the liquid drug transfer device further comprising a discrete liquid transfer member with a puncturing tip disposed in said stem for puncturing the drug vial stopper on downward urging said liquid transfer member towards the drug vial for enabling flow communication with the drug vial interior.
  • 7. The device according to claim 6, wherein said pre-attached intact drug vial is removable intact from said universal drug vial adapter on employing a drug vial release tool for outwardly flexing said flex members relative to said longitudinal drug vial adapter axis.
  • 8. The device according to claim 1, wherein D1 is between 13 mm and 14 mm and D2 is between 20 mm and 21 mm.
  • 9. A liquid drug transfer device for use with a drug vial of a small drug vial and a large drug vial, the drug vial including a drug vial bottle, a drug vial interior, a drug vial stopper, an uppermost drug vial surface, and a drug vial closure, the small drug vial having a drug vial closure with an external diameter D1 and the large drug vial having a drug vial closure with an external diameter D2 where D2>D1,the liquid drug transfer device comprising an universal drug vial adapter having a longitudinal drug vial adapter axis and a skirt for telescopically clamping on the drug vial closure,said skirt including a top wall transverse to said longitudinal drug vial adapter axis, a first pair of axial directed, spaced apart flex member supports and a second pair of axial directed, spaced apart flex member supports opposite said first pair of axial directed flex member supports for defining a drug vial cavity for snugly telescopically receiving at least a top part of a large drug vial therein,each flex member support having a proximate end adjacent said top wall and a distal end remote from said top wall,said first pair of flex member supports including a first crosspiece extending between their corresponding distal ends, said first crosspiece integrally formed with an axial directed first flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said first flex member having a first flex member free end remote from said first crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis from said first crosspiece to said first flex member free end, said first flex member further having an inward radial directed first drug vial grip,said second pair of flex member supports including a second crosspiece extending between their corresponding distal ends, said second crosspiece integrally formed with an axial directed second flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said second flex member having a second flex member free end remote from said crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis from said second crosspiece to said second flex member free end, said second flex member further having an inward radial directed second drug vial grip,said first flex member and said second flex member being opposite such that said first drug vial grip and said second drug vial grip define a separation S therebetween where S<D1 whereupon said first drug vial grip and said second drug vial grip underlie a drug vial closure on telescopically clamping said universal drug vial adapter on the drug vial,said first flex member and said second flex member being outwardly resiliently flexed correspondingly at said first crosspiece and said second crosspiece with respect to said longitudinal drug vial adapter axis to a greater extent on telescopically clamping said universal drug vial adapter on the large drug vial compared to telescopically clamping said universal drug vial adapter on the small drug vial.
  • 10. The device according to claim 9, wherein said skirt includes a single continuous annular support including said first crosspiece, said second crosspiece, a third crosspiece extending between said first crosspiece and said second crosspiece, and a fourth crosspiece extending between said first crosspiece and said second crosspiece and opposite said third crosspiece, said third crosspiece integrally formed with a third flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said third flex member having a third flex member free end remote from said third crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis between said third crosspiece and said third flex member free end, said third flex member further having an inward radial directed third drug vial grip, andsaid fourth crosspiece integrally formed with a fourth flex member resiliently flexibly mounted thereon with respect to said longitudinal drug vial adapter axis, said fourth flex member having a fourth flex member free end remote from said fourth crosspiece and being axially directed and extending generally parallel to said longitudinal drug vial adapter axis between said fourth crosspiece and said fourth flex member free end, said fourth flex member further having an inward radial directed fourth drug vial grip,said third flex member and said fourth flex member being opposite such that said third drug vial grip and said fourth drug vial grip define said separation S therebetween whereupon said third drug vial grip and said fourth drug vial grip underlie the drug vial closure on telescopically clamping said universal drug vial adapter on the drug vial.
  • 11. The device according to claim 9, wherein said top wall is constituted by an annular centerpiece and a radial strut from said annular centerpiece to each said flex member support.
  • 12. The device according to claim 9, wherein said flex members are arranged to be generally parallel to said longitudinal drug vial adapter axis prior to telescopically clamping said universal drug vial adapter on a drug vial such that said first flex member and said second flex member are generally parallel to said longitudinal drug vial adapter axis on telescopically clamping said universal drug vial adapter on a small drug vial and are outwardly flexed with respect to said longitudinal drug vial adapter axis on telescopically mounting said universal drug vial adapter on a large drug vial.
