Lithographically fabricated holographic optical identification element

Information

  • Patent Grant
  • 7508608
  • Patent Number
    7,508,608
  • Date Filed
    Thursday, November 17, 2005
    18 years ago
  • Date Issued
    Tuesday, March 24, 2009
    15 years ago
Abstract
A method for fabricating an optical identification element is provided, wherein a removable plate or substrate having photosensitive material fabricated thereon, one or more gratings are written on the photosensitive material, then lines are etched to create one or more separate optical identification elements. The one or more gratings may be written by exposing the photosensitive material to ultraviolet (UV) light. The lines may be etched to create the one or more separate optical identification elements by photolithography to define/create the same.
Description
BACKGROUND OF INVENTION

1. Technical Field


The present invention relates to a method and apparatus for fabricating an optical identification element; and more particularly to a method and apparatus for fabricating a holographic optical identification element using a lithographic technique, as well as the holographic optical identification element itself.


SUMMARY OF INVENTION

The present invention provides a new and unique method for fabricating an optical identification element, wherein a removable plate or substrate having a photosensitive material fabricated on is provided, one or more gratings are written on the photosensitive material, then lines are etched to create one or more separate optical identification elements.


The one or more gratings may be written by exposing the photosensitive material to ultraviolet (UV) light.


The lines may be etched to create the one or more separate optical identification elements by photolithography to define/create the same.


The one or more separate optical identification element are planar elements.


The optical identification element may take the form of a holographic optical identification element having one of the following geometric shapes, such as a plate, a bar, a brick, a disc, a slab, etc.


The method according to the present invention enables many possible options, geometries, sizes, photosensitive materials in relation to the overall fabrication of an optical identification element.


The present invention also includes the possibly of using a surface relief grating, a densification grating, cover slips, or borosilcate.


The scope of the invention is also intended to include the apparatus for fabricating an optical identification element consistent with the description of the aforementioned method, including a combination of devices for performing the steps described above, as well as an optical identification element that results from the steps of the method or process shown and described herein.


One advantage of the present invention is that conventional technology may be used to fabricate an optical identification element with a high level of flexibility.


In effect, the present invention potentially adds a whole new dimension to existing biochip technology.





BRIEF DESCRIPTION OF THE DRAWING

The drawing, which is not drawn to scale, includes the following:



FIG. 1 is a diagram of steps for fabricating a optical identification element according to the present invention.



FIG. 2 is a diagram of a partially etched substrate according to the present invention.



FIG. 3 is a block diagram of an optical arrangement for fabricating an optical identification element according to the present invention.



FIG. 4 is a diagram of an optical identification element according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows steps 1-4 for performing a method for fabricating an optical identification element 20 (see also FIG. 4) according to the present invention.


In step 1, a removable plate or substrate 10 having a photosensitive material 10 fabricated thereon. Suitable photosensitive materials are known in the art, and the scope of the invention is not intended to be limited to any particular kind either now known or later developed in the future. The plate or substrate 10 may take the form of many different medium or material, including, but not limited to, an optical medium or material, although the scope of the invention is also intended to include other materials for the substrate now known or later developed in the future.


In step 2, one or more gratings 13 (best shown in FIGS. 2 and 4) are written on the photosensitive material 12, for example, by exposing the photosensitive material 12 to ultraviolet (UV) light 14, although the scope of the invention is also intended to include using other grating writing techniques either now known or later developed in the future.


In step 3, one or more lines 16 are etched or formed to create and form one or more separate optical identification elements that are generally indicated as 18 in FIG. 1 using photolithography to define/create the same, although the scope of the invention is also intended to include using other etching techniques either now known or later developed in the future.


In step 4, the etching process in step 3 results in the formation of the one or more separate optical identification elements 20. In this case, the elements 18 are removed or separated from the substrate 10 by the etching process. Alternatively, the elements 18 may be removed or separated from the substrate 10 by exposing them in a suitable solution and form the one or more optical identification elements 20. Such a suitable solution is known in the art, and the scope of the invention is not intended to be limited to any particular type or kind thereof. The one or more separate optical identification element 20 take the form of planar elements, as distinguished from optical fiber, optical filaments, or the like that are known in the art.


