Localization by learning of wave-signal distributions

Abstract
A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
Description
BACKGROUND

1. Field of Endeavor


What is disclosed herein relates to determining the position and orientation of an object.


2. Description of the Related Art


It is often necessary or useful to be able to determine the pose (location and orientation) of an object, person, pet, asset or device. Certain systems for determining the pose of an object equipped with a signal sensor are known. However, many mobile devices lack the resources necessary to run known systems themselves or are unable to implement them while performing additional tasks, and many such systems fail to effectively take into account practical issues such as manufacturing and production variances, variability of the surfaces of the area in which a mobile device operates (such as uneven terrain or floors), and complications resulting from signal interaction with environmental features such as walls or trees.


SUMMARY

Certain embodiments discussed in this application may be utilized in conjunction with systems and methods disclosed in U.S. Pat. No. 7,720,554, filed on Mar. 25, 2005, the content of which is hereby incorporated herein in its entirety by reference.


A method for accurately estimating the pose of a mobile object in an environment, without an a priori map of that environment, is disclosed. The method generates the estimates in near real-time, compensates for the rotational variability of a signal sensor, compensates for signal multipath effects, and is statistically more accurate than relying on dead reckoning or signal detection alone. The method comprises decomposing an environment to be navigated by the mobile object into two or more cells, each of which is defined by three or more nodes. An expected measure of a background signal is determined for each of the nodes, and an expected measure of the signal at positions interior to the cell is estimated based on the expected measure at each of two or more of the cell's nodes. The actual or expected measures at the nodes need not be known a priori, because as the mobile object navigates the environment, the mobile object maps the signal measure at substantially the same time as it localizes by using, for example, an appropriate implementation of an appropriate SLAM algorithm. During an initialization process, initial values for some or all of the calibration parameters including but not limited to the rotational variability, sensor error, and the like, are optionally determined. Also obtained is a scale parameter that correlates a position or location to an expected signal measure. The initialization process makes use of data from the signal sensor as well as a motion sensor and allows for initial determination of an expected signal measure at each of the nodes of a cell. During the SLAM phase, the pose of the mobile object is estimated based on some or all of the following: data from the motion sensor, data from the signal sensor, a map of expected signal measures, the calibration parameters, and previous values for these items. If the mobile object leaves a cell defined by initialized nodes, then the initialization process may be rerun to initialize any previously uninitialized nodes of the cell the mobile object enters. Optionally, some or all of the uninitialized nodes of the cell the mobile object enters are initialized by extrapolating from nodes of cells neighboring the entered cell.


Also disclosed is a method for accurately estimating the pose of a mobile object in an environment, without an a priori map of that environment, which estimates the pose in near real-time, compensates for signal multipath effects, and is statistically more accurate than relying on dead reckoning or signal detection alone. The method comprises decomposing an environment to be navigated by the mobile object into two or more cells, each of which is defined by three or more nodes. An expected measure of a background signal is determined for each of the nodes, and the expected measure of the signal at positions proximate to those nodes is estimated based on the expected measure at each of two or more of the cell's nodes. The actual or expected measures at the nodes need not be known a priori, because as the mobile object navigates the environment, the mobile object maps the signal measure at substantially the same time as it localizes by using, for example, an appropriate implementation of an appropriate SLAM algorithm.


During an initialization process, initial values for some or all of the calibration parameters, including but not limited to rotational variability, sensor error, and the like, are optionally determined. Also obtained is a scale parameter that correlates a position to an expected signal measure. The scale parameter may become less accurate for positions (locations) not proximate to the cell or the nodes of the cell. The initialization process makes use of data from the signal sensor as well as a motion sensor and allows for initial determination of the expected signal measure at each of the nodes of a cell.


During the SLAM phase, the pose of the mobile object is estimated based on some or all of the following: data from the motion sensor, data from the signal sensor, the map of expected signal measures, the calibration parameters, and previous values for these items. If the mobile object moves or is moved so that is not proximate to the nodes or to an earlier position, then the initialization process may be rerun to initialize any previously uninitialized nodes of the cell the mobile object enters. Optionally, some or all of the uninitialized nodes proximate to the mobile object's new position are initialized by extrapolating from previously estimated values associated with positions proximate to the uninitialized nodes.


