Claims
- 1. An electrical relay, comprising:a first electrical contact, having a wettable surface; a first conducting liquid droplet in wetted contact with the first electrical contact; a second electrical contact, spaced from the first electrical contact and having a wettable surface facing the wettable surface of the first electrical contact; a second conducting liquid droplet in wetted contact with the second electrical contact; and a first actuator in a rest position, coupled to the first electrical contact and operable to move the first electrical contact towards the second electrical contact, to cause the first and second conducting liquid droplets to coalesce and complete an electrical circuit between the first and second electrical contacts, and away from the second electrical contact, to cause the first and second conducting liquid droplets to separate and break the electrical circuit.
- 2. An electrical relay in accordance with claim 1, wherein the first actuator is a piezoelectric actuator.
- 3. An electrical relay in accordance with claim 1, wherein the first and second conducting liquid droplets are liquid metal droplets.
- 4. An electrical relay in accordance with claim 1, wherein the volumes of the first and second conducting liquid droplets are such that coalesced droplets remain coalesced when the actuator is returned to its rest position, and separated droplets remain separated when the actuator is returned to its rest position.
- 5. An electrical relay in accordance with claim 1, wherein the wettable surfaces of the first and second electrical contacts are stepped.
- 6. An electrical relay in accordance with claim 1, further comprising a second actuator, coupled to the second electrical contact and operable to move the second electrical contact towards the first electrical contact, to cause the first and second conducting liquid droplets to coalesce and complete an electrical circuit, and away from the first electrical contact, to cause the first and second conducting liquid droplets to separate and break the electrical circuit.
- 7. An electrical relay in accordance with claim 6, wherein the second actuator is a piezoelectric actuator.
- 8. An electrical relay in accordance with claim 6, further comprising:a circuit substrate supporting electrical connections to the first and second actuators and the first and second electrical contacts; a cap layer; and a switching layer positioned between the circuit substrate and the cap layer and having a cavity formed therein; wherein the first and second actuators and the first and second electrical contacts are positioned within the cavity formed in the switching layer.
- 9. An electrical relay in accordance with claim 8, wherein at least one of the electrical connections to the first and second electrical contacts passes through the circuit substrate and terminates in a solder ball.
- 10. An electrical relay in accordance with claim 8, wherein at least one of the electrical connections to the first and second electrical contacts is a trace deposited on the surface of the circuit substrate.
- 11. An electrical relay in accordance with claim 8, wherein at least one the electrical connections to the first and second electrical contacts terminates at an edge of the switching layer.
- 12. An electrical relay in accordance with claim 8, manufactured by a method of micro-machining.
- 13. A method for switching an electrical circuit between a first contact and a second contact in a relay, the first contact supporting a first conducting liquid droplet and the second contact supporting a second conducting liquid droplet, the method comprising:if the electrical circuit is to be completed: energizing a first actuator to move the first contact and second contact closer together so that the first and second conducting liquid droplets coalesce to complete the electrical circuit; and if the electrical circuit is to be broken: energizing the first actuator to move the first contact and the second contact farther apart so that the first and second conducting liquid droplets are separated to break the electrical circuit.
- 14. A method for switching an electrical circuit between a first contact and a second contact in a relay, the first contact supporting a first conducting liquid droplet and the second contact supporting a second conducting liquid droplet, the method comprising:if the electrical circuit is to be completed: energizing a first actuator to move the first contact and second contact closer together so that the first and second conducting liquid droplets coalesce to complete the electrical circuit; and if the electrical circuit is to be broken: energizing a second actuator to move the first contact and the second contact farther apart so that the first and second conducting liquid droplets are separated to break the electrical circuit.
- 15. A method in accordance with claim 14, wherein the first actuator is attached to the first contact and the second actuator is attached to the second contact, further comprising:if the electrical circuit is to be completed: energizing the second actuator to move the first contact and second contact closer together so that the first and second conducting liquid droplets coalesce to complete the electrical circuit; and if the electrical circuit is to be broken: energizing the first actuator to move the first contact and the second contact farther apart so that the first and second conducting liquid droplets are separated to break the electrical circuit.