  • 13. The device according to claim 9, wherein said top wall includes an integral access port and an integral puncturing member in flow communication with said integral access port for puncturing a drug vial stopper on telescopic clamping said universal drug vial adapter on the drug vial for enabling flow communication with the drug vial interior.
  • 14. The device according to claim 9, wherein said universal drug vial adapter is capable of being telescopically clamped on a pre-attached initially intact drug vial, said top wall including an axial directed tubular stem overlying the uppermost drug vial surface of the pre-attached initially intact drug vial, the liquid drug transfer device further comprising a discrete liquid transfer member with a puncturing tip disposed in said stem for puncturing the drug vial stopper on downward urging said liquid transfer member towards the drug vial for enabling flow communication with the drug vial interior.
  • 15. The device according to claim 14, wherein said pre-attached intact drug vial is removable intact from said universal drug vial adapter on employing a drug vial release tool for outwardly flexing said flex members relative to said longitudinal drug vial adapter axis.
Priority Claims (1)
Number Date Country Kind
221634 Aug 2012 IL national
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Section 371 of International Application No. PCT/IL2013/050706, filed Aug. 20, 2013, which was published in the English language on Mar. 6, 2014, under International Publication No. WO 2014/033706 A3, which claims priority to U.S. Provisional Application No. 61/731,574 filed Nov. 30, 2012, and the disclosure of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/IL2013/050706 8/20/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/033706 3/6/2014 WO A
US Referenced Citations (756)
Number Name Date Kind
62333 Holl Feb 1867 A
2247975 Wickes Oct 1881 A
300060 Ford Jun 1884 A
1021681 Jennings Mar 1912 A
1704817 Ayers Mar 1929 A
1930944 Schmitz, Jr. Oct 1933 A
2326490 Perelson Aug 1943 A
2560162 Garwood Jul 1951 A
2748769 Huber Jun 1956 A
2830587 Everett Apr 1958 A
2931668 Baley Apr 1960 A
2968497 Treleman Jan 1961 A
3059643 Barton Oct 1962 A
D198499 Harautuneian Jun 1964 S
3225763 Waterman Dec 1965 A
3254444 Vogel Jun 1966 A
3277893 Clark Oct 1966 A
3308822 De Luca Mar 1967 A
3484849 Huebner et al. Dec 1969 A
3618637 Santomieri Nov 1971 A
3757981 Harris, Sr. et al. Sep 1973 A
3788524 Davis et al. Jan 1974 A
3822700 Pennington Jul 1974 A
3826261 Killinger Jul 1974 A
3872992 Larson Mar 1975 A
3885607 Peltier May 1975 A
3938520 Scislowicz et al. Feb 1976 A
3957052 Topham May 1976 A
3977555 Larson Aug 1976 A
3993063 Larrabee Nov 1976 A
4020839 Klapp May 1977 A
4051852 Villari Oct 1977 A
D247975 Luther May 1978 S
D248568 Ismach Jul 1978 S
4109670 Slagel Aug 1978 A
4121585 Becker, Jr. Oct 1978 A
4161178 Genese Jul 1979 A
4187848 Taylor Feb 1980 A
D254444 Levine Mar 1980 S
4203067 Fitzky et al. May 1980 A
4203443 Genese May 1980 A
4210173 Choksi et al. Jul 1980 A
D257286 Folkman Oct 1980 S
4253501 Ogle Mar 1981 A
4296786 Brignola Oct 1981 A
4303067 Connolly et al. Dec 1981 A
4312349 Cohen Jan 1982 A
4314586 Folkman Feb 1982 A
4328802 Curley et al. May 1982 A
4335717 Bujan et al. Jun 1982 A
D267199 Koenig Dec 1982 S
4376634 Prior et al. Mar 1983 A
D268871 Benham et al. May 1983 S
4392850 Elias et al. Jul 1983 A
D270282 Gross Aug 1983 S
4410321 Pearson et al. Oct 1983 A
4411662 Pearson Oct 1983 A
D271421 Fetterman Nov 1983 S
4434823 Hudspith Mar 1984 A
4465471 Harris et al. Aug 1984 A
4475915 Sloane Oct 1984 A
4493348 Lemmons Jan 1985 A
4505709 Froning et al. Mar 1985 A
4507113 Dunlap Mar 1985 A
D280018 Scott Aug 1985 S
4532969 Kwaan Aug 1985 A
4564054 Gustaysson Jan 1986 A
4573993 Hoag et al. Mar 1986 A
4576211 Valentini et al. Mar 1986 A
4581014 Millerd et al. Apr 1986 A
4585446 Kempf Apr 1986 A
4588396 Stroebel et al. May 1986 A
4588403 Weiss et al. May 1986 A
D284603 Loignon Jul 1986 S
4604093 Brown et al. Aug 1986 A
4607671 Aalto et al. Aug 1986 A
4614437 Buehler Sep 1986 A
4638975 Iuchi et al. Jan 1987 A
4639019 Mittleman Jan 1987 A
4667927 Oscarsson May 1987 A
4675020 McPhee Jun 1987 A
4676530 Nordgren et al. Jun 1987 A
4683975 Booth et al. Aug 1987 A
4697622 Swift et al. Oct 1987 A
4721133 Sundblom Jan 1988 A
4729401 Raines Mar 1988 A
4735608 Sardam Apr 1988 A
4743229 Chu May 1988 A
4743243 Vaillancourt May 1988 A
4752292 Lopez et al. Jun 1988 A
4758235 Tu Jul 1988 A
4759756 Forman et al. Jul 1988 A
4778447 Velde et al. Oct 1988 A
4787898 Raines Nov 1988 A
4797898 Martinez Jan 1989 A
D300060 Molgaard-Nielsen Feb 1989 S
4804366 Zdeb et al. Feb 1989 A
4826492 Magasi May 1989 A
4832690 Kuu May 1989 A
4834152 Howson et al. May 1989 A
D303013 Konopka Aug 1989 S
4857062 Russell Aug 1989 A
4865592 Rycroft Sep 1989 A
4871463 Taylor et al. Oct 1989 A
4898209 Zbed Feb 1990 A
4909290 Coccia Mar 1990 A
4927423 Malmborg May 1990 A
4931040 Haber et al. Jun 1990 A
4932944 Jagger et al. Jun 1990 A
4967797 Manska Nov 1990 A
D314050 Sone Jan 1991 S
D314622 Andersson et al. Feb 1991 S
4997430 Van der Heiden et al. Mar 1991 A
5006114 Rogers et al. Apr 1991 A
5035686 Crittenden et al. Jul 1991 A
5041105 D'Alo et al. Aug 1991 A
5045066 Scheuble et al. Sep 1991 A
5049129 Zdeb et al. Sep 1991 A
5053015 Gross Oct 1991 A
5061248 Sacco Oct 1991 A
5088996 Kopfer et al. Feb 1992 A
5096575 Cosack Mar 1992 A
5104387 Pokorney et al. Apr 1992 A
5113904 Aslanian May 1992 A
5122124 Novacek et al. Jun 1992 A
5125908 Cohen Jun 1992 A
5125915 Berry et al. Jun 1992 A
D328788 Sagae et al. Aug 1992 S
5171230 Eland et al. Dec 1992 A
5201705 Berglund et al. Apr 1993 A
5201717 Wyatt et al. Apr 1993 A
5203771 Melker et al. Apr 1993 A
5203775 Frank et al. Apr 1993 A
5211638 Dudar et al. May 1993 A
5232029 Knox et al. Aug 1993 A
5232109 Tirrell et al. Aug 1993 A
5242432 DeFrank Sep 1993 A
5247972 Tetreault Sep 1993 A
D341420 Conn Nov 1993 S
5269768 Cheung Dec 1993 A
5270219 DeCastro et al. Dec 1993 A
5279576 Loo et al. Jan 1994 A
5288290 Brody Feb 1994 A
5300034 Behnke et al. Apr 1994 A
5301685 Guirguis Apr 1994 A
5304163 Bonnici et al. Apr 1994 A
5304165 Haber et al. Apr 1994 A
5308483 Sklar et al. May 1994 A