“Proximate” is a broad term and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (i.e., it is not to be limited to a special or customized meaning) and includes, without limitation, being less than 0.25 meters, 0.5 meters, 1 meter, 5 mobile device lengths, or less than 10 mobile device lengths apart. In some embodiments, proximate may be defined relative to the size of an environment if a measure of that size is obtained (e.g., 10% or 5% of environment width). In some embodiments, proximate may be defined relative to the mobile device (e.g., the distance traveled by the mobile device in 0.5 seconds or 1 second). Poses may be proximate if their locations are proximate. Orientations may also be proximate. For example, two poses may be proximate if they differ by less than a particular amount, such as but not limited to 1, 2, 5, or 10 degrees. In some embodiments, two poses are proximate if both their locations and orientations are proximate. In other embodiments, only the locations of the poses are considered. A pose may be proximate to a location or position.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed aspects will hereinafter be described in conjunction with the appended drawings, which are provided to illustrate and not to limit the disclosed aspects. Like designations denote like elements.



FIG. 1 illustrates an example embodiment of a mobile device configured to learn signal distributions for use in localizing and navigating an environment.



FIG. 2 is a functional logical diagram illustrating example functional elements of an embodiment of such a mobile device.



FIG. 3 illustrates an example physical architecture of an embodiment of such a mobile device.



FIG. 4 illustrates a linear relationship between the actual (“truth”) ground position of a mobile device and the output of a sensor detecting signals at that ground position.



FIG. 5 illustrates a non-linear relationship between the actual (“truth”) ground position of a mobile device and the output of a sensor detecting signals at that ground position.



FIG. 6 is a flow chart of an example localization filter initialization process.



FIG. 7 illustrates an example embodiment of a signal sensor for localization.



FIG. 8 is a cross-section of the sensor of FIG. 7.



FIG. 9 illustrates a top-down perspective of an illustrative example operating environment with a grid of sensor measurement points.



FIG. 10 illustrates an example of rotational variance of signal measurement as well as detected variation in the signal throughout the environment of FIG. 9.



FIG. 11 illustrates bilinear interpolation used by some embodiments.



FIG. 12 is a flow chart illustrating an example use of GraphSLAM for localization.



FIG. 13 illustrates an example 8-neighborhood of a node.



FIG. 14 illustrates an example extrapolation of localization values for a new node from a neighboring pair of nodes.



FIG. 15 is a flow chart illustrating an example use of EKF SLAM for localization.



FIGS. 16-22 illustrate an example development of an information matrix in an embodiment using EKF SLAM for localization.



FIG. 23 is a flow chart illustrating an example use of ESEIF-SLAM for localization.



FIG. 24 illustrates example results of using odometry (dead-reckoning) alone to follow a navigational plan.



FIG. 25 illustrates example results of using an example embodiment of background signal localization to follow a navigational plan.



FIGS. 26 and 27 illustrate example signal strength maps generated by an embodiment.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Described herein are methods and systems for the localization of an object, such as a mobile object (e.g., a robotic floor cleaner). Certain embodiments may utilize such mobile object localization to navigate the mobile object. By way of illustration and not limitation, the mobile object may optionally be an autonomous, semiautonomous, or remotely directed floor cleaner (e.g., a sweeper, a vacuum, and/or a mopper), delivery vehicle (e.g., that delivers mail in a building, food in a hospital or dormitory, etc.), or monitoring vehicle (e.g., pollution or contaminant detector, security monitor), equipped with one or more drive motors which drive one or more wheels, tracks, or other such device, where the drive motors may be under control of a computing device executing a program stored in non-transitory memory (e.g., it persists when the object is powered down or when some other data is overwritten or erased).


Example embodiments will now be described with reference to certain figures. Through the description herein, “localization” may include determining both the position of an object in an environment and the orientation of that object. The combination of position and orientation is referred to as the “pose”. Either or both of the position (or location) and orientation may be absolute (in terms of a logical reference angle and origin) or relative (to another object).


Many objects, including mobile objects, are not functionally or physically symmetrical. Knowing the orientation of such objects may be useful in determining how to navigate such objects in an environment. For example, some mobile objects can only move forward and some mobile objects may have functional components, such as vacuum ports or sweepers, at specific locations on their surface. Also, the current orientation of a mobile object may affect its future position as much as its current position does if it moves in the direction of its orientation. Thus, determining the pose of a mobile object may be of great assistance in determining how to navigate the mobile object to perform a task, such as a floor cleaning task, in an efficient manner.


For convenience, much of this disclosure is expressed in terms of localizing a “mobile device”. However, the disclosed aspects may generally be used to localize types of objects, and one of skill in the art will understand how the disclosure can be applied to objects that are not independently mobile (such as those that are transported or carried by something else) and to objects that are not devices (e.g., pets equipped with collars or humans carrying appropriately configured tags or computing devices).