Moreover, the scope of the invention is intended to include the optical identification element 20 taking the form of a holographic optical identification element or other suitable optical identification element having an interference pattern reproduced from a pattern of interference produced by a split coherent beam of radiation (as a laser) either now known or later developed in the future, or by any of the techniques described in copending U.S. patent application CV-0038A or CV-0044, and other related cases referenced herein. Moreover, the optical identification elements 20 may take the geometric form of one or more planar objects, including plates, bars, bricks, discs, slabs, chips, or other suitable planar geometric shape and/or dimensionality now known or later developed in the future, including those described in CV-0038A and other patent applications referenced herein.


Alternative Technique

The present invention also provides an alternative format micro “chip” assay technique relating to code reading via embedded collocated gratings, as follows:


Grating Orientation:

The scope of the invention is intended to include at least the following grating orientation techniques shown by way of example in FIG. 2:


1) Writing grating codes 13a, 13b, 13c, 13d1, 13d2 at multiple axes across each disc or element 18—where a single axis reader always may be used to pick up one code.


2) Adding orientation ‘marker’ 15 to one or more discs or elements 18, such as by adding one or more of the following:

    • a) Magnetic material for self-alignment;
    • b) Birefringence; or
    • c) Fluorescence to determine alignment/orientation. 3) Putting each “bit” in along a different axis and use a spinning readout system (e.g. each bit assessed).


The Optical Arrangement or Apparatus

The scope of the invention is also intended to include an optical arrangement or apparatus for fabricating an optical identification element consistent with the description of the aforementioned method, including a combination of devices for performing the steps described above. For example, FIG. 3 shows the optical arrangement or apparatus generally indicated as 30 for fabricating such an optical identification element 20, including the combination of a means or device 32 for providing a removable plate or substrate 10 having the photosensitive material 12 fabricated thereon; a means or device 34 for writing one or more gratings 13, 13a, 13b, 13c, 13d1, 13d2 (see FIG. 2) on the photosensitive material 12; and a means or device 36 for separating and creating the one or more separate optical identification elements 20, including by, e.g., etching the lines 16 on the photosensitive material 12.


The Optical Identification Element 20


FIG. 4 shows, by way of example, the optical identification element 20 in greater detail that results from the steps of the method or process shown in FIG. 1, and/or the optical arrangement shown in FIG. 3. The scope of the invention is also intended to include the optical identification element itself made by the method or process set forth above, including, but not limited to, a holographic optical identification element made from the lithographic technique described herein. The present invention may be used to create the encoded elements consistent with that described in copending U.S. patent application Ser. No. 10/661,234, filed 12 Sep. 2003 (CyVera Docket No. CV-0038A) and the other patent applications referenced herein, which are incorporated herein by reference in their entirety.


Applications, Uses, Geometries and Embodiments for the Encoded Element of the Present Invention

Applications, uses, geometries and embodiments for the encoded element of the present invention may be the same as that described in the following cases which are all incorporated herein by reference in their entirety: U.S. patent application Ser. No. 10/661,234 (CyVera Docket No. CV-0038A), filed Sep. 12, 2003, entitled “Diffraction Grating-Based Optical Identification Element”; U.S. patent application Ser. No. 10/661,031 (CyVera Docket No. CV-0039A) filed Sep. 12, 2003, entitled “Diffraction Grating-Based Encoded Micro-particles for Multiplexed Experiments”; U.S. patent application Ser. No. 10/661,082 (CyVera Docket No. CV-0040), filed Sep. 12, 2003, entitled “Method and Apparatus for Labeling Using Diffraction Grating-Based Encoded Optical Identification Elements”; U.S. patent application Ser. No. 10/661,115 (CyVera Docket No. CC-0041), filed Sep. 12, 2003, entitled “Assay Stick”; U.S. patent application Ser. No. 10/661,836 (CyVera Docket No. CV-0042), filed Sep. 12, 2003, entitled “Method and Apparatus for Aligning Microbeads in order to Interrogate the Same”; U.S. patent application Ser. No. 10/661,254 (CyVera Docket No. CV-0043), filed Sep. 12, 2003, entitled “Chemical Synthesis Using Diffraction Grating-based Encoded Optical Elements”; U.S. patent application Ser. No. 10/661,116 (CyVera Docket No. CV-0044), filed Sep. 12, 2003, entitled “Method of Manufacturing of a Diffraction grating-based identification Element”; and U.S. patent application Ser. No. 10/763,995 (CyVera Docket No. CV-0054), filed Jan. 22, 2004, entitled, “Hybrid Random Bead/Chip Based Microarray”, U.S. Provisional Patent Applications Ser. Nos. 60/609,583, 60/610,059 and 60/609,712, all filed Sep. 13, 2004 (CV-0082PR, 83PR and 84PR); U.S. Provisional Patent Applications Ser. Nos. 60/611,205, 60/610,910, 60/610,833, 60/610,829, 60/610,928, all filed Sep. 17, 2004 (CV-0085PR, 86PR, 87PR, 88PR and 89PR); U.S. Provisional Patent Application Ser. No. 60/611,676, filed Sep. 20, 2004 (CV-0091PR); and U.S. patent applications Ser. No. 10/956,791, filed Oct. 1, 2004 (CV-0092 US).