5312377 Dalton May 1994 A
5328474 Raines Jul 1994 A
D349648 Tirrell et al. Aug 1994 S
5334163 Sinnett Aug 1994 A
5334179 Poli et al. Aug 1994 A
5342346 Honda et al. Aug 1994 A
5344417 Wadsworth, Jr. Sep 1994 A
5348548 Meyer et al. Sep 1994 A
5350372 Ikeda et al. Sep 1994 A
5364386 Fukuoka et al. Nov 1994 A
5364387 Sweeney Nov 1994 A
5374264 Wadsworth, Jr. Dec 1994 A
5385547 Wong et al. Jan 1995 A
5397303 Sancoff et al. Mar 1995 A
D357733 Matkovich Apr 1995 S
5429614 Fowles et al. Jul 1995 A
5433330 Yatsko et al. Jul 1995 A
5445630 Richmond Aug 1995 A
5445631 Uchida Aug 1995 A
D362718 Deily et al. Sep 1995 S
5451374 Molina Sep 1995 A
5454805 Brony Oct 1995 A
5464111 Vacek et al. Nov 1995 A
5464123 Scarrow Nov 1995 A
5466219 Lynn et al. Nov 1995 A
5466220 Brenneman Nov 1995 A
5470327 Helgren et al. Nov 1995 A
5471994 Guirguis Dec 1995 A
5472022 Michel et al. Dec 1995 A
5478337 Okamoto et al. Dec 1995 A
5492147 Challender et al. Feb 1996 A
D369406 Niedospial et al. Apr 1996 S
5505714 Dassa et al. Apr 1996 A
5509433 Paradis Apr 1996 A
5515871 Bittner et al. May 1996 A
5520659 Hedges May 1996 A
5526853 McPhee et al. Jun 1996 A
5527306 Haining Jun 1996 A
5531695 Swisher Jul 1996 A
5547471 Thompson et al. Aug 1996 A
5549577 Siegel et al. Aug 1996 A
5554128 Hedges Sep 1996 A
5562696 Nobles et al. Oct 1996 A
5566729 Grabenkort et al. Oct 1996 A
5569191 Meyer Oct 1996 A
5573281 Keller Nov 1996 A
5578015 Robb Nov 1996 A
5583052 Portnoff et al. Dec 1996 A
5584819 Kopfer Dec 1996 A
5591143 Trombley, III et al. Jan 1997 A
5603706 Wyatt et al. Feb 1997 A
5607439 Yoon Mar 1997 A
5611576 Guala Mar 1997 A
5616203 Stevens Apr 1997 A
5636660 Pfleiderer et al. Jun 1997 A
5637101 Shillington Jun 1997 A
5641010 Maier Jun 1997 A
5645538 Richmond Jul 1997 A
5647845 Haber et al. Jul 1997 A
5651776 Appling et al. Jul 1997 A
5653686 Coulter et al. Aug 1997 A
5674195 Truthan Oct 1997 A
5676346 Leinsing Oct 1997 A
5685845 Grimard Nov 1997 A
D388172 Cipes Dec 1997 S
5699821 Paradis Dec 1997 A
5702019 Grimard Dec 1997 A
5718346 Weiler Feb 1998 A
D393722 Fangrow, Jr. et al. Apr 1998 S
5738144 Rogers Apr 1998 A
5743312 Pfeifer et al. Apr 1998 A
5746733 Capaccio et al. May 1998 A
5752942 Doyle et al. May 1998 A
5755696 Caizza May 1998 A
5766211 Wood et al. Jun 1998 A
5772630 Ljungquist Jun 1998 A
5772652 Zielinski Jun 1998 A
RE35841 Frank et al. Jul 1998 E
5776116 Lopez et al. Jul 1998 A
5782872 Muller Jul 1998 A
5806831 Paradis Sep 1998 A
5810792 Fangrow, Jr. et al. Sep 1998 A
D399559 Molina Oct 1998 S
5817082 Niedospial, Jr. et al. Oct 1998 A
5820621 Yale et al. Oct 1998 A
5827262 Neftel et al. Oct 1998 A
5832971 Yale et al. Nov 1998 A
5833213 Ryan Nov 1998 A
5834744 Risman Nov 1998 A
5839715 Leinsing Nov 1998 A
5853406 Masuda et al. Dec 1998 A
D405522 Hoenig et al. Feb 1999 S
5871110 Grimard et al. Feb 1999 A
5873872 Thibault et al. Feb 1999 A
5879337 Kuracina et al. Mar 1999 A
5879345 Aneas Mar 1999 A
5887633 Yale et al. Mar 1999 A
5890610 Jansen et al. Apr 1999 A
5891129 Daubert et al. Apr 1999 A
5893397 Peterson et al. Apr 1999 A
5897526 Vaillancourt Apr 1999 A
5899468 Apps et al. May 1999 A
5902280 Powles et al. May 1999 A
5902298 Niedospial, Jr. et al. May 1999 A
D410740 Molina Jun 1999 S
5911710 Barry et al. Jun 1999 A
5919182 Avallone Jul 1999 A
5921419 Niedospial, Jr. et al. Jul 1999 A
5924584 Hellstrom et al. Jul 1999 A
5925029 Jansen et al. Jul 1999 A
5935112 Stevens et al. Aug 1999 A
5941848 Nishimoto et al. Aug 1999 A
5944700 Nguyen et al. Aug 1999 A
5954104 Daubert et al. Sep 1999 A
5968022 Saito Oct 1999 A
5971181 Niedospial, Jr. et al. Oct 1999 A
5971965 Mayer Oct 1999 A
5989237 Fowles et al. Nov 1999 A
6003566 Thibault et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6019750 Fowles et al. Feb 2000 A
6022339 Fowles et al. Feb 2000 A
6036171 Weinheimer et al. Mar 2000 A
6039093 Mrotzek et al. Mar 2000 A
6039302 Cote, Sr. et al. Mar 2000 A
D422357 Niedospial, Jr. et al. Apr 2000 S
6063068 Fowles et al. May 2000 A
D427308 Zinger Jun 2000 S
D427309 Molina Jun 2000 S
6070623 Aneas Jun 2000 A
6071270 Fowles et al. Jun 2000 A
6080132 Cole et al. Jun 2000 A
D428141 Brotspies et al. Jul 2000 S
6086762 Guala Jul 2000 A
6089541 Weinheimer et al. Jul 2000 A
6090091 Fowles et al. Jul 2000 A
6090093 Thibault et al. Jul 2000 A
6092692 Riskin Jul 2000 A
D430291 Jansen et al. Aug 2000 S
6099511 Devos et al. Aug 2000 A
6113068 Ryan Sep 2000 A
6113583 Fowles et al. Sep 2000 A
6117114 Paradis Sep 2000 A
D431864 Jansen Oct 2000 S
6139534 Niedospial, Jr. et al. Oct 2000 A
6142446 Leinsing Nov 2000 A
6146362 Turnbull et al. Nov 2000 A
6149623 Reynolds Nov 2000 A
6156025 Niedospial, Jr. et al. Dec 2000 A
6159192 Fowles et al. Dec 2000 A
6168037 Grimard Jan 2001 B1
6171287 Lynn et al. Jan 2001 B1
6171293 Rowley et al. Jan 2001 B1
6173852 Browne Jan 2001 B1
6173868 DeJonge Jan 2001 B1
6174304 Weston Jan 2001 B1
6179822 Niedospial, Jr. Jan 2001 B1
6179823 Niedospial, Jr. Jan 2001 B1
6206861 Mayer Mar 2001 B1
6221041 Russo Apr 2001 B1
6221054 Martin et al. Apr 2001 B1
6221065 Davis Apr 2001 B1
6238372 Zinger et al. May 2001 B1
6245044 Daw et al. Jun 2001 B1
D445501 Niedospial, Jr. Jul 2001 S
D445895 Svendsen Jul 2001 S
6253804 Safabash Jul 2001 B1
6258078 Thilly Jul 2001 B1
6280430 Neftel et al. Aug 2001 B1
6290688 Lopez et al. Sep 2001 B1
6296621 Masuda et al. Oct 2001 B1
6299131 Ryan Oct 2001 B1
6343629 Wessman et al. Feb 2002 B1
6348044 Coletti et al. Feb 2002 B1
6358236 DeFoggi et al. Mar 2002 B1
6364866 Furr et al. Apr 2002 B1
6378576 Thibault et al. Apr 2002 B2
6378714 Jansen et al. Apr 2002 B1
6379340 Zinger et al. Apr 2002 B1
D457954 Wallace et al. May 2002 S
6382442 Thibault et al. May 2002 B1
6386397 Brotspies et al. May 2002 B2
6408897 Laurent et al. Jun 2002 B1
6409708 Wessman Jun 2002 B1
6440107 Trombley, III et al. Aug 2002 B1
6453949 Chau Sep 2002 B1
6453956 Safabash Sep 2002 B2
6474375 Spero et al. Nov 2002 B2
6478788 Aneas Nov 2002 B1
D468015 Horppu Dec 2002 S
6499617 Niedospial, Jr. et al. Dec 2002 B1
6503240 Niedospial, Jr. et al. Jan 2003 B1
6503244 Hayman Jan 2003 B2
6520932 Taylor Feb 2003 B2
6524278 Campbell et al. Feb 2003 B1
6524295 Daubert et al. Feb 2003 B2