Typically, when performing tasks such as vacuum cleaning, lawn mowing, delivery, elderly care, etc., an autonomous or mobile device needs to know its pose with respect to its environment in order to reach its goal or accomplish its task in an effective way. For example, toys and other devices might be intended and configured to behave in a particular manner when they are in a particular location. Even if the device itself has no additional task or goal that benefits from localization, if its pose can be determined then the location of a person or other entity carrying or otherwise attached to the device can be determined. If the relative orientations of the carrier and the device are known, then the pose of the carrier can be determined.


The methods and systems disclosed herein advance the state of the art in how the pose of an autonomous device is computed from a combination of observations of a vector field that varies over space and measurements from motion sensors such as odometers, gyroscopes, accelerometers, internal measurement units (IMU) or other dead-reckoning devices (generically referred to as “dead-reckoning sensors” and the output of which is generically referred to as “odometry” or “motion measurements”). Measurements (e.g., measurements of change in position or orientation) from a motion sensor may be relative to another position or may be absolute. Such measurements may include measures of location or distance (e.g., distance or direction of travel) as well as measures of object orientation (e.g., amount of rotation from a previous orientation or amount of rotation from an absolute reference). Wave or other signals emitted into an environment by an external source can create an appropriate vector field. Example methods and systems disclosed herein use a localization and mapping technique, such as a simultaneous (which may be substantially simultaneous) localization and mapping (SLAM) framework, for estimating object pose, parameters modeling rotational variability, and parameters describing the signal distribution or vector field in the environment.


Example embodiments incorporating certain disclosed aspects can localize and track a mobile device with higher accuracy than conventional methods that ignore complications such as rotational variability or multi-path effects. Some embodiments do so in a way that requires no a priori map of the environment or of the signal strength in that environment. Some disclosed embodiments can optionally do so while using relatively inexpensive amounts of computational resources such as processing power, storage, and time, such that the functionality disclosed herein can be made available in a relatively compact mobile device and/or it can be distributed in affordable mass market consumer goods, including products which perform additional functionality beyond localizing, mapping, or navigating. Pose estimates can be obtained in near real time in some such embodiments and some embodiments run in constant or substantially constant time, with storage requirements linear or near linear based on the size of the environment for a given node size (i.e., for a given node size, it is linear in the number of nodes).



FIG. 1 illustrates an example context or environment in which an object 100 such as a mobile device may be situated. The environment 110 in this example includes left wall 120, right wall 130, front wall 135, ceiling 140, and floor or ground 150. One or more signal sources 180 generate background wave signals—the aforementioned vector field. The mobile device 100 includes a signal detector 170 configured to detect the signals generated by the sources 180 and a dead-reckoning (motion) sensor 190 to report on observed motion.


U.S. Pat. No. 7,720,554 discloses, among other things, a low-cost optical sensing system for indoor localization. A beacon 160 projects a pair of unique infrared patterns or spots 180 on the ceiling 140. The beacon 160 can be placed relatively freely in the environment 110 and adjusted such that it points towards the ceiling 140. An optical signal sensor 170 measures the direction to both spots 180 on the ceiling 140. The signal sensor 170 then reports the coordinates of both direction vectors projected onto the sensor plane. These beacon spots 180 are the signal sources in an example embodiment that is used throughout this disclosure. Other embodiments may use more or fewer spots 180. Other wave signals such as those used in Wi-Fi, GPS, cellular networks, magnetic fields, sound waves, radio-frequency identification (RFID), or light can also be used. Corresponding sources include wireless routers, satellites, cell towers, coils, speakers, RFID transmitters, and projectors. For example, appropriately configured ceiling lights or speakers may be used in certain embodiments. Although the illustrated embodiment uses a dedicated projector 160 to generate the signal sources 180, in other embodiments pre-existing or off-the-shelf generators can be used. For example, in an apartment complex or a yard, a detector 170 may be configured to take advantage of the distinct Wi-Fi signals available from the various Wi-Fi routers that may be within range. Similarly, existing lights, including fixed ceiling lights, may be used with photo-sensitive sensors. Other signal sources may generate soundwaves (audible, subsonic, or ultrasonic) and the detector 170 may be configured to detect the generated waves. Thus, no or minimal modification to the environment is necessary for such embodiments to be effective. Digital signals, including those transmitted by radio and/or as used in wireless communications may also be used.