Computer Programs and Other Data Processing Methods

Various aspects of the present invention may be conducted in an automated or semi-automated manner, generally with the assistance of well-known data processing methods. Computer programs and other data processing methods well known in the art may be used to store information including e.g. microbead identifiers, probe sequence information, sample information, and binding signal intensities. Data processing methods well known in the art may be used to read input data covering the desired characteristics.


Applications

The invention may be used in many areas such as drug discovery, functionalized substrates, biology, proteomics, combinatorial chemistry, DNA analysis/tracking/ sorting/tagging, as well as tagging of molecules, biological particles, matrix support materials, immunoassays, receptor binding assays, scintillation proximity assays, radioactive or non-radioactive proximity assays, and other assays, (including fluorescent, mass spectroscopy), high throughput drug/genome screening, and/or massively parallel assay applications. The invention provides uniquely identifiable beads with reaction supports by active coatings for reaction tracking to perform multiplexed experiments.


Scope of the Invention

The dimensions and/or geometries for any of the embodiments described herein are merely for illustrative purposes and, as such, any other dimensions and/or geometries may be used if desired, depending on the application, size, performance, manufacturing requirements, or other factors, in view of the teachings herein.


It should be understood that, unless stated otherwise herein, any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein. Also, the drawings herein are not drawn to scale.


Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.


Moreover, the invention comprises the features of construction, combination of elements, and arrangement of parts which will be exemplified in the construction hereinafter set forth.


It will thus be seen that the objects set forth above, and those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A method for fabricating an optical identification element comprising: providing a removable substrate having photosensitive material fabricated thereon;writing one or more gratings on the photosensitive material; andetching lines into the removable substrate to create one or more optical identification elements.
  • 2. A method according to claim 1, wherein the optical identification element has a planar shape.
  • 3. A method according to claim 1, wherein the optical identification element includes a holographic optical identification element.
  • 4. A method according to claim 1, wherein the optical identification element has an interference pattern reproduced from a pattern of interference produced by a split coherent beam of radiation.
  • 5. A method according to claim 1, wherein the writing one or more gratings includes exposing the photosensitive material to ultraviolet (UV) light.
  • 6. A method according to claim 1, wherein the etching lines includes using photolithography to create the one or more optical identification elements.
  • 7. A method according to claim 1 further comprising removing the optical identification elements from the substrate.
  • 8. A method according to claim 1, wherein the one or more gratings include a surface relief grating, a densification grating, cover slips, or borosilcate.
  • 9. A method according to claim 1, wherein the substrate includes an optical material.
  • 10. A method according to claim 1, wherein the method includes writing grating codes at multiple axes across each optical identification element, where a single axis reader picks up one code.
  • 11. A method according to claim 1, wherein the method includes adding an orientation marker to the optical identification element.
  • 12. A method according to claim 11, wherein the orientation marker includes one or more of the following: a) magnetic material for self-alignment; b) birefringence; or c) fluorescence to determine alignment/orientation.
  • 13. A method according to claim 1, wherein the method includes putting at least one bit in along different axes and using a spinning readout system.
CROSS REFERENCES TO RELATED APPLICATIONS