D472316 Douglas et al. Mar 2003 S
6530903 Wang et al. Mar 2003 B2
6537263 Aneas Mar 2003 B1
D472630 Douglas et al. Apr 2003 S
6544246 Niedospial, Jr. Apr 2003 B1
6551299 Miyoshi et al. Apr 2003 B2
6558365 Zinger et al. May 2003 B2
6571837 Jansen et al. Jun 2003 B2
6572591 Mayer Jun 2003 B2
6575955 Azzolini Jun 2003 B2
6581593 Rubin et al. Jun 2003 B1
6582415 Fowles et al. Jun 2003 B1
D476731 Cise et al. Jul 2003 S
6591876 Safabash Jul 2003 B2
6599273 Lopez Jul 2003 B1
6601721 Jansen et al. Aug 2003 B2
6626309 Jansen et al. Sep 2003 B1
6638244 Reynolds Oct 2003 B1
D482121 Harding et al. Nov 2003 S
D482447 Harding et al. Nov 2003 S
6651956 Miller Nov 2003 B2
6652509 Helgren et al. Nov 2003 B1
D483487 Harding et al. Dec 2003 S
D483869 Tran et al. Dec 2003 S
6656433 Sasso Dec 2003 B2
6666852 Niedospial, Jr. Dec 2003 B2
6681810 Weston Jan 2004 B2
6681946 Jansen et al. Jan 2004 B1
6682509 Lopez Jan 2004 B2
6692478 Paradis Feb 2004 B1
6692829 Stubler et al. Feb 2004 B2
6695829 Hellstrom et al. Feb 2004 B2
6699229 Zinger et al. Mar 2004 B2
6706022 Leinsing et al. Mar 2004 B1
6706031 Manera Mar 2004 B2
6715520 Andreasson et al. Apr 2004 B2
6729370 Norton et al. May 2004 B2
6736798 Ohkubo et al. May 2004 B2
6745998 Doyle Jun 2004 B2
6746438 Arnissolle Jun 2004 B1
6752180 Delay Jun 2004 B2
D495416 Dimeo et al. Aug 2004 S
D496457 Prais et al. Sep 2004 S
6802490 Leinsing et al. Oct 2004 B2
6832994 Niedospial, Jr. et al. Dec 2004 B2
6852103 Fowles et al. Feb 2005 B2
6875203 Fowles et al. Apr 2005 B1
6875205 Leinsing Apr 2005 B2
6878131 Novacek et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890328 Fowles et al. May 2005 B2
D506256 Miyoshi et al. Jun 2005 S
6901975 Aramata et al. Jun 2005 B2
6945417 Jansen et al. Sep 2005 B2
6948522 Newbrough et al. Sep 2005 B2
6949086 Ferguson et al. Sep 2005 B2
6951613 Reif et al. Oct 2005 B2
6957745 Thibault et al. Oct 2005 B2
6960164 O'Heeron Nov 2005 B2
6979318 McDonald et al. Dec 2005 B1
RE38996 Crawford et al. Feb 2006 E
6994315 Ryan et al. Feb 2006 B2
6997916 Simas, Jr. et al. Feb 2006 B2
6997917 Niedospial, Jr. et al. Feb 2006 B2
7024968 Raudabough et al. Apr 2006 B2
7070589 Lolachi et al. Jul 2006 B2
7074216 Fowles et al. Jul 2006 B2
7083600 Meloul Aug 2006 B2
7086431 D'Antonio et al. Aug 2006 B2
7100890 Cote, Sr. et al. Sep 2006 B2
7140401 Wilcox et al. Nov 2006 B2
7150735 Hickle Dec 2006 B2
7192423 Wong Mar 2007 B2
7195623 Burroughs et al. Mar 2007 B2
7241285 Dikeman Jul 2007 B1
7294122 Kubo et al. Nov 2007 B2
7306199 Leinsing et al. Dec 2007 B2
D561348 Zinger et al. Feb 2008 S
7326188 Russell et al. Feb 2008 B1
7326194 Zinger et al. Feb 2008 B2
7350764 Raybuck Apr 2008 B2
7354422 Riesenberger et al. Apr 2008 B2
7354427 Fangrow Apr 2008 B2
7425209 Fowles et al. Sep 2008 B2
7435246 Zihlmann Oct 2008 B2
D580558 Shigesada et al. Nov 2008 S
7452348 Hasegawa Nov 2008 B2
7470257 Norton et al. Dec 2008 B2
7470265 Brugger et al. Dec 2008 B2
7472932 Weber et al. Jan 2009 B2
7488297 Flaherty Feb 2009 B2
7491197 Jansen et al. Feb 2009 B2
7497848 Leinsing et al. Mar 2009 B2
7523967 Steppe Apr 2009 B2
7530546 Ryan et al. May 2009 B2
D595420 Suzuki et al. Jun 2009 S
D595421 Suzuki et al. Jun 2009 S
7540863 Haindl Jun 2009 B2
7540865 Griffin et al. Jun 2009 B2
7544191 Peluso et al. Jun 2009 B2
D595862 Suzuki et al. Jul 2009 S
D595863 Suzuki et al. Jul 2009 S
7611487 Woehr et al. Nov 2009 B2
7611502 Daly Nov 2009 B2
7615041 Sullivan et al. Nov 2009 B2
7628779 Aneas Dec 2009 B2
7632261 Zinger et al. Dec 2009 B2
D608900 Giraud et al. Jan 2010 S
7654995 Warren et al. Feb 2010 B2
7670326 Shemesh Mar 2010 B2
7695445 Yuki Apr 2010 B2
D616090 Kawamura May 2010 S
7713247 Lopez May 2010 B2
7717886 Lopez May 2010 B2
7722090 Burton et al. May 2010 B2
D616984 Gilboa Jun 2010 S
7731678 Tennican et al. Jun 2010 B2
7743799 Mosler et al. Jun 2010 B2
7744581 Wallen et al. Jun 2010 B2
7757901 Welp Jul 2010 B2
7758082 Weigel et al. Jul 2010 B2
7758560 Connell et al. Jul 2010 B2
7762524 Cawthon et al. Jul 2010 B2
7766304 Phillips Aug 2010 B2
7771383 Truitt et al. Aug 2010 B2
D624641 Boclet Sep 2010 S
7799009 Niedospial, Jr. et al. Sep 2010 B2
7803140 Fangrow, Jr. Sep 2010 B2
D627216 Fulginiti Nov 2010 S
D630732 Lev et al. Jan 2011 S
7862537 Zinger et al. Jan 2011 B2
7867215 Akerlund et al. Jan 2011 B2
7879018 Zinger et al. Feb 2011 B2
7895216 Longshaw et al. Feb 2011 B2
D634007 Zinger et al. Mar 2011 S
7900659 Whitley et al. Mar 2011 B2
D637713 Nord et al. May 2011 S
D641080 Zinger et al. Jul 2011 S
7985216 Daily et al. Jul 2011 B2
D644104 Maeda et al. Aug 2011 S
7993328 Whitley Aug 2011 B2
8007461 Huo et al. Aug 2011 B2
8012132 Lum et al. Sep 2011 B2
8016809 Zinger et al. Sep 2011 B2
8021325 Zinger et al. Sep 2011 B2
8025653 Capitaine et al. Sep 2011 B2
8029472 Leinsing et al. Oct 2011 B2
8038123 Ruschke et al. Oct 2011 B2
8066688 Zinger et al. Nov 2011 B2
8070739 Zinger et al. Dec 2011 B2
8075550 Nord et al. Dec 2011 B2
8096525 Ryan Jan 2012 B2
8105314 Fangrow, Jr. Jan 2012 B2
D654166 Lair Feb 2012 S
D655017 Mosler et al. Feb 2012 S
8122923 Kraus et al. Feb 2012 B2
8123736 Kraushaar et al. Feb 2012 B2
D657461 Schembre et al. Apr 2012 S
8157784 Rogers Apr 2012 B2
8167863 Yaw May 2012 B2
8172824 Pfeifer et al. May 2012 B2
8177768 Leinsing May 2012 B2
8182452 Mansour et al. May 2012 B2
8187248 Zihlmann May 2012 B2
8196614 Kriheli Jun 2012 B2
8197459 Jansen et al. Jun 2012 B2
8211069 Fangrow, Jr. Jul 2012 B2
8225959 Lambrecht Jul 2012 B2
8241268 Whitley Aug 2012 B2
8262628 Fangrow, Jr. Sep 2012 B2
8262641 Vednne et al. Sep 2012 B2
8267127 Kriheli Sep 2012 B2
D669980 Lev et al. Oct 2012 S
8287513 Ellstrom et al. Oct 2012 B2
D673673 Wang Jan 2013 S
D674084 Linnenschmidt Jan 2013 S
D674088 Lev et al. Jan 2013 S
D681230 Mosler et al. Apr 2013 S
8454573 Wyatt et al. Jun 2013 B2
8469939 Fangrow, Jr. Jun 2013 B2
8475404 Foshee et al. Jul 2013 B2
8480645 Choudhury et al. Jul 2013 B1
8480646 Nord et al. Jul 2013 B2
8506548 Okiyama Aug 2013 B2
8511352 Kraus et al. Aug 2013 B2
8512309 Shemesh et al. Aug 2013 B2
D690009 Schembre et al. Sep 2013 S
D690418 Rosenquist Sep 2013 S
8523837 Wiggins et al. Sep 2013 B2