Because an indoor embodiment is used to illustrate many of the disclosed aspects, those aspects are disclosed in the context of an indoor environment. However, the disclosed aspects are not limited in this way and can operate outdoors as well as indoors.


A system that tracks the pose of a mobile device 100 equipped with a signal sensor 170 by relying, even in part, on the values reported by that sensor 170 faces a number of challenges. Typically, the signals sensed by the sensor 170 will have a different strength or value at different locations in the environment. In the illustrated scenario, the mobile device 100 moves along the ground 150 (although one of skill could readily apply what is disclosed to a mobile device that travels along a wall or ceiling, or that moves (and rotates) in three dimensions). One challenge is relating a change in the detected (sensed) signal to a change in ground position. The relationship between sensed signal and ground position is the “scale” parameter.


Another challenge stems from the construction, manufacture, or assembly of the sensor 170, performance properties of the second 170, and/or its association with or coupling to the mobile device 100. In some embodiments the orientation of the sensor 170 is fixed relative to the environment 110 and is independent of the rotation of the mobile device 100. For example, a gyroscopic or inertial system may be used to rotatably attach the sensor 170 to the mobile device 100 such that when the mobile device turns or rotates, the sensor rotates in a counter direction. In other embodiments the sensor 170 is rigidly affixed to or integrated with the mobile device 100 such that its orientation is substantially fixed relative to the orientation of the mobile device 100. Indeed, in this disclosure the position and orientation of the sensor 170 are presumed to be identical to that of the mobile device 100 so that, for example, “sensor 170” is used interchangeably with “device 100” when discussing pose or motion. As discussed below, this assumption simplifies the disclosure. One of reasonable skill can readily account for any fixed or calculable offset between the orientation of the sensor 170 and the device 100.


Ideally, rotation of the sensor 170 relative to the environment 110 should not affect the detected signal or should affect it in a way that depends only on the degree of rotation. For example, the direction to signal sources 180 changes when rotating the sensor 170, but the magnitude of the signal at that position is not changed. However, some sensors have directional sensitivities. For example, a Wi-Fi receiver can show changes in signal strength when the antenna is rotating as a result of the device on which it is mounted (e.g., the mobile device) rotating. Even in such a situation, the variation might be predictable and calculable. However, errors in manufacturing, misalignments in attaching the sensor on the object, uneven flooring, and the like may introduce an additional, difficult to predict, variation in the orientation of the signal sensor 170 relative to the orientation of the device 100. This may lead to seemingly unpredictable variation in the signal strength detected by the sensor 170. Thus, for example, a sensor 170 measuring bearing and elevation relative to sources 180 can show variations due to calibration errors of the sensor's vertical axis. This parameter is referred to herein as “rotational variability”.


A third challenge in determining the pose of a mobile device arises from the multiple paths from the signal sources 180 to the sensor 170. In general, a sensor 170 may receive a wave signal not only directly from a source 180 but also through reflections on walls 120, 130, 135 and other stationary and non-stationary objects in the environment (e.g., furniture, trees, and humans). The direct path as well as each reflection may contribute to the signal measured on the sensor 170. This can create non-linear and seemingly arbitrary distributions of the signal throughout the environment 110. This effect is referred to herein “multi-path”.


Some embodiments of the methods and systems disclosed are configured to operate when some or all of the following conditions are met:


First, a given signal can be uniquely identified relative to other signals so that when a signal is detected at different times in an environment 110 with multiple signals, a correspondence between the signals can be maintained. For example, signals in Wi-Fi, GPS and other networks contain a unique ID as part of their data packet protocol. Active beacons, such as those disclosed in U.S. Pat. No. 7,720,554, may encode a signature (e.g., by modulating the signal, such as by modulating a light that forms light spots on a ceiling).


Second, signals are substantially continuous and change over space but optionally not in time. It should be understood that continuity does not mean that there is necessarily a one-to-one correspondence of vector of signal values to ground positions. The same measurement vector might be observed at several different locations in the environment 110 because, for example, of multi-path. Some embodiments may operate with signals that change in time, where the change over time is known or can be predicted.


Third, a dependency on orientation can by described by signal sensor orientation and rotational variability. In other words, knowing the signal values at one pose (position and orientation) enables expected signal values for other orientations at the same position to be calculated if the change in sensor orientation and any rotational variability are known.



FIG. 2 illustrates an example functional block diagram of an embodiment of a localization system. A dead reckoning sensor 190 provides relative motion data (odometry). Information from the dead reckoning sensor may be used to estimate, in whole or in part, the device's current position based upon a previously determined position and advancing that position using a known or estimated speed over an elapsed period of time.