This application claims benefit to U.S. provisional patent application No. 60/629,093, filed Nov. 17, 2004, which is hereby incorporated by reference in their entirety. The following cases contain subject matter related to that disclosed herein and are incorporated herein by reference in their entirety: U.S. patent application Ser. No. 10/661,234, filed Sep. 12, 2003, entitled “Diffraction Grating-Based Optical Identification Element”; U.S. patent application Ser. No. 10/661,031 filed Sep. 12, 2003, entitled “Diffraction Grating-Based Encoded Micro-particles for Multiplexed Experiments”; U.S. patent application Ser. No. 10/661,082, filed Sep. 12, 2003, entitled “Method and Apparatus for Labeling Using Diffraction Grating-Based Encoded Optical Identification Elements”; U.S. Patent Application Serial No. 10/661,115, filed Sep. 12, 2003, entitled “Assay Stick”; U.S. patent application Ser. No. 10/661,836, filed Sep. 12, 2003, entitled “Method and Apparatus for Aligning Microbeads in order to Interrogate the Same”; U.S. Patent application Ser. No. 10/661,254, filed Sep. 12, 2003, entitled “Chemical Synthesis Using Diffraction Grating-based Encoded Optical Elements”; U.S. patent application Ser. No. 10/661,116, filed Sep. 12, 2003, entitled “Method of Manufacturing of a Diffraction grating-based identification Element”; and U.S. patent application Ser. No. 10/763,995, filed Jan. 22, 2004, entitled, “Hybrid Random Bead/Chip Based Microarray”, US Provisional Patent Applications Ser. Nos. 60/609,583, 60/610,059 and 60/609,712, all filed Sep. 13, 2004; U.S. Provisional Patent Applications Ser. Nos. 60/611,205, 60/610,910, 60/610,833, 60/610,829, 60/610,928, all filed Sep. 17, 2004; U.S. Provisional Patent Application Ser. No. 60/611,676, filed Sep. 20, 2004; and U.S. patent applications Ser. No. 10/956,791, filed Oct. 1, 2004.