8545476 Ariagno et al. Oct 2013 B2
8551067 Zinger et al. Oct 2013 B2
8556879 Okiyama Oct 2013 B2
8562582 Tuckwell et al. Oct 2013 B2
8608723 Lev et al. Dec 2013 B2
8628508 Weitzel et al. Jan 2014 B2
8684992 Sullivan et al. Apr 2014 B2
8684994 Lev et al. Apr 2014 B2
8752598 Denenburg et al. Jun 2014 B2
D714935 Nishioka et al. Oct 2014 S
D717406 Stanley et al. Nov 2014 S
D717948 Strong et al. Nov 2014 S
D719650 Arinobe et al. Dec 2014 S
D720067 Rosenquist Dec 2014 S
D720451 Denenburg et al. Dec 2014 S
D720452 Jordan Dec 2014 S
8900212 Kubo Dec 2014 B2
D720850 Hsia et al. Jan 2015 S
D732660 Ohashi Jun 2015 S
D732664 Woehr et al. Jun 2015 S
D733291 Wang Jun 2015 S
D733292 Rogers Jun 2015 S
D733293 Rogers Jun 2015 S
D738494 Kashmirian Sep 2015 S
D741457 Guest Oct 2015 S
D750235 Maurice Feb 2016 S
20010000347 Hellstrom et al. Apr 2001 A1
20010025671 Safabash Oct 2001 A1
20010029360 Miyoshi et al. Oct 2001 A1
20010051793 Weston Dec 2001 A1
20020017328 Loo Feb 2002 A1
20020066715 Niedospial Jun 2002 A1
20020087118 Reynolds et al. Jul 2002 A1
20020087141 Zinger et al. Jul 2002 A1
20020087144 Zinger et al. Jul 2002 A1
20020121496 Thiebault et al. Sep 2002 A1
20020123736 Fowles et al. Sep 2002 A1
20020127150 Sasso Sep 2002 A1
20020128628 Fathallah Sep 2002 A1
20020138045 Moen Sep 2002 A1
20020173752 Polzin Nov 2002 A1
20020193777 Aneas Dec 2002 A1
20030028156 Juliar Feb 2003 A1
20030036725 Lavi et al. Feb 2003 A1
20030068354 Reif et al. Apr 2003 A1
20030069550 Sharp Apr 2003 A1
20030073971 Saker Apr 2003 A1
20030100866 Reynolds May 2003 A1
20030109846 Zinger et al. Jun 2003 A1
20030120209 Jensen et al. Jun 2003 A1
20030153895 Leinsing Aug 2003 A1
20030187420 Akerlund et al. Oct 2003 A1
20030191445 Wallen et al. Oct 2003 A1
20030195479 Kuracina et al. Oct 2003 A1
20030199846 Fowles et al. Oct 2003 A1
20030199847 Akerlund et al. Oct 2003 A1
20030205843 Adams Nov 2003 A1
20030236543 Brenneman et al. Dec 2003 A1
20040024354 Reynolds Feb 2004 A1
20040039365 Aramata et al. Feb 2004 A1
20040044327 Hasegawa Mar 2004 A1
20040073189 Wyatt et al. Apr 2004 A1
20040143218 Das Jul 2004 A1
20040143226 Marsden Jul 2004 A1
20040153047 Blank et al. Aug 2004 A1
20040162540 Walenciak et al. Aug 2004 A1
20040167472 Howell et al. Aug 2004 A1
20040181192 Cuppy Sep 2004 A1
20040204699 Hanly et al. Oct 2004 A1
20040217315 Doyle Nov 2004 A1
20040225274 Jansen et al. Nov 2004 A1
20040236305 Jansen et al. Nov 2004 A1
20040249341 Newbrough et al. Dec 2004 A1
20040255952 Carlsen et al. Dec 2004 A1
20050015070 Delnevo et al. Jan 2005 A1
20050016626 Wilcox et al. Jan 2005 A1
20050055008 Paradis et al. Mar 2005 A1
20050082828 Wicks et al. Apr 2005 A1
20050124964 Niedospial et al. Jun 2005 A1
20050137523 Wyatt et al. Jun 2005 A1
20050137566 Fowles et al. Jun 2005 A1
20050148994 Leinsing Jul 2005 A1
20050159724 Enerson Jul 2005 A1
20050182383 Wallen Aug 2005 A1
20050209554 Landau Sep 2005 A1
20050261637 Miller Nov 2005 A1
20050277896 Messerli et al. Dec 2005 A1
20060030832 Niedospial et al. Feb 2006 A1
20060079834 Tennican et al. Apr 2006 A1
20060089594 Landau Apr 2006 A1
20060089603 Truitt et al. Apr 2006 A1
20060095015 Hobbs et al. May 2006 A1
20060106360 Wong May 2006 A1
20060135948 Varma Jun 2006 A1
20060155257 Reynolds Jul 2006 A1
20060161192 Young Jul 2006 A1
20060178646 Harris et al. Aug 2006 A1
20060212004 Atil Sep 2006 A1
20060253084 Nordgren Nov 2006 A1
20060259004 Connell et al. Nov 2006 A1
20070024995 Hayashi Feb 2007 A1
20070060904 Vedrine et al. Mar 2007 A1
20070078428 Reynolds et al. Apr 2007 A1
20070079894 Kraus et al. Apr 2007 A1
20070083164 Barrelle et al. Apr 2007 A1
20070088252 Pestotnik et al. Apr 2007 A1
20070088293 Fangrow Apr 2007 A1
20070088313 Zinger et al. Apr 2007 A1
20070106244 Mosler et al. May 2007 A1
20070112324 Hamedi-Sangsari May 2007 A1
20070156112 Walsh Jul 2007 A1
20070167904 Zinger et al. Jul 2007 A1
20070191760 Iguchi et al. Aug 2007 A1
20070191764 Zihlmann Aug 2007 A1
20070191767 Hennessy et al. Aug 2007 A1
20070203451 Murakami et al. Aug 2007 A1
20070219483 Kitani et al. Sep 2007 A1
20070244447 Capitaine et al. Oct 2007 A1
20070244461 Fangrow Oct 2007 A1
20070244462 Fangrow Oct 2007 A1
20070244463 Warren et al. Oct 2007 A1
20070249995 Van Manen Oct 2007 A1
20070255202 Kitani et al. Nov 2007 A1
20070265574 Tennican et al. Nov 2007 A1
20070265581 Funamura et al. Nov 2007 A1
20070270778 Zinger et al. Nov 2007 A9
20070287953 Ziv et al. Dec 2007 A1
20070299404 Katoh et al. Dec 2007 A1
20080009789 Zinger et al. Jan 2008 A1
20080009822 Enerson Jan 2008 A1
20080015496 Hamedi-Sangsari Jan 2008 A1
20080135051 Lee Jun 2008 A1
20080172024 Yaw Jul 2008 A1
20080188799 Mueller-Beckhaus et al. Aug 2008 A1
20080249479 Zinger et al. Oct 2008 A1
20080249498 Fangrow Oct 2008 A1
20080262465 Zinger et al. Oct 2008 A1
20080287905 Hiejima et al. Nov 2008 A1
20080294100 de Costa et al. Nov 2008 A1
20080306439 Nelson et al. Dec 2008 A1
20080312634 Helmerson et al. Dec 2008 A1
20090012492 Zihlmann Jan 2009 A1
20090082750 Denenburg et al. Mar 2009 A1
20090143758 Okiyama Jun 2009 A1
20090177177 Zinger et al. Jul 2009 A1
20090177178 Pedersen Jul 2009 A1
20090187140 Racz Jul 2009 A1
20090216212 Fangrow, Jr. Aug 2009 A1
20090267011 Hatton et al. Oct 2009 A1
20090299325 Vedrine et al. Dec 2009 A1
20090318946 Tamesada Dec 2009 A1
20090326506 Hasegawa et al. Dec 2009 A1
20100010443 Morgan et al. Jan 2010 A1
20100016811 Smith Jan 2010 A1
20100022985 Sullivan et al. Jan 2010 A1
20100030181 Helle et al. Feb 2010 A1
20100036319 Drake et al. Feb 2010 A1
20100076397 Reed et al. Mar 2010 A1
20100087786 Zinger et al. Apr 2010 A1
20100137827 Warren et al. Jun 2010 A1
20100160889 Smith et al. Jun 2010 A1
20100168664 Zinger et al. Jul 2010 A1
20100168712 Tuckwell et al. Jul 2010 A1
20100179506 Shemesh Jul 2010 A1
20100198148 Zinger et al. Aug 2010 A1
20100204670 Kraushaar et al. Aug 2010 A1
20100241088 Ranalletta et al. Sep 2010 A1
20100274184 Chun Oct 2010 A1
20100286661 Raday et al. Nov 2010 A1
20100312220 Kalitzki Dec 2010 A1
20110004143 Beiriger et al. Jan 2011 A1
20110004184 Proksch et al. Jan 2011 A1
20110044850 Solomon et al. Feb 2011 A1
20110054440 Lewis Mar 2011 A1