The dead reckoning (motion) sensor 190 may include multiple instances of multiple types of dead reckoning sensors such as those mentioned above. A signal sensor 170 provides measurement vectors of the signals in the environment. The signal sensor 170 may include multiple instances of one or more types of sensing components. In some embodiments the signal sensor 170 may include one or more sensors which detect more than one different types of signals (e.g., the signal sensor 170 may include both Wi-Fi sensors and light sensors). Some such embodiments may use only one signal type at a time; some such embodiments may normalize the output of the signal sensor and proceed as if there were only one type of (composite) signal being sensed; and some embodiments may extend what is disclosed below in obvious ways by using the availability of more signal sensor data to improve the filtering results.


The output of sensors 170, 190 are provided to a Vector Field SLAM module 220. The illustrated SLAM module 220 reads and stores information 230 about a grid of nodes. The SLAM module 220 also provides pose estimates of the mobile device 100 and map information about the signal distribution in the environment 110. These may be provided to other components for use and/or display. For example, pose estimates may be provided to a navigational component 240, which directs the mobile device 100 to move to a new location based at least in part on its current pose. They may also be provided to an alerting or action system 250 which uses the current pose as at least a partial basis for subsequent action such as cleaning. The map may be stored for future use and/or displayed for diagnostic purposes, for example.


Even though many appropriate signal sources may be present or could be made available, and although appropriate signal sensors may be configured on an embodiment, some embodiments will optionally not use GPS, not use WiFi, not use direct light signals (e.g., non-reflected light from lamps or infrared sources), and/or not make use of ceiling lighting fixtures for some or all aspects of the localization process.



FIG. 3 illustrates example physical components of an appropriately configured example device 100. The dead reckoning sensors 190 and signal sensors 170 are instantiated by components such as those described above. Those physical sensors may include their own processors and/or local storage components and may be configured to normalize data and generate standardized output signals. The sensor components may communicate with one or more processors 310. The processor may be, for example, a specially configured chip or a more general processor executing software. Regardless, it is configured in accordance with what is disclosed herein. The processor may include its own storage, but it may be advantageous for the device 100 to include additional memory or storage 320 to store any necessary software and the data necessary to implement the methods disclosed below. In some embodiments the sensors may also store data directly in the memory 320. Software for implementing aspects of what is disclosed would typically be stored in ROM, flash memory, or some other form of persistent storage, although volatile storage may be used as well. Data may be stored in volatile (e.g., can be erased when the system powers down) and/or non-volatile memory (which stores the data for later access even if the device is powered down and then powered up again). The processor 310 and storage 320 may also be used for functional purposes not directly related to localization. For example, the mobile device 100 may use them when performing navigation or when performing tasks such as cleaning or guarding. In other embodiments, the processing and storage capacity are dedicated to localization and mapping and the device contains additional computational capacity for other tasks.


The processor 310 may be operatively connected to various output mechanisms such as screens or displays, light and sound systems, and data output devices (e.g., busses, ports, and wireless or wired network connections). The processor may be configured to perform navigational routines which take into account the results of the SLAM process. Executing a navigational process may result in signals being sent to various controllers such as motors (including drive motors or servomotors), brakes, actuators, etc, which may cause the mobile device 100 to move to a new pose (or to perform another activity, such as a cleaning function). The move to this new pose may, in turn, trigger additional output from the sensors to the processor, causing the cycle to continue. An example embodiment is configured with an ARM7 processor, 256K of flash ROM for software, and 64K of RAM for data. These are not minimum requirements—some or all of what is disclosed herein can be accomplished with less processing and storage capacity. Other embodiments may be different processors and different memory configurations, with larger or smaller amounts of memory.


Turning back to FIG. 1, the signal sensor 170 measures bearing and elevation to two or more of the projected spots 180 on the ceiling 140. Bearing and elevation can be translated into (x, y) coordinates in a sensor coordinate system by projecting them onto the sensor plane, which in the illustrated example embodiment is typically less than 10 cm above the ground 150 and is substantially parallel to it. In addition to the signal coordinates, the amount of light from each spot 180 is measured as the signal magnitude.