- 16. A method in accordance with claim 14, further comprising:if the electrical circuit is to be completed: de-energizing the first actuator after the conducting liquid droplets coalesce; and if the electrical circuit is to be broken: de-energizing the second actuator after the conducting liquid droplets separate.
- 17. A method in accordance with claim 14, wherein the first actuator is a piezoelectric actuator and wherein energizing the first actuator comprises applying an electrical voltage across the piezoelectric actuator.
- 18. A method in accordance with claim 14, wherein the first actuator is a magnetorestrictive actuator and wherein energizing the first actuator comprises applying an electrical voltage to generate an electromagnetic field across the magnetorestrictive actuator.
CROSS REFERENCE TO RELATED APPLICATIONS
This application is related to the following co-pending U.S. Patent Applications, being identified by the below enumerated identifiers and arranged in alphanumerical order, which have the same ownership as the present application and to that extent are related to the present application and which are hereby incorporated by reference:
Application 10010448-1, titled “Piezoelectrically Actuated Liquid Metal Switch”, filed May 2, 2002 and identified by Ser. No. 10/137,691;
Application 10010529-1, “Bending Mode Latching Relay”, and having the same filing date as the present application;
Application 10010531-1, “High Frequency Bending Mode Latching Relay”, and having the same filing date as the present application;
Application 10010570-1, titled “Piezoelectrically Actuated Liquid Metal Switch”, filed May 2, 2002 and identified by Ser. No. 10/142,076;
Application 10010571-1, “High-frequency, Liquid Metal, Latching Relay with Face Contact”, and having the same filing date as the present application;
Application 10010573-1, “Insertion Type Liquid Metal Latching Relay”, and having the same filing date as the present application;
Application 10010617-1, “High-frequency, Liquid Metal, Latching Relay Array”, and having the same filing date as the present application;
Application 10010618-1, “Insertion Type Liquid Metal Latching Relay Array”, and having the same filing date as the present application;
Application 10010634-1, “Liquid Metal Optical Relay”, and having the same filing date as the present application;
Application 10010640-1, titled “A Longitudinal Piezoelectric Optical Latching Relay”, filed Oct. 31, 2001 and identified by Ser. No. 09/999,590;
Application 10010643-1, “Shear Mode Liquid Metal Switch”, and having the same filing date as the present application;
Application 10010644-1, “Bending Mode Liquid Metal Switch”, and having the same filing date as the present application:
Application 10010656-1, titled “A Longitudinal Mode Optical Latching Relay”, and having the same filing date as the present application;
Application 10010663-1, “Method and Structure for a Pusher-Mode Piezoelectrically Actuated Liquid Metal Switch”, and having the same filing date as the present application;
Application 10010664-1, “Method and Structure for a Pusher-Mode Piezoelectrically Actuated Liquid Metal Optical Switch”, and having the same filing date as the present application;
Application 10010790-1, titled “Switch and Production Thereof”, filed Dec. 12, 2002 and identified by Ser. No. 10/317,597;
Application 10011055-1, “High Frequency Latching Relay with Bending Switch Bar”, and having the same filing date as the present application;
Application 10011056-1, “Latching Relay with Switch Bar”, and having the same filing date as the present application;
Application 10011064-1, “High Frequency Push-mode Latching Relay”, and having the same filing date as the present application;
Application 10011065-1, “Push-mode Latching Relay”, and having the same filing date as the present application;
Application 10011121-1, “Closed Loop Piezoelectric Pump”, and having the same filing date as the present application;
Application 10011329-1, titled “Solid Slug Longitudinal Piezoelectric Latching Relay”, filed May 2, 2002 and identified by Ser. No. 101137,692;