US Referenced Citations (358)
Number Name Date Kind
3891302 Dabby et al. Jun 1975 A
3916182 Dabby et al. Oct 1975 A
3968476 McMahon Jul 1976 A
4011435 Phelps Mar 1977 A
4023010 Horst et al. May 1977 A
4053228 Schiller Oct 1977 A
4053433 Lee Oct 1977 A
4131337 Moraw et al. Dec 1978 A
4168146 Grubb et al. Sep 1979 A
4301139 Feingers et al. Nov 1981 A
4386274 Altshuler May 1983 A
4400616 Chevillat et al. Aug 1983 A
4445229 Tasto et al. Apr 1984 A
4447546 Hirschfeld May 1984 A
4537504 Baltes et al. Aug 1985 A
4560881 Briggs Dec 1985 A
4562157 Lowe et al. Dec 1985 A
4647544 Nicoli et al. Mar 1987 A
4678752 Thorne et al. Jul 1987 A
4685480 Eck Aug 1987 A
4690907 Hibino et al. Sep 1987 A
4701754 Provonchee Oct 1987 A
4716121 Block et al. Dec 1987 A
4725110 Glenn et al. Feb 1988 A
4740468 Weng et al. Apr 1988 A
4740688 Edwards Apr 1988 A
4748110 Paul May 1988 A
4762420 Bowley Aug 1988 A
4767719 Finlan Aug 1988 A
4807950 Glenn et al. Feb 1989 A
4816659 Bianco et al. Mar 1989 A
4822746 Walt Apr 1989 A
4841140 Sullivan et al. Jun 1989 A
4877747 Stewart Oct 1989 A
4880752 Keck et al. Nov 1989 A
4882288 North et al. Nov 1989 A
4921805 Gebeyehu et al. May 1990 A
4931384 Layton et al. Jun 1990 A
4937048 Sakai et al. Jun 1990 A
4958376 Leib Sep 1990 A
4992385 Godfrey Feb 1991 A
5002867 Macevicz Mar 1991 A
5003600 Deason et al. Mar 1991 A
RE33581 Nicoli et al. Apr 1991 E
5028545 Soini Jul 1991 A
5030558 Litman et al. Jul 1991 A
5033826 Kolner Jul 1991 A
5065008 Hakamata et al. Nov 1991 A
5067155 Bianco et al. Nov 1991 A
5081012 Flanagan et al. Jan 1992 A
5089387 Tsay et al. Feb 1992 A
5090807 Tai Feb 1992 A
5091636 Takada et al. Feb 1992 A
5095194 Barbanell Mar 1992 A
5100238 Nailor et al. Mar 1992 A
5104209 Hill et al. Apr 1992 A
5105305 Betzig et al. Apr 1992 A
5114864 Walt May 1992 A
5115121 Bianco et al. May 1992 A
5118608 Layton et al. Jun 1992 A
5129974 Aurenius Jul 1992 A
5138468 Barbanell Aug 1992 A
5141848 Donovan et al. Aug 1992 A
5143853 Walt Sep 1992 A
5144461 Horan Sep 1992 A
5160701 Brown, III et al. Nov 1992 A
5166813 Metz Nov 1992 A
5192980 Dixon et al. Mar 1993 A
5196350 Backman et al. Mar 1993 A
5200794 Nishiguma et al. Apr 1993 A
5218594 Tanno Jun 1993 A
5239178 Derndinger et al. Aug 1993 A
5244636 Walt et al. Sep 1993 A
5283777 Tanno et al. Feb 1994 A
5291006 Nishiguma et al. Mar 1994 A
5291027 Kita et al. Mar 1994 A
5300764 Hoshino et al. Apr 1994 A
5307332 Tinet Apr 1994 A
5310686 Sawyers et al. May 1994 A
5329352 Jacobsen Jul 1994 A
5342790 Levine et al. Aug 1994 A
5349442 Deason et al. Sep 1994 A
5352582 Lichtenwalter et al. Oct 1994 A
5364797 Olson et al. Nov 1994 A
5367588 Hill et al. Nov 1994 A
5372783 Lackie Dec 1994 A
5374816 Bianco Dec 1994 A
5374818 Bianco et al. Dec 1994 A
5388173 Glenn Feb 1995 A
5394234 Bianco et al. Feb 1995 A
5395558 Tsai Mar 1995 A
5426297 Dunphy et al. Jun 1995 A
5432329 O'Boyle et al. Jul 1995 A
5442433 Hoshino et al. Aug 1995 A
5448659 Tsutsui et al. Sep 1995 A
5451528 Raymoure et al. Sep 1995 A
5455178 Fattinger Oct 1995 A
5461475 Lerner et al. Oct 1995 A
5465176 Bianco et al. Nov 1995 A
5468649 Shah et al. Nov 1995 A
5506674 Inoue et al. Apr 1996 A
5514785 Van Ness et al. May 1996 A
5528045 Hoffman et al. Jun 1996 A
5547849 Baer et al. Aug 1996 A
5559613 Deveaud-Pledran et al. Sep 1996 A
5585639 Dorsel et al. Dec 1996 A
5587832 Krause Dec 1996 A
5607188 Bahns et al. Mar 1997 A