The geometry of the illustrated localization system results in a linear model for position estimation in an ideal environment without multi-path signals. That is, if the sensor 170 moves one meter in one direction, the sensor coordinates change by a certain amount (depending on the scale parameter, which is proportional to the height of the ceiling 140). If the sensor 170 then moves another meter into the same direction, the sensed signals change by the same amount. FIG. 4 illustrates this property by using measurements of a sensor 170 mounted on a fixed path (or “rail”) along which the sensor 170 moves in a fixed and known direction. The rail is an experimental platform for evaluating the systems and methods described herein which allows the ground position of the sensor 170 to be known to observers and which also allows the orientation of the sensor 170 to be controlled. On the x-axis the position on the rail is shown. The y-axis shows the y coordinate of one of the spots 180 in sensor units.


In situations such as that shown in FIG. 4, the linear distribution of the wave signal can be used directly for the localization of the sensor 170 in conjunction with other system parameters. For example, in the embodiment illustrated in FIG. 1 with two spots 180, these parameters could be chosen as per Equation (1), where s1 and s2 are scale factors for each spot 180 and m0=(m0,x1 m0,y1 m0,x2 m0,y2)T contains absolute offsets (m0,x1 m0,y1)T for the first spot 181 and (m0,x2 m0,y2)T for the second spot 182.

νinit=(s1,s2,m0)  (1)


From these parameters, an expected signal value h=(hx1, hy1, hx2, hy2)T at a sensor position (x y)T can be calculated as:










(




h

x





1







h

y





1







h

x





2







h

y





2





)

=


(




m

0
,

x





1








m

0
,

y





1








m

0
,

x





2








m

0
,

y





2






)

+


(




s
1



0




0



s
1






s
2



0




0



s
2




)



(



x




y



)







(
2
)







It is straightforward to extend this model for an arbitrary number of spots 180.


For general wave signals, a similar linear model can be chosen. In general, the following model in Equation (3) applies, where h is the vector of estimated signal values for position (x y)T, h0 is the absolute offset in the sensor space, and A0 is a general scale matrix.









h
=


h
0

+


A
0



(



x




y



)







(
3
)







A flow chart for computing the parameters of this linear model (either Equation 2 or Equation 3) is shown in FIG. 5. At state 510, sensor measurements are obtained from the signal sensor 170. When a sensor measurement is obtained, data about the concurrent pose of the device 100 is also obtained (e.g., at the same or substantially the same time), such as from one or more on-board dead-reckoning sensors 190 or from separate monitoring systems. State 510 continues while the device 100 travels a short distance. At state 520, a RANSAC method (or, more generally, any algorithm for fitting data into a linear model) is run. At state 525 the status of the process is evaluated. Based on, for example, the number of data points evaluates (which may be set to 2, 5, 10, or more), the amount of time elapsed (which may be set to 1 second, 5 seconds, 10 seconds, 30 seconds, or more), or the quality of the data fitting algorithm (which may be set to be about or above a particular threshold), an embodiment may determine the initialization is sufficient. If so, then at state 530, the output of RANSAC is used to initialize the parameters for the relevant equation. If not, the initialization process continues.


RANSAC (Random Sample Consensus) is an iterative method to estimate the parameters of a mathematical function from sensor data that include outliers (see, e.g., A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981). The RANSAC algorithm runs several iterations. In a given iteration a number of measurements are chosen at random (the term “random” as used herein, encompasses pseudo random). In an embodiment using two spots 180, two signal sensor 170 readings each containing measurements to both spots 180 are sufficient. In an example implementation, it was determined that additional sample readings per iteration did not produce a significant improvement on the results and increased the resources consumed by the RANSAC process. From the chosen measurements the parameter values are determined by solving the set of equations arising from placing the chosen measurements into the mathematical model, Equation (2). More generally, Equation (3) may be used. The computed parameters are then evaluated using some or all available sensor data, optionally including dead reckoning data. This usually computes a score such as the number of inliers or the overall residual error. After completing the desired number of iterations, the parameter values with a score meeting certain criteria (e.g., the best score) are chosen as the final parameters.


Embodiments may use variations of RANSAC or alternatives to it.


Illustrative examples of the parameters used during initialization are presented below, in the discussion of GraphSLAM.


Once the initialization process is complete or the parameters for the relevant equation are otherwise determined, one or more algorithms for accounting for noisy sensors and dead-reckoning drift can be used to implement a system to effectively track the pose of the mobile device 100 with more accuracy, in less time, and/or with lower computational resource requirements than many conventional methods. Examples of such algorithms include the Kalman Filter, the Extended Kalman Filter (EKE), the Invariant Extended Kalman Filter (IEKF), and the Unscented Kalman Filter (UKF). However, the ability of these filters to effectively track pose after the initialization process of FIG. 5 tends to degrade in environments where the distