Embodiments of the present invention relate to a lock chamber, a substrate processing system, and a method for venting, in particular, of a lock chamber. Specifically, embodiments relate to an unload lock chamber and a method for venting an unload lock chamber. In particular, embodiments of the present invention relate to nano-manufacturing technology solutions involving equipment, processes, and materials used in the deposition of thin films and coatings with representative examples including (but not limited to) applications involving: semiconductor and dielectric materials and devices, silicon-based wafers, flat panel displays (such as TFTs), masks and filters, electrochromic coatings, energy conversion and storage (such as photovoltaic cells, fuel cells, and batteries), solid-state lighting (such as LEDs and OLEDs), magnetic and optical storage, micro-electromechanical systems (MEMS) and nano-electro-mechanical systems (NEMS), micro-optic and optoelectronic devices, architectural and automotive glasses, metallization systems for metal and polymer foils and packaging, and micro- and nano-molding.
Glass panels are coated, for example, in vacuum coating plants, under high-vacuum conditions, at pressures within the range of 5*10−4 hPa to 3*10−2 hPa. In order to increase the plant productivity and to avoid the requirement of having to evacuate the entire installation for each substrate and, especially, the high-vacuum section, load and unload locks are used for the substrates.
In order to improve the material flux rate and increase the productivity in modern in-line coating plants, separate load and unload lock chambers are being used. A simple so-called 3-chamber coating unit consists of a load lock, in which the substrate is pumped from atmospheric pressure to an adequate transition pressure of, for example, between p=1*10−3 hPa to p=5*10−2 hPa, of a sequential vacuum coating section (process chamber) and an unload lock, in which, by means of ventilation, said substrate is again adjusted to the atmospheric pressure level.
The task of load lock chambers is to evacuate to a sufficient and low enough transition pressure to the process range as quickly as possible. The task of unload lock chambers is to vent as quickly as possible to atmospheric pressure. Then, after the substrate is unloaded from the unload lock chamber, it is evacuated again.
A factor in productivity and concurrent economical utilization of an in-line coating unit is the so-called cycle, i.e., station time, i.e., the time which has to be used per batch of substrate before the next batch of substrate may be introduced into the unit, or the average processing time per substrate batch under continuous operating conditions. In order to achieve, for example, a cycle time of 45 seconds, the lock chamber must be in condition to deliver within t<=45 seconds a substrate from a given atmospheric point A to a given point B within the (high) vacuum range, and vice versa. For this purpose, the system must transport said substrate into and out of the lock chamber, respectively, evacuate and ventilate said lock chamber, respectively, and open and eventually close all applicable valves, respectively. This means that in such a case, the time available for evacuation and venting must always be smaller than the cycle time (for example, 20 s or 45 s), since all other tasks (see above) have to be accomplished within said cycle time.
According to the known relation that the pumping time is directly proportional to the ratio of volume V to pumping speed S, it becomes evident that there are basically two possibilities to reduce the pumping time, and consequently the cycle time: either the volume reduction of the lock chamber; or the increase of the pumping capacity coupled to the lock chamber.
Modern lock chambers thus include a small volume resulting in a reduction of the pump time, other things being equal. However, fast venting, in particular in volume reduced chambers, results in increased pressure differences within the lock which may lead to misalignment, damage to or even destruction of the substrates.
In order to prevent the substrates from being damaged, so-called “vent showers” are used for distributing the gas flow and for generating a homogenous flow of gas into the chamber. Furthermore, it is possible to position the nozzles or vent showers with their outlets oriented against chamber walls or other equipment within the chamber so that a direct gas flow towards the substrate is prevented. It is also known to subsequently open further nozzles thereby increasing the flow rate in a step-wise manner. This is sometimes called “soft venting”. Also, one of the inventors had already proposed to position the substrates between two flow streams, which are oriented opposite to each other. However, the proposed measures are still either too slow, or the damage rate of the substrates to be coated remains too high.
In light of the above, according to an aspect described herein, a lock chamber for a substrate processing system is provided which includes at least a first conduit adapted to provide an inner portion of the lock chamber in fluid communication with atmospheric pressure or overpressure. Additionally, the lock chamber includes at least a first control valve for controlling a flow rate of the fluid communication of the inner portion of the chamber with the atmospheric pressure or the overpressure, wherein the control valve is adapted to continuously control the flow rate.
According to a further aspect, a substrate processing system is provided with at least one lock chamber as described herein and a chamber for coating a substrate.
According to a further aspect, a method of venting a load lock chamber is provided. The method includes providing a flow rate profile for venting the load lock chamber and controlling a first control valve being adapted to continuously control the flow rate according to the flow rate profile for venting the load lock chamber.
According to a further aspect, a computer program is provided including computer program code means adapted to perform all the steps of the method described herein when the program is run on a computer.
According to a further aspect, a computer-readable medium storing the computer program as described herein is provided.
According to a further aspect, a computer-readable medium containing media data and information which indicates how to vent a lock chamber is provided. The medium includes means for providing a flow rate profile for venting the lock chamber, and means for controlling a first control valve being adapted to continuously control the flow rate according to the flow rate profile for venting the lock chamber.
According to an aspect, the lock chamber as described is an unload lock chamber.
Embodiments are also directed to methods for manufacturing and operating the lock chamber or the substrate processing system. These method steps may be performed manually or automatically, e.g. controlled with a computer programmed by appropriate software, by any combination of the two or in any other manner.
Further advantages, features, aspects and details that can be combined with embodiments described herein are evident from the dependent claims, the description and the drawings.
So that the manner in which the above mentioned features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments of the invention. The accompanying drawings relate to embodiments of the invention and are described in the following:
Reference will now be made in detail to the various embodiments of the invention, one or more examples of which are illustrated in the figures. Each example is provided by way of explanation of the invention and is not meant as a limitation of the invention. For example, features illustrated or described as part of one embodiment can be used on, or in conjunction with, other embodiments to yield yet a further embodiment. It is intended that the present invention includes such modifications and variations.
Within the description of the drawings, the same reference numbers refer to the same components. Generally, only the differences with respect to the individual embodiments are described. Drawings are not necessarily true to scale and features may be exaggerated for illustrational purposes.
Generally, and not limited to this embodiment, it is possible that overpressure is provided instead of atmospheric pressure. The term “overpressure” shall refer to pressure which is larger than atmospheric pressure. The overpressure can be provided by a tank being filled with, for instance, conditioned dry air (“CDA”), nitrogen (N2), or the like. Both the atmospheric pressure and the overpressure shall be referred to as “outside pressure” hereafter.
As used herein, the term “lock chamber” shall refer to a chamber used in vacuum applications adapted for enclosing at least one substrate and amending the pressure within the chamber. The term “load lock chamber” shall refer to a lock chamber configured to bring a substrate from higher pressure to a lower pressure. The pressure is typically amended to a pressure of between 1*10−3 hPa and 5*10−2 hPa. The term “unload lock chamber” shall refer to a lock chamber configured to vent a substrate, i.e., to bring a substrate from lower pressure to higher pressure. Typical lock chambers have an inlet seal by means of which the substrate is received, and an outlet seal, through which the substrate is unloaded. For instance, in the event of a unload lock chamber, the inlet seal is typically connected to a coating chamber (and thus vacuum pressure) whereas the substrate is exited to atmospheric pressure through the outlet seal. The terms “coating chamber” and “processing chamber” are used synonymously herein and shall refer to chambers including equipment for coating a substrate.