Application 10011344-1, “Method and Structure for a Slug Pusher-Mode Piezoelectrically Actuated Liquid Metal Switch”, and having the same filing date as the present application;
Application 10011345-1, “Method and Structure for a Slug-Assisted Longitudinal Piezoelectrically Actuated Liquid Metal Optical Switch”, and having the same filing date as the present application;
Application 10011397-1, “Method and Structure for a Slug Assisted Pusher-Mode Piezoelectrically Actuated Liquid Metal Optical Switch”, and having the same filing date as the present application;
Application 10011398-1, “Polymeric Liquid Metal Switch”, and having the same filing date as the present application;
Application 10011410-1, “Polymeric Liquid Metal Optical Switch”, and having the same filing date as the present application;
Application 10011436-1, “Longitudinal Electromagnetic Latching Optical Relay”, and having the same filing date as the present application;
Application 10011437-1, “Longitudinal Electromagnetic Latching Relay”, and having the same filing date as the present application;
Application 10011458-1, “Damped Longitudinal Mode Optical Latching Relay”, and having the same filing date as the present application;
Application 10011459-1, “Damped Longitudinal Mode Latching Relay”, and having the same filing date as the present application;
Application 10020013-1, titled “Switch and Method for Producing the Same”, filed Dec. 12, 2002 and identified by Ser. No. 10/317,963;
Application 10020027-1, titled “Piezoelectric Optical Relay”, filed Mar. 28, 2002 and identified by Ser. No. 10/109,309;
Application 10020071-1, titled “Electrically Isolated Liquid Metal Micro-Switches for Integrally Shielded Microcircuits”, filed Oct. 8, 2002 and identified by Ser. No. 10/266,872;
Application 10020073-1, titled “Piezoelectric Optical Demultiplexing Switch”, filed Apr. 10, 2002 and identified by Ser. No. 10/119,503;
Application 10020162-1, titled “Volume Adjustment Apparatus and Method for Use”, filed Dec. 12, 2002 and identified by Ser. No. 10/317,293;
Application 10020241-1, “Method and Apparatus for Maintaining a Liquid Metal Switch in a Ready-to-Switch Condition”, and having the same filing date as the present application;
Application 10020242-1, titled “A Longitudinal Mode Solid Slug Optical Latching Relay”, and having the same filing date as the present application;
Application 10020473-1, titled “Reflecting Wedge Optical Wavelength Multiplexer/Demultiplexer”, and having the same filing date as the present application;
Application 10020540-1, “Method and Structure for a Solid Slug Caterpillar Piezoelectric Relay”, and having the same filing date as the present application;
Application 10020541-1, titled “Method and Structure for a Solid Slug Caterpillar Piezoelectric Optical Relay”, and having the same filing date as the present application;
Application 10030438-1, “Inserting-finger Liquid Metal Relay”, and having the same filing date as the present application;
Application 10030440-1, “Wetting Finger Liquid Metal Latching Relay”, and having the same filing date as the present application;
Application 10030521-1, “Pressure Actuated Optical Latching Relay”, and having the same filing date as the present application;
Application 10030522-1, “Pressure Actuated Solid Slug Optical Latching Relay”, and having the same filing date as the present application; and
Application 10030546-1, “Method and Structure for a Slug Caterpillar Piezoelectric Reflective Optical Relay”, and having the same filing date as the present application.
US Referenced Citations (75)
Foreign Referenced Citations (3)
Number |
Date |
Country |
SHO 36-18575 |
Oct 1961 |
JP |
SHO 47-21645 |
Oct 1972 |
JP |
9161640 |
Jun 1997 |
JP |
Non-Patent Literature Citations (2)
Entry |
Jonathan Simon, “A Liquid-Filled Microrelay With A Moving Mercury Microdrop” (Sep. 1971), Journal of Microelectromechanical Systems, vol. 6, No. 3, pp 208-216. |
Marvin Glenn Wong, “A Piezoelectrically Actuated Liquid Metal Switch”, May 2, 2002, patent application (pending, 12 pages of specification, 5 pages of claims, 1 page of abstract, and 10 sheets of drawings (Figs. 1-10). |