5610287 Nikiforov et al. Mar 1997 A
5620853 Smethers et al. Apr 1997 A
5621515 Hoshino Apr 1997 A
5624850 Kumar et al. Apr 1997 A
5625472 Mizrahi et al. Apr 1997 A
5627040 Bierre et al. May 1997 A
5627663 Horan et al. May 1997 A
5633724 King et al. May 1997 A
5633790 Gritter et al. May 1997 A
5633975 Gary et al. May 1997 A
5667976 Van Ness et al. Sep 1997 A
5671308 Inoue et al. Sep 1997 A
5682244 Barlow et al. Oct 1997 A
5712912 Tomko et al. Jan 1998 A
5721435 Troll Feb 1998 A
5729365 Sweatt Mar 1998 A
5736330 Fulton Apr 1998 A
5742432 Bianco Apr 1998 A
5745615 Atkins et al. Apr 1998 A
5745617 Starodubov et al. Apr 1998 A
5759778 Li et al. Jun 1998 A
5760961 Tompkin et al. Jun 1998 A
5766956 Groger et al. Jun 1998 A
5771251 Kringlebotn et al. Jun 1998 A
5776694 Sheiness et al. Jul 1998 A
5793502 Bianco et al. Aug 1998 A
5798273 Shuler et al. Aug 1998 A
5799231 Gates et al. Aug 1998 A
5801857 Heckenkamp et al. Sep 1998 A
5804384 Muller et al. Sep 1998 A
5812272 King et al. Sep 1998 A
5824472 Betlach et al. Oct 1998 A
5824478 Muller Oct 1998 A
5824557 Burke et al. Oct 1998 A
5830622 Canning et al. Nov 1998 A
5831698 Depp et al. Nov 1998 A
5837475 Dorsal et al. Nov 1998 A
5837552 Cotton et al. Nov 1998 A
5841555 Bianco et al. Nov 1998 A
5846737 Kang Dec 1998 A
5874187 Colvin et al. Feb 1999 A
5881197 Dong et al. Mar 1999 A
5895750 Mushahwar et al. Apr 1999 A
5922550 Everhart et al. Jul 1999 A
5922617 Wang et al. Jul 1999 A
5925562 Nova et al. Jul 1999 A
5925878 Challener Jul 1999 A
5945679 Dorsel et al. Aug 1999 A
5972542 Starodubov Oct 1999 A
5976896 Kumar et al. Nov 1999 A
5981166 Mandecki Nov 1999 A
5986838 Thomas, III Nov 1999 A
5989923 Lowe et al. Nov 1999 A
5998796 Liu et al. Dec 1999 A
6001510 Meng et al. Dec 1999 A
6005691 Grot et al. Dec 1999 A
6017754 Chesnut et al. Jan 2000 A
6025129 Nova et al. Feb 2000 A
6025283 Roberts Feb 2000 A
6027694 Boulton et al. Feb 2000 A
6030581 Virtanen Feb 2000 A
6035082 Murphy et al. Mar 2000 A
6036807 Brongers Mar 2000 A
6043880 Andrews et al. Mar 2000 A
6046925 Tsien et al. Apr 2000 A
6049727 Crothall Apr 2000 A
6057107 Fulton May 2000 A
6060256 Everhart et al. May 2000 A
6067167 Atkinson et al. May 2000 A
6067392 Wakami et al. May 2000 A
6078048 Stevens et al. Jun 2000 A
6084995 Clements et al. Jul 2000 A
6087186 Cargill et al. Jul 2000 A
6096496 Frankel et al. Aug 2000 A
6096596 Gonzalez Aug 2000 A
6097485 Lievan Aug 2000 A
6103535 Pilevar et al. Aug 2000 A
6118127 Liu et al. Sep 2000 A
6128077 Jovin et al. Oct 2000 A
6137931 Ishikawa et al. Oct 2000 A
6143247 Sheppard, Jr. et al. Nov 2000 A
6156501 McGall et al. Dec 2000 A
6159748 Hechinger Dec 2000 A
6160240 Momma et al. Dec 2000 A
6160656 Mossberg et al. Dec 2000 A
6164548 Curiel Dec 2000 A
6165592 Berger et al. Dec 2000 A
6165648 Colvin et al. Dec 2000 A
6174648 Terao et al. Jan 2001 B1
6194563 Cruickshank Feb 2001 B1
6204969 Jang Mar 2001 B1
6214560 Yguerabide et al. Apr 2001 B1
6218194 Lyndin et al. Apr 2001 B1
6221579 Everhart et al. Apr 2001 B1
6229635 Wulf May 2001 B1
6229827 Fernald et al. May 2001 B1
6229941 Yoon et al. May 2001 B1
6242056 Spencer et al. Jun 2001 B1
6259450 Chiabrera et al. Jul 2001 B1
6268128 Collins et al. Jul 2001 B1
6277628 Johann et al. Aug 2001 B1
6284459 Nova et al. Sep 2001 B1
6285806 Kersey et al. Sep 2001 B1
6288220 Kambara et al. Sep 2001 B1
6292282 Mossberg et al. Sep 2001 B1
6292319 Thomas, III Sep 2001 B1