As shown in the embodiments illustrated in
It is possible that one control valve is provided controlling the at least one conduit. For instance, as it is illustrated in
Alternatively or additionally to a common control valve, it is possible that each conduit is controlled by a separate control valve. For instance,
As illustrated in some embodiments described herein, the at least one conduit may be positioned in such a way that it vents the inner part of the chamber from the top side of the chamber's inner part. According to other embodiments, the inner part of the chamber may be vented from the bottom side. As it is illustrated in
Typically, a controller for control of the at least one valve is provided.
The controller calculates the optimum flow rate and controls the at least one control valve accordingly. The controller may be, for example, a computer comprising an input unit such as a mouse and/or a keypad; a display unit such as a screen; a computing unit such as a CPU (central processing unit) and a memory unit such as a non-volatile memory, for example, a hard disk; and/or a volatile memory such as a RAM (random access memory). The controller is typically provided with a computer program including computer program code means for calculating the optimum flow in dependence on the time and/or for controlling the at least one valve. The computer program may be provided on a computer-readable medium, such as a hard-disk of the computer, or on an external memory, such as on a memory stick, a CD, a DVD, or the like.
According to embodiments, measurement units may be provided. The measurement unit may be one or more of a position sensor, a pressure sensor, a flow rate sensor, a vibration sensor, a temperature sensor or the like. In particular, the measurement unit may be one or more of a capacitive sensor, inductive sensor, or an optical sensor such as a laser distance sensor or a deflection sensor. For instance, the measurement unit may be a stress sensor that is optionally connected to the carrier or the substrate in a wireless way. The measurement unit is typically provided within the inner part of the chamber. However, it is also possible to provide the measurement unit e.g. on a conduit, or outside the inner part of the lock chamber. For instance, a position sensor could sense the position from outside, e.g., by measuring the distance optically through a window located at the chamber's inner part wall.
The use of one or more measurement units allows a feedback control of the control valves. For this purpose, the one or more measurement units are typically connected to the controller to which it/they provide measured information. Typically, the measurement data is provided to the controller constantly. The controller typically accounts for the measurement information, e.g., for the calculation of the optimum flow curve.
In particular, the flow rate sensor could include a pendulum, at the end of which a disc is attached. The deflection of the pendulum can be measured with an angle sensor or with a distance sensor. The deflection allows the deduction of the force exerted by the streaming gas. The damping and the reset force can be influenced by weights and/or an elastic unit such as a spring. Typically, the signal received by the flow rate sensor is used for the calculation of the optimum flow rate.
For instance, instead of always using the same flow rate curve for controlling the one or more valves, it is possible to adapt the optimum flow rate to each specific venting process. As a result, the position of the substrate and/or the carrier with one or more sensors may be measured. The measurement information is provided to the controller. The controller may react instantly to the measured information, e.g., by reducing the flow rate in the event of oscillations or displacements. Once the oscillations are softened, the controller may increase the flow rate again. Thus, it is possible to react proactively to critical situations during substrate venting in order to prevent substrate damage and destruction.
Within the present disclosure, the connections from and to the controller may include any kind of direct or indirect data lines, for example, via cables or via wireless data connection. For instance, it is possible that the controller and/or the at least one measurement unit are connected to each other via a network, such as a local area network (LAN), in particular by a wireless local area network (WLAN).
For instance, in the embodiment illustrated in
The embodiments illustrated in
The embodiments of
For instance, the two sensors 60 and 62 of
A similar control of the individual flow rates as described with respect to the embodiments of
It is important to note that the at least one control valve of the present disclosure is configured to control the flow rate continuously. Hence, the control valves as described herein can also be called “flow rate adjusting valves”. That is, in contrary to known valves used in lock chambers only allowing either the closing or the complete opening of the conduit (“on/off-valves”), the flow rate can be adjusted continuously, typically between 0% (valve closed) and 100% (valve completely opened). For instance, a typical small flow rate is in the range of between 0.01 Nm3/s and 0.05 Nm3/s, such as 0.025 Nm3/s. A typical high flow rate is in the range of between 0.1 Nm3/s and 1.0 Nm3/s, such as 0.4 Nm3/s. Typically, the flow rate can be continuously adjusted between values of 0.01 Nm3/s and 1.0 Nm3/s. The unit Nm3/s refers to normalized cubic meter per second, wherein the normalization refers to the standard pressure of 1 atm (approx. 105 Pa). Since the exact control of the flow rate is of importance, according to embodiments, the valves used can be adjusted with a precision of +/−10%, typically of +/−5%.