20110087164 Mosler et al. Apr 2011 A1
20110160701 Wyatt et al. Jun 2011 A1
20110172636 Aasmul Jul 2011 A1
20110175347 Okiyama Jul 2011 A1
20110218511 Yokoyama Sep 2011 A1
20110224640 Kuhn et al. Sep 2011 A1
20110230856 Kyle et al. Sep 2011 A1
20110264037 Foshee et al. Oct 2011 A1
20110264069 Bochenko Oct 2011 A1
20110276007 Denenburg Nov 2011 A1
20110319827 Leinsing et al. Dec 2011 A1
20120022469 Alpert Jan 2012 A1
20120053555 Ariagno et al. Mar 2012 A1
20120059346 Sheppard et al. Mar 2012 A1
20120067429 Mosler et al. Mar 2012 A1
20120078214 Finke et al. Mar 2012 A1
20120123382 Kubo May 2012 A1
20120184938 Lev et al. Jul 2012 A1
20120215182 Mansour et al. Aug 2012 A1
20120220977 Yaw Aug 2012 A1
20120220978 Lev et al. Aug 2012 A1
20120265163 Cheng et al. Oct 2012 A1
20120271229 Lev et al. Oct 2012 A1
20120296307 Holt et al. Nov 2012 A1
20120310203 Khaled et al. Dec 2012 A1
20120323172 Lev et al. Dec 2012 A1
20120323187 Iwase et al. Dec 2012 A1
20120323210 Lev et al. Dec 2012 A1
20130046269 Lev et al. Feb 2013 A1
20130053814 Mueller-Beckhaus et al. Feb 2013 A1
20130096493 Kubo et al. Apr 2013 A1
20130144248 Putter et al. Jun 2013 A1
20130199669 Moy et al. Aug 2013 A1
20130226100 Lev Aug 2013 A1
20130231630 Kraus et al. Sep 2013 A1
20130237904 Deneburg et al. Sep 2013 A1
20130253448 Baron et al. Sep 2013 A1
20130289530 Wyatt et al. Oct 2013 A1
20140020793 Denenburg et al. Jan 2014 A1
20140096862 Aneas Apr 2014 A1
20140150911 Hanner et al. Jun 2014 A1
20140221940 Clauson et al. Aug 2014 A1
20140277052 Haselby et al. Sep 2014 A1
20140352845 Lev et al. Dec 2014 A1
20150082746 Ivosevic et al. Mar 2015 A1
20150088078 Lev et al. Mar 2015 A1
20150290390 Ring et al. Oct 2015 A1
20150305770 Fill et al. Oct 2015 A1
20160088995 Ueda et al. Mar 2016 A1
Foreign Referenced Citations (139)
Number Date Country
1950049 Apr 2007 CN
1913926 Sep 1970 DE
4122476 Jan 1993 DE
19504413 Aug 1996 DE
202004012714 Nov 2004 DE
202009011019 Dec 2010 DE
0192661 Sep 1986 EP
0195018 Sep 1986 EP
0258913 Mar 1988 EP
0416454 Mar 1991 EP
0282545 Feb 1992 EP
0518397 Dec 1992 EP
0521460 Jan 1993 EP
0598918 Jun 1994 EP
0637443 Feb 1995 EP
0737467 Oct 1996 EP
761562 Mar 1997 EP
765652 Apr 1997 EP
765853 Apr 1997 EP
0806597 Nov 1997 EP
0814866 Jan 1998 EP
829248 Mar 1998 EP
0856331 Aug 1998 EP
882441 Dec 1998 EP
0887085 Dec 1998 EP
897708 Feb 1999 EP
0898951 Mar 1999 EP
960616 Dec 1999 EP
1008337 Jun 2000 EP
1029526 Aug 2000 EP
1034809 Sep 2000 EP
1051988 Nov 2000 EP
1323403 Jul 2003 EP
1329210 Jul 2003 EP
1396250 Mar 2004 EP
1454609 Sep 2004 EP
1454650 Sep 2004 EP
1498097 Jan 2005 EP
1872824 Jan 2008 EP
1911432 Apr 2008 EP
1919432 May 2008 EP
1930038 Jun 2008 EP
2090278 Aug 2009 EP
2351548 Aug 2011 EP
2351549 Aug 2011 EP
2462913 Jun 2012 EP
2512399 Oct 2012 EP
2029242 Oct 1970 FR
2856660 Dec 2004 FR
2869795 Nov 2005 FR
2931363 Nov 2009 FR
1444210 Jul 1976 GB
171662 Oct 2005 IL
03-062426 Sep 1991 JP
4329954 Nov 1992 JP
06-050656 Jul 1994 JP
H08-000710 Jan 1996 JP
09-104460 Apr 1997 JP
09-104461 Apr 1997 JP
10-118158 May 1998 JP
H10-504736 May 1998 JP
11503627 Mar 1999 JP
11-319031 Nov 1999 JP
2000-508934 Jul 2000 JP
2000-237278 Sep 2000 JP
2000262497 Sep 2000 JP
2001-505083 Apr 2001 JP
2002-035140 Feb 2002 JP
2002-516160 Jun 2002 JP
2002-355318 Dec 2002 JP
2003-033441 Feb 2003 JP
2003-102807 Apr 2003 JP
2004-097253 Apr 2004 JP
2004-522541 Jul 2004 JP
200661421 Mar 2006 JP
2010-179128 Aug 2010 JP
2012-205769 Oct 2012 JP
8601712 Mar 1986 WO
8605683 Oct 1986 WO
9003536 Apr 1990 WO
9403373 Feb 1994 WO
9507066 Mar 1995 WO
9600053 Jan 1996 WO
9629113 Sep 1996 WO
9736636 Oct 1997 WO
9832411 Jul 1998 WO
9837854 Sep 1998 WO
9961093 Dec 1999 WO
0128490 Apr 2001 WO
0130425 May 2001 WO
0132524 May 2001 WO
0160311 Aug 2001 WO
0191693 Dec 2001 WO
200209797 Feb 2002 WO
0232372 Apr 2002 WO
0236191 May 2002 WO
02066100 Aug 2002 WO
02089900 Nov 2002 WO
03051423 Jun 2003 WO
03070147 Aug 2003 WO
03079956 Oct 2003 WO
2004041148 May 2004 WO
2005002492 Jan 2005 WO
2005041846 May 2005 WO
2005105014 Nov 2005 WO
2006099441 Sep 2006 WO
2007015233 Feb 2007 WO
2007017868 Feb 2007 WO
2007052252 May 2007 WO
2007101772 Sep 2007 WO
2007105221 Sep 2007 WO
2008081424 Jul 2008 WO
2008126090 Oct 2008 WO
2009026443 Feb 2009 WO
2009029010 Mar 2009 WO
2009038860 Mar 2009 WO
2009040804 Apr 2009 WO
2009087572 Jul 2009 WO
2009093249 Jul 2009 WO
2009112489 Sep 2009 WO
2009146088 Dec 2009 WO
2010061743 Jun 2010 WO
2010117580 Oct 2010 WO
2011004360 Jan 2011 WO
2011039747 Apr 2011 WO
2011058545 May 2011 WO
2011058548 May 2011 WO
2011077434 Jun 2011 WO
2011104711 Sep 2011 WO
2012004784 Jan 2012 WO
2012063230 May 2012 WO
2012143921 Oct 2012 WO
2012150587 Nov 2012 WO
2013127813 Sep 2013 WO
2013134246 Sep 2013 WO
2013156944 Oct 2013 WO
2013156994 Oct 2013 WO
2014033706 Mar 2014 WO
2014033710 Mar 2014 WO
Non-Patent Literature Citations (170)
Entry
Office Action dated Mar. 6, 2012 in U.S. Appl. No. 12/678,928.
Int'l Search Report dated Feb. 3, 2011 in Int'l Application No. PCT/IL2010/000777; Written Opinion.
Int'l Search Report dated Mar. 17, 2011 in Int'l Application No. PCT/IL2010/000854; Written Opinion.
Int'l Search Report dated Mar. 17, 2011 in Int'l Application No. PCT/IL2010/000915; Written Opinion.
U.S. Appl. No. 13/505,790 by Lev, filed May 3, 2012.
U.S. Appl. No. 13/505,881 by Lev, filed May 3, 2012.
U.S. Appl. No. 13/522,410 by Lev, filed Jul. 16, 2012.
U.S. Appl. No. 13/576,461 by Lev, filed Aug. 1, 2012.
Office Action dated Jun. 14, 2012 in U.S. Appl. No. 29/376,980.
Office Action dated Jun. 15, 2012 in U.S. Appl. No. 29/413,170.
Office Action dated Jun. 21, 2012 in U.S. Appl. No. 12/596,167.
Alaris Medical Systems Product Brochure, 4 pages, Issue 1, Oct. 11, 1999.
Smart Site Needle-Free Systems, Alaris Medical Systems Webpage, 4 pages, Feb. 2006.
Photographs of Alaris Medical Systems SmartSite.RTM. device, 5 pages, 2002.
Non-Vented Vial Access Pin with ultrasite.rtm. Valve, B. Braun Medical, Inc. website and product description, 3 pages, Feb. 2006. and product description, 3 pages, Feb. 2006.
Int'l Search Report dated Aug. 16, 2012 in Int'l Application No. PCT/IL2012/000164.
U.S. Appl. No. 29/438,134 by Lev, filed Nov. 27, 2012.