6301047 Hoshino et al. Oct 2001 B1
6304263 Chiabrera et al. Oct 2001 B1
6306587 Royer et al. Oct 2001 B1
6309601 Juncosa et al. Oct 2001 B1
6312961 Voirin et al. Nov 2001 B1
6313771 Munroe et al. Nov 2001 B1
6314220 Mossberg et al. Nov 2001 B1
6319668 Nova et al. Nov 2001 B1
6321007 Sanders Nov 2001 B1
6322932 Colvin et al. Nov 2001 B1
RE37473 Challener Dec 2001 E
6329963 Chiabrera et al. Dec 2001 B1
6331273 Nova et al. Dec 2001 B1
6340588 Nova et al. Jan 2002 B1
6352854 Nova et al. Mar 2002 B1
6355198 Kim et al. Mar 2002 B1
6355432 Fodor et al. Mar 2002 B1
6356681 Chen et al. Mar 2002 B1
6359734 Staub et al. Mar 2002 B1
6361958 Shieh et al. Mar 2002 B1
6363097 Linke et al. Mar 2002 B1
6371370 Sadler et al. Apr 2002 B2
6372428 Nova et al. Apr 2002 B1
6383754 Kaufman et al. May 2002 B1
6391562 Kambara et al. May 2002 B2
6395558 Duveneck et al. May 2002 B1
6399295 Kaylor et al. Jun 2002 B1
6399935 Jovin et al. Jun 2002 B1
6403320 Read et al. Jun 2002 B1
6406841 Lee et al. Jun 2002 B1
6406848 Bridgham et al. Jun 2002 B1
6416714 Nova et al. Jul 2002 B1
6416952 Pirrung et al. Jul 2002 B1
6417010 Cargill et al. Jul 2002 B1
6428707 Berg et al. Aug 2002 B1
6428957 Delenstarr Aug 2002 B1
6429022 Kunz et al. Aug 2002 B1
6433849 Lowe Aug 2002 B1
6436651 Everhart et al. Aug 2002 B1
6440667 Fodor et al. Aug 2002 B1
6456762 Nishiki et al. Sep 2002 B1
RE37891 Collins et al. Oct 2002 E
6462770 Cline et al. Oct 2002 B1
6489606 Kersey et al. Dec 2002 B1
6496287 Seiberle et al. Dec 2002 B1
6506342 Frankel Jan 2003 B1
6515753 Maher et al. Feb 2003 B2
6522406 Rovira et al. Feb 2003 B1
6524793 Chandler et al. Feb 2003 B1
6533183 Aasmul et al. Mar 2003 B2
6542673 Holter et al. Apr 2003 B1
6544739 Fodor et al. Apr 2003 B1
6545758 Sandstrom Apr 2003 B1
6560017 Bianco May 2003 B1
6565770 Mayer et al. May 2003 B1
6576424 Fodor et al. Jun 2003 B2
6578712 Lawandy Jun 2003 B2
6592036 Sadler et al. Jul 2003 B2
6594421 Johnson et al. Jul 2003 B1
6609728 Voerman et al. Aug 2003 B1
6613581 Wada et al. Sep 2003 B1
6618342 Johnson et al. Sep 2003 B1
6622916 Bianco Sep 2003 B1
6628439 Shiozawa et al. Sep 2003 B2
6632655 Mehta et al. Oct 2003 B1
6635470 Vann Oct 2003 B1
6635863 Nihommori et al. Oct 2003 B1
6646243 Pirrung et al. Nov 2003 B2
6657758 Garner Dec 2003 B1
6660147 Woudenberg et al. Dec 2003 B1
6678429 Mossberg et al. Jan 2004 B2
RE38430 Rosenstein Feb 2004 E
6689316 Blyth et al. Feb 2004 B1
6692031 McGrew Feb 2004 B2
6692912 Boles et al. Feb 2004 B1
6874639 Lawandy Apr 2005 B2
6881789 Bossé Apr 2005 B2
6892001 Ohta et al. May 2005 B2
6905885 Colston et al. Jun 2005 B2
6908737 Ravkin et al. Jun 2005 B2
6982996 Putnam et al. Jan 2006 B1
7092160 Putnam et al. Aug 2006 B2
7106513 Moon et al. Sep 2006 B2
7126755 Moon et al. Oct 2006 B2
20010007775 Seul et al. Jul 2001 A1
20020000471 Aasmul et al. Jan 2002 A1
20020006664 Sabatini Jan 2002 A1
20020018430 Heckenkamp et al. Feb 2002 A1
20020022273 Empedocles et al. Feb 2002 A1
20020025534 Goh et al. Feb 2002 A1
20020031783 Empedocles et al. Mar 2002 A1
20020034747 Bruchez et al. Mar 2002 A1
20020039732 Bruchez et al. Apr 2002 A1
20020074513 Abel et al. Jun 2002 A1
20020084329 Kaye et al. Jul 2002 A1
20020090650 Empedocles et al. Jul 2002 A1
20020094528 Salafsky Jul 2002 A1
20020097658 Worthington et al. Jul 2002 A1
20020155490 Skinner et al. Oct 2002 A1
20020197456 Pope Dec 2002 A1