The continuous control of the flow rate allows adjusting it to the optimum value during the complete venting process. Whereas “soft venting” as it is known to the inventors employs a subsequent opening of additional valves, thus resulting in a sudden increase of the flow rate, embodiments of the present disclosure allow for the provision of a continuous increase of the flow rate.
The allowed force on the substrate depends particularly on its size and thickness. The allowed force on the substrate is typically a known parameter in the coating process. Given the allowed force on the substrate, the maximum allowed value of the flow rate can be calculated for controlling the continuous flow rate. This calculation is typically undertaken for each moment in time of the venting.
For instance, given the overall time interval for the venting process, the optimum flow rate is calculated by minimizing the product of the pressure of the venting gas and the square of the flow speed of the venting gas. The flow speed of the venting gas as understood in this context is the flow speed of the venting gas when striking the substrate. According to a simplified model, the flow speed is determined as the speed with which the gas exits the aperture of the nozzle(s). Consequently, it is assumed that the particles impinge on the substrate or the carrier with this speed. Hence, for instance, in case the flow nozzle(s) direct(s) the gas towards the chamber's inner part walls, the resulting flow speed of the gas striking the substrate is of relevance.
The at least one control valve is continuously operated. Typically, the at least one control valve is steadily opened, e.g. from 0% at the beginning of the venting process until 100% at the end of the venting process. Typically, the control is such that the force acting on the substrate is constant during the complete venting process. The curve indicating the control of the control valve is typically steady without any discontinuous steps in the curve.
Referring now to
The movement direction is indicated by the arrow 82 in
After that, the seals of the lock chamber are closed again and the chamber is evacuated with no substrate present. Since no substrate is present, the only limiting factor in evacuating the chamber is the power of the evacuating pumps. Once vacuum pressure is reached, i.e. a pressure similar or equal to the pressure present in the coating chamber, the lock chamber is ready for receiving a coated substrate in order to manage the transfer to atmospheric pressure again.
According to embodiments, the lock chamber disclosed herein is capable of handling large area substrates, typically having a size of larger than 1 m times 1 m, equal or larger than 2.2 m times 2.2 m, or even equal to or larger than 3.0 m times 3.0 m. Typically, the thickness of the substrates is below 1 mm, even more typically equal to or below 0.7 mm, or even equal to or below 0.5 mm.
Typically, the term “substrate” as used herein refers to inflexible substrates, such as, wafers or a glass plate. Representative examples for substrates include (but are not limited to) applications involving: semiconductor and dielectric materials and devices; silicon-based wafers; flat-panel displays (such as TFTs); masks and filters; energy conversion and storage (such as photovoltaic cells, fuel cells, and batteries); solid-state lighting (such as LEDs and OLEDs); magnetic and optical storage; micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS); micro-optic and opto-electro-mechanical systems (NEMS), micro-optic and optoelectronic devices; transparent substrates; architectural and automotive glasses; metallization systems for metal and polymer foils and packaging; electrochromicly coated substrates; and micro- and nano-molding.
The substrates, e.g. the glass panels, are typically coated in vacuum coating process systems, under high-vacuum conditions, at pressures within the range of 5*10−4 hPa to 3*10−2 hPa, especially within the range of 2*10−3 hPa to 2*10−2 hPa for sputtering processes.
According to embodiments described herein, the lock chamber is an unload lock chamber. The lock chamber is typically configured to allow a substrate in low pressure environment to become the substrate in atmospheric pressure. Normally, this transition of the pressure is undertaken within a predetermined time interval. The predetermined time interval is typically below 30 seconds, more typically below 15 sec or even below 10 sec. According to embodiments, the time necessary for venting the unload lock chamber and the time necessary for evacuating the load lock chamber are equal, in particular in case of fast evacuating systems. The shorter the time interval for venting the substrate is, the faster the lock chamber can be brought to low pressure again in order to receive a further substrate.
The embodiments illustrated in
It is also possible that one or more coating chambers are equipped as lock chambers as described herein. Thus, the coating chambers can be vented with gas as described herein. Typically, a coating chamber is vented in specific time intervals, for instance, for maintenance, cleaning, or replacing coating elements, and in the event of an unforeseen event such as an operational disturbance. Venting a coating chamber has to be done with caution in order not to raise dust which causes damage, e.g., in the vacuum pumps. Thus, venting the coating chamber according to the method as described herein would allow for optimized venting. Typically, venting the coating chamber takes up to 10-15 minutes so that it is undertaken much slower than venting the unload lock chamber during a coating process. Whereas in the art known to the inventors, venting the coating chamber is presently undertaken by means of subsequently opened valves and apertures, according to embodiments of the present disclosure, the multitude of valves and/or apertures can be reduced and replaced by at least one valve controlled as described herein.
According to the embodiment of
The control valve as provided herein is adapted to continuously control the gas flow to the connected chamber. As illustrated in some embodiments, it is further possible that additional control valves are provided (see, for instance,
An “on/off-valve” refers to a valve with only two controllable states: In the on-position, the valve is completely open, whereas it is completely closed in the off-position. The expression “common control valve” refers to a control valve which is in fluid connection to at least two gas flow inlets, in particular to at least two gas flow inlets of at least two chambers.
Hence, generally and not limited to the embodiments explicitly illustrated in the drawings, it is typical to provide at least one common control valve adapted for continuously controlling the gas flow, and at least one on/off-valve. Since the control valves as described herein are, in general, essentially more expensive than on/off-valves, it is possible to continuously and individually control the gas flow to several chambers (for instance, n chambers) by the provision of one control valve and several on/off-valves (for instance, n on/off-valves).
A computer program may be implemented for the control of the gas flow. The computer program controls at least one control valve that is adapted to continuously control the flow rate according to the flow rate profile for venting the lock chamber.
According to embodiments, the computer program controls the gas flow to a multitude of gas flow inlets. Typically, the gas flow inlets are provided in separate chambers. The computer program is typically adapted to control at least one control valve that is adapted to continuously control the gas flow. Additionally, the computer program may be adapted to control at least one on/off-valve. For instance, n chambers may be provided with one common control valve for continuously controlling the gas flow and n on/off-valves. The computer program typically retrieves data on the optimized venting curve (e.g., from a data storage device such as a hard disk) or calculates the optimized venting curve for each of the n chambers. According to embodiments, the computer program controls the venting of the n chambers accordingly.
For instance, m of the n chambers shall be vented at the same time. For illustrative purposes let n=5 and m=3 wherein the chambers m1, m2, and m3 shall be vented and k1, and k2 shall not be vented. The computer program shuts the on/off-valves of the chambers k1 and k2, and opens the on/off-valves of the chambers m1, m2, and m3. Then, the control valve is opened wherein the flow rate is continuously increased. Thus, the chambers m1, m2, and m3 are vented.
According to another example, if the first, second, and third chambers are vented according to their numbering, only the on/off-valve of the first chamber will be in an open position during continuous increase of the flow rate by means of the common control valve as described herein. Once this has been accomplished, only the on/off-valve of the second chamber will be in an open position during continuous increase of the flow rate by means of the common control valve as described herein. Once this has been accomplished, only the on/off-valve of the third chamber will be in an open position during continuous increase of the flow rate by means of the common control valve as described herein. This may be controlled manually, or by a computer program.