U.S. Appl. No. 29/438,141 by Gilboa, filed Nov. 27, 2012.
Int'l Search Report dated Jan. 22, 2013 in Int'l Application No. PCT/IL2012/000354.
Int'l Search Report dated Mar. 18, 2013 in Int'l Application No. PCT/IL2012/050516.
Office Action dated Apr. 2, 2013 in U.S. Appl. No. 13/505,790.
Int'l Search Report and Written Opinion dated Mar. 6, 2012 in Int'l Application No. PCT/IL2011/000834.
U.S. Appl. No. 13/883,289 by Lev, filed May 3, 2013.
Int'l Search Report & Written Opinion dated Mar. 7, 2012 in Int'l Application No. PCT/IL2011/000829.
U.S. Appl. No. 13/884,981 by Denenburg, filed May 13, 2013.
Office Action dated May 31, 2013 in U.S. Appl. No. 13/505,790.
Int'l Search Report dated Jun. 5, 2013 in Int'l Application No. PCT/IL2012/050407.
Int'l Search Report dated Jun. 19, 2013 in Int'l Application No. PCT/IL2013/050167.
Int'l Search Report dated Jul. 1, 2013 in Int'l Application No. PCT/IL2013/050180.
Int'l Search Report dated Jul. 31, 2013 in Int'l Application No. PCT/IL2013/050313.
Int'l Search Report dated Jul. 26, 2013 in Int'l Application No. PCT/IL2013/050316.
English translation of an Office Action dated Jun. 19, 2013 in JP Application No. 2012-531551.
Office Action dated Aug. 20, 2013 in U.S. Appl. No. 13/576,461 by Lev.
Int'l Preliminary Report on Patentability dated Aug. 28, 2012 in Int'l Application No. PCT/IL2011/000186.
U.S. Appl. No. 14/005,751 by Denenburg, filed Sep. 17, 2013.
English translation of an Office Action dated Jul. 26, 2013 in JP Application No. 2012-538464.
International Search Report dated Jan. 23, 2007 in Int'l Application No. PCT/IL/2006/001228.
IV disposables sets catalogue, Cardinal Health, Alaris® products, SmartSite® access devices and accessories product No. 10013365, SmartSite add-on bag access device with spike adapter and needle-free valve bag access port, pp. 1-5, Fall edition (2007).
Drug Administration Systems product information sheets; http://www.westpharma.com/eu/en/products/Pages/Vial2Bag.aspx; pp. 1-3 (admitted prior art).
Office Action dated Jun. 8, 2010 in U.S. Appl. No. 12/112,490 by Zinger.
Office Action dated Sep. 28, 2010 in U.S. Appl. No. 12/112,490 by Zinger.
Article with picture of West Pharmaceutical Services' Vial2Bag Needleless System, [on-line]; ISIPS Newsletter, Oct. 26, 2007]; retrieved from Internet Feb. 16, 2010]; URL:<http://www.isips.org/reports/ISIPS—Newsletter—October—26—2007. html.> (7 pages. see pp. 5-6).
Office Action dated Jun. 15, 2011 in JP Application No. 2008-538492.
Translation of Office Action dated Jun. 18, 2012 in JP Application No. 2008-538492.
Translation of Office Action dated Apr. 15, 2013 in JP Application No. 2008-538492.
Office Action dated Jul. 13, 2012 in U.S. Appl. No. 12/112,490 by Zinger.
Office Action dated Jan. 23, 2013 in U.S. Appl. No. 12/112,490 by Zinger.
Int'l Preliminary Report on Patentability dated May 6, 2008 in Int'l Application No. PCT/IL2006/001228.
Written Opinion dated Aug. 16, 2012 in Int'l Application No. PCT/IL2012/000164.
English translation of an Office Action dated Sep. 10, 2013 in JP Application No. 2012-554468.
Office Action dated Nov. 11, 2013 in IL Application No. 218730.
U.S. Appl. No. 29/478,723 by Lev, filed Jan. 8, 2014.
U.S. Appl. No. 29/478,726 by Lev, filed Jan. 8, 2014.
Office Action dated Jan. 2, 2014 in U.S. Appl. No. 13/505,881 by Lev.
Int'l Preliminary Report on Patentability dated Sep. 24, 2013 in Int'l Application No. PCT/IL2012/000354.
Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/884,981 by Denenburg.
U.S. Appl. No. 14/345,094 by Lev, filed Mar. 14, 2014.
Int'l Search Report and Written Opinion dated Jan. 7, 2014 in Int'l Application No. PCT/IL2012/050721.
English translation of an Office Action dated Jan. 9, 2014 in JP Application No. 2010-526421.
English translation of an Office Action dated Dec. 4, 2013 in CN Application No. 201080051210.3.
English translation of an Office Action issued Dec. 25, 2013 in CN Application No. 201180006530.1.
Office Action dated Nov. 28, 2013 in IN Application No. 4348/DELNP/2008.
Office Action dated Oct. 8, 2013 in CN Application No. 201080043825.1.
English translation of an Office Action dated Feb. 4, 2014 in JP Application No. 2012-554468.
Office Action dated Jan. 17, 2014 in CN Application No. 201180006534.X.
Int'l Search Report and Written Opinion dated May 8, 2014 in Int'l Application No. PCT/IL2013/050706.
English translation of an Office Action dated Apr. 28, 2014 in JP Application No. 2013-537257.
Int'l Preliminary Report on Patentability dated Jan. 14, 2014 in Int'l Application No. PCT/IL2012/050516.
Office Action dated May 6, 2014 in U.S. Appl. No. 13/505,881 by Lev.
U.S. Appl. No. 14/366,306 by Lev, filed Jun. 18, 2014.
Office Action dated Apr. 17, 2014 in CN Application No. 201080051201.4.
Int'l Search Report and Written Opinion dated Jul. 16, 2014 in Int'l Application No. PCT/IL2014/050327.
English translation of an Office Action dated Jun. 30, 2014 in CN Application No. 201180052962.6.
Extended European Search Report dated Jun. 3, 2014 in EP Application No. 08781828.2.
Written Opinion dated Jul. 1, 2013 in Int'l Application No. PCT/IL2013/050180.
Int'l Preliminary Report on Patentability dated Apr. 1, 2014 in Int'l Application No. PCT/IL2013/050180.
Written Opinion dated Jul. 31, 2013 in Int'l Application No. PCT/IL2013/050313.
Int'l Preliminary Report on Patentability dated May 12, 2014 in Int'l Application No. PCT/IL2013/050316.
Office Action dated Jul. 31, 2014 in U.S. Appl. No. 29/438,141 by Gilboa.
U.S. Appl. No. 14/385,212 by Lev, filed Sep. 15, 2014.
U.S. Appl. No. 29/502,037 by Lev, filed Sep. 11, 2014.
U.S. Appl. No. 29/502,053 by Lev, filed Sep. 11, 2014.
U.S. Appl. No. 14/391,792 by Lev, filed Oct. 10, 2014.
U.S. Appl. No. 14/504,979 by Lev, filed Oct. 2, 2014.
Int'l Search Report and Written Opinion dated Sep. 2, 2014 in Int'l Application No. PCT/IL2014/050405.
Int'l Search Report and Written Opinion dated Oct. 17, 2014 in Int'l Application No. PCT/IL2014/050680.
English translation of an Office Action dated Aug. 28, 2014 in JP Application No. 2013-168885.
Grifols Vial Adapter Product Literature, 2 pages, Jan. 2002.
Novel Transfer, Mixing and Drug Delivery Systems, MOP Medimop Medical Projects Ltd. Catalog, 4 pages, Rev. 4, 2004.
Office Action dated Oct. 6, 2003 in U.S. Appl. No. 10/062,796.
Office Action dated Feb. 22, 2005 in U.S. Appl. No. 10/062,796.
Office Action dated Oct. 5, 2005 in U.S. Appl. No. 10/062,796.
Office Action dated Feb. 20, 2009 in U.S. Appl. No. 11/694,297.
Int'l Search Report dated Dec. 6, 2006 in Int'l Application No. PCT/IL2006/000912.
Int'l Preliminary Report on Patentability dated Dec. 4, 2007 in Int'l Application No. PCT/IL2006/000912.
http://www.westpharma.com/en/products/Pages/Mixject.aspx (admitted prior art).
http://www.westpharma.com/SiteCollectionDocuments/Recon/mixject%20product%20sheet.pdf; Mixject product information sheet pp. 1. (admitted prior art).
Int'l Search Report dated Jul. 27, 2007 in Int'l Application No. PCT/IL2007/000343.
Int'l Preliminary Report on Patentability dated Jun. 19, 2008 in Int'l Application No. PCT/IL2007/000343.
Int'l Search Report dated Mar. 27, 2009 in Int'l Application No. PCT/U52008/070024.
Int'l Search Report dated Oct. 17, 2005 in Int'l Application No. PCT/IL2005/000376.
Int'l Preliminary Report on Patentability dated Jun. 19, 2006 in Int'l Application No. PCT/IL2005/000376.
Written Opinion of ISR dated Jun. 19, 2006 in Int'l Application No. PCT/IL2005/000376.
Int'l Search Report dated Aug. 25, 2008 in Int'l Application No. PCT/IL2008/000517.
Written Opinion of the ISR dated Oct. 17, 2009 in Int'l Application No. PCT/IL08/00517.
Int'l Preliminary Report on Patenability dated Oct. 20, 2009 in Int'l Application No. PCT/IL2008/000517.
Written Opinion of the Int'l Searching Authority dated Oct. 27, 2008 in Int'l Application No. PCT/US2008/070024.
Int'l Search Report dated Mar. 12, 2009 in Int'l Application No. PCT/IL2008/001278.
Office Action dated Jan. 20, 2010 in JP Application No. 2007-510229.
Office Action dated Apr. 20, 2010 in U.S. Appl. No. 11/997,569.
Int'l Search Report dated Nov. 20, 2006 in Int'l Application No. PCT/IL2006/000881.
Office Action dated May 27, 2010 in U.S. Appl. No. 11/559,152.
Decision to Grant dated Apr. 12, 2010 in EP Application No. 08738307.1.
Office Action dated Jun. 1, 2010 in U.S. Appl. No. 11/568,421.
Office Action dated Nov. 12, 2010 in U.S. Appl. No. 29/334,697.
The MixJect transfer system, as shown in the article, “Advanced Delivery Devices,” Drug Delivery Technology Jul./Aug. 2007 vol. 7 No. 7 [on-line]. [Retrieved from Internet May 14, 2010.] URL: <http://www.drugdeiverytech-online.com/drugdelivery/200707/?pg=28pg28>. (3 pages).
Publication date of Israeli Patent Application 186290 [on-line]. ]Retrieved from Internet May 24, 2010]. URL:<http://www.ilpatsearch.justrice.govil/UI/RequestsList.aspx>. (1 page).
Int'l Search Report dated Nov. 25, 2010 in Int'l Application No. PCT/IL2010/000530.
Office Action dated Feb. 7, 2011 in U.S. Appl. No. 12/783,194.
Office Action dated Dec. 20, 2010 in U.S. Appl. No. 12/063,176.
Office Action dated Dec. 13, 2010 in U.S. Appl. No. 12/293,122.
Office Action dated Nov. 29, 2010 in U.S. Appl. No. 11/568,421.
Office Action dated Dec. 23, 2010 in U.S. Appl. No. 29/334,696.
Int'l Search Report dated Mar. 17, 2011 in Int'l Application No. PCT/IL2010/000854.
Overview—Silicone Rubber [retrieved from http://www.knovel.com/web/portal/browse/display?—EXT—KNOVEL—DISPLAY—bookid=1023&VerticalID=0 on Feb. 9, 2011].
Int'l Search Report dated Mar. 17, 2011 in Int'l Application No. PCT/IL2010/00915.
Office Action dated May 12, 2011 in U.S. Appl. No. 12/063,176.
Office Action dated Jul. 11, 2011 in U.S. Appl. No. 12/293,122.
Int'l Search Report dated Jul. 12, 2011 in Int'l Application No. PCT/IL2011/000187.
Int'l Search Report dated Jul. 12, 2011 in Int'l Application No. PCT/IL2011/000186.
Office Action dated Aug. 3, 2011 in JP Application No. 2008-525719.
Int'l Search Report dated Oct. 7, 2011 in Int'l Application No. PCT/IL2011/000511.
Int'l Search Report dated Mar. 6, 2012 in Int'l Application No. PCT/IL2011/000834; Written Opinion.
Office Action dated Mar. 1, 2012 in JP Application No. 2007-510229.
Int'l Search Report dated Mar. 7, 2012 in Int'l Application No. PCT/IL2011/000829; Written Opinion.
Office Action dated Mar. 13, 2012 in CA Application No. 2,563,643.
Office Action dated Mar. 1, 2012 in CN Application No. 2008801108283.4.
Office Action dated Mar. 28, 2016 in JP Application No. 2016-507113.
Notice of Allowance dated Mar. 17, 2016 in U.S. Appl. No. 29/502,037 by Lev.
Office Action dated Mar. 25, 2016 in U.S. Appl. No. 29/478,726 by Lev.
Office Action dated Dec. 9, 2015 in U.S. Appl. No. 29/478,723 by Lev.
West, Vial2Bag DC system, Oct. 2, 2014, https://web.archive.org/web/20141002065133/http://www.westpharma.com/en/products/Pages/Reconstitutionsystems.aspx.
Youtube.com, Vial2Bag DC, Aug. 21, 2014, https://www.youtube.com/watch?v=FEOkglxNBrs.
Office Action dated Dec. 9, 2015 in U.S. Appl. No. 29/478,726 by Lev.
Notice of Allowance dated Jan. 12, 2016 in U.S. Appl. No. 14/385,212 by Lev.
Written Opinion dated Apr. 10, 2015 in Int'l Application No. PCT/IL2014/050405.
Response to Written Opinion dated Mar. 9, 2015 in Int'l Application No. PCT/IL2014/050405.
Int'l Preliminary Report on Patentability dated Aug. 24, 2015 in Int'l Application No. PCT/IL2014/050405.
U.S. Appl. No. 14/888,590 by Marks, filed Nov. 2, 2015.
U.S. Appl. No. 14/784,300 by Lev, filed Oct. 14, 2015.
Office Action dated Oct. 5, 2015 in U.S. Appl. No. 14/385,212 by Lev.
U.S. Appl. No. 29/544,969 by Ben Shalom, filed Nov. 9, 2015.
Office Action dated Aug. 24, 2015 in U.S. Appl. No. 14/366,306 by Lev.
Office Action dated Mar. 10, 2015 in EP Application No. 12 812 395.7.
Office Action dated Aug. 7, 2015 in JP Application No. 2015-529206.
Written Opinion dated Jun. 5, 2013 in Int'l Application No. PCT/IL2012/050407.
Int'l Preliminary Report on Patentability dated Aug. 20, 2014 in Int'l Application No. PCT/IL2012/050407.
Office Action dated Jan. 2, 2015 in U.S. Appl. No. 29/438,141 by Gilboa.
Office Action dated Jan. 5, 2015 in U.S. Appl. No. 29/413,220 by Lev.
Office Action dated Jan. 7, 2015 in U.S. Appl. No. 29/438,134 by Lev.
U.S. Appl. No. 14/423,612 by Lev, filed Feb. 24, 2015.
U.S. Appl. No. 14/425,582 by Lev, filed Mar. 3, 2015.
Office Action dated Mar. 17, 2015 in U.S. Appl. No. 14/504,979 by Lev.
Office Action dated Apr. 9, 2015 in U.S. Appl. No. 13/883,289 by Lev.
Office Action dated May 28, 2015 in U.S. Appl. No. 14/391,792 by Lev.
Office Action dated Dec. 21, 2016 in IL Application No. 228452.
Extended European Search Report dated Feb. 16, 2017 in EP Application No. 16200458.
Int'l Search Report and Written Opinion dated Sep. 14, 2016 in Int'l Application No. PCT/IL2016/050709.
Int'l Search Report and Written Opinion dated Oct. 11, 2016 in Int'l Application No. PCT/IL2016/050782.
Vial-Mate Adapter Device, Baxter, May 2017, downloaded from web page:http://www.baxtermedicationdeliveryproducts.com/drug-delivery/vialmate.html, Download Date: Jul. 28, 2017, original posting ate: unknown, 1page.
Related Publications (1)
Number Date Country
20150209230 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
61731574 Nov 2012 US