20030008323 Ravkin et al. Jan 2003 A1
20030021003 Ono et al. Jan 2003 A1
20030032203 Sabatini et al. Feb 2003 A1
20030077038 Murashima et al. Apr 2003 A1
20030082568 Phan May 2003 A1
20030082587 Seul et al. May 2003 A1
20030129654 Ravkin et al. Jul 2003 A1
20030138208 Pawlak et al. Jul 2003 A1
20030142704 Lawandy Jul 2003 A1
20030142713 Lawandy Jul 2003 A1
20030153006 Washizu et al. Aug 2003 A1
20030162296 Lawandy Aug 2003 A1
20030184730 Price Oct 2003 A1
20030203390 Kaye et al. Oct 2003 A1
20030228610 Seul Dec 2003 A1
20040047030 MacAuley Mar 2004 A1
20040075907 Moon et al. Apr 2004 A1
20040100636 Somekh et al. May 2004 A1
20040125370 Montagu Jul 2004 A1
20040125424 Moon et al. Jul 2004 A1
20040126875 Putnam et al. Jul 2004 A1
20040132205 Moon et al. Jul 2004 A1
20040170356 Iazikov et al. Sep 2004 A1
20040175842 Roitman et al. Sep 2004 A1
20040209376 Natan et al. Oct 2004 A1
20040233485 Moon et al. Nov 2004 A1
20040263923 Moon et al. Dec 2004 A1
20050042764 Sailor et al. Feb 2005 A1
20050220408 Putnam Oct 2005 A1
20050227252 Moon et al. Oct 2005 A1
20050270603 Putnam et al. Dec 2005 A1
20060023310 Putnam et al. Feb 2006 A1
20060028727 Moon et al. Feb 2006 A1
20060057729 Moon et al. Mar 2006 A1
20060063271 Putnam et al. Mar 2006 A1
20060071075 Moon et al. Apr 2006 A1
20060072177 Putnam et al. Apr 2006 A1
20060118630 Kersey et al. Jun 2006 A1
20060119913 Moon Jun 2006 A1
20060132877 Kersey Jun 2006 A1
20060134324 Putnam et al. Jun 2006 A1
20060139635 Kersey et al. Jun 2006 A1
20060160208 Putnam et al. Jul 2006 A1
20070121181 Moon et al. May 2007 A1
Foreign Referenced Citations (70)
Number Date Country
598661 May 1978 CH
2416652 Oct 1975 DE
0 395 300 Oct 1990 EP
0 485 803 May 1992 EP
0 508 257 Oct 1992 EP
0 723 149 Jul 1996 EP
0 798 573 Oct 1997 EP
0 911 667 Apr 1999 EP
0 916 981 May 1999 EP
0 972 817 Jan 2000 EP
1 182 054 Feb 2002 EP
1 219 979 Jul 2002 EP
2 118 189 Oct 1983 GB
2 129 551 May 1984 GB
2 138 821 Oct 1984 GB
2 299 235 Sep 1996 GB
2 306 484 May 1997 GB
2 319 838 Jun 1998 GB
2 372 100 Aug 2002 GB
08102544 Apr 1986 JP
01047950 Feb 1989 JP
10166075 Jun 1998 JP
11-119029 Apr 1999 JP
2000-035521 Feb 2000 JP
00249706 Sep 2000 JP
WO 9106496 May 1991 WO
WO 9309668 May 1993 WO
WO 9428119 Dec 1994 WO
WO 9624061 Aug 1996 WO
WO 9636436 Nov 1996 WO
WO 9712680 Apr 1997 WO
WO 9715690 May 1997 WO
WO 9717258 May 1997 WO
WO 9731282 Aug 1997 WO
WO 9734171 Sep 1997 WO
WO 9804740 Feb 1998 WO
WO 9824549 Jun 1998 WO
WO 9902266 Jan 1999 WO
WO 9909042 Feb 1999 WO
WO 9932654 Jul 1999 WO
WO 9942209 Aug 1999 WO
WO 0008443 Feb 2000 WO
WO 0016893 Mar 2000 WO
WO 0037914 Jun 2000 WO
WO 0037969 Jun 2000 WO
WO 0039617 Jul 2000 WO
WO 0061198 Oct 2000 WO
WO 0158583 Aug 2001 WO
WO 0171322 Sep 2001 WO
WO 0178889 Oct 2001 WO
WO 0190225 Nov 2001 WO
WO 02059306 Aug 2002 WO
WO-02059306 Aug 2002 WO
WO 03061983 Jul 2003 WO
WO 2004019276 Mar 2004 WO
WO 2004024328 Mar 2004 WO
WO 2004025561 Mar 2004 WO
WO 2004025562 Mar 2004 WO
WO 2004025563 Mar 2004 WO
WO 2004066210 Aug 2004 WO
WO 2005026729 Mar 2005 WO
WO 2005027031 Mar 2005 WO
WO 2005029047 Mar 2005 WO
WO 2005033681 Apr 2005 WO
WO 2005050207 Jun 2005 WO
WO 2005079544 Sep 2005 WO
WO 2006020363 Feb 2006 WO
WO 2006055735 May 2006 WO
WO 2006055736 May 2006 WO
WO 2006076053 Jul 2006 WO
Related Publications (1)
Number Date Country
20060132877 A1 Jun 2006 US
Provisional Applications (1)
Number Date Country
60629093 Nov 2004 US