It is possible that a venting profile for each chamber is stored in a memory. The computer program having the task to vent specific chambers at the same time, retrieves the profile of the specific chambers from the memory and vents these chambers according to the profile with the smallest pressure rise velocity. According to embodiments, the venting may be undertaken according to the profile with the longest venting time.
Since
The flow rate of the at least one control valve can be adjusted continuously between a minimum value and a maximum value. The minimum value may be 0% (valve closed), but it is also possible that the minimum value will be larger than 0% or larger than 1% but typically smaller than 10% or even 5%. The maximum value may be 100% (valve completely opened), but it is also possible that the maximum value will be smaller than 100% (e.g., smaller than 95% or 90%) but typically larger than 80%. There may be manifold reason for this. For instance, a continuous control in the value range close to 0% (or 100%) can require a high-end technology. The costs may not be balanced with the advantage over a minimum value somewhat larger than 0% (or a maximum value somewhat smaller than 100%).
In particular in those embodiments with a minimum value differing from 0% and/or a maximum value differing from 100%, but also in all the other embodiments described herein, it possible that at least one additional on/off-valve will be provided. For instance, the on/off-valve may be adapted for providing a comparably small gas flow (e.g. below 10% or 5% of the gas flow fed to the on/off-valve). Such a valve shall be called “low flow rate valve”. Alternatively, the on/off-valve may be adapted for providing a comparably large gas flow (e.g. at least 50%, 80% or 90% of the gas flow fed to the on/off valve). Such a valve shall be called “high flow rate valve”. It is also possible, that both an on/off-valve for a small gas flow (low flow rate valve) and an on/off-valve for a large gas flow (high flow rate valve) will be provided.
According to an embodiment, venting is undertaken as follows: First, low flow rate valve is switched on thereby starting the venting. After a predetermined time interval, the continuous increase of the flow rate via the controllable valve is initiated up to the maximum flow rate of the controllable valve. Typically, the low flow rate valve remains in an open position during the complete venting. At the end of the venting process, the high flow rate valve is switched on allowing a large gas flow to enter the chamber.
Typically, the control curve of the control valves is calculated by the controller. The calculated values are used for the control of the at least one control valve. Also, it is possible that the optimized control curve will be stored in the controller so that it is possible to control the valves according to the stored control curve.
According to the embodiments described herein, the venting time can be significantly reduced. In modern inline coating systems such as display coatings, the venting time in the lock chamber has become the dominant time factor of the overall cycle time. Whereas typical times for the evacuation of load lock chambers in fast systems can reach values of below 5 sec, the time involved for venting the unload lock chamber may be larger than that resulting in a slowdown of the overall cycle time of the coating process. In the art, fast venting often resulted in the damage or destruction of the substrates. The present disclosure provides an apparatus and a method that allows fast venting of the unload lock chamber thereby reducing the overall cycle time of the inline coating process. This, in turn, increases the overall productivity, and thus decreases the costs. For instance, it is possible to reduce the venting time from 10 sec as necessary in the art to 8 sec, 6 sec or even 2 sec.
Furthermore, since “soft venting” techniques typically included the provision of additional valves that were opened subsequently during venting (typically of up to six valves), the present disclosure allows the reduction of the number of valves, e.g. to only one valve, or to one valve per substrate side. Thus, the mechanical complexity and the control effort is reduced.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
10188415.3 | Oct 2010 | EP | regional |
This application is a continuation application of co-pending U.S. patent application Ser. No. 12/912,272 (Attorney Docket No. ZIMR/0199US), filed on Oct. 26, 2010, which claims the priority benefit of European Patent Application No. 10188415.3, filed Oct. 21, 2010, the contents of which are incorporated by reference herein in their entirety for all intended purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 12912272 | Oct 2010 | US |
Child | 14642475 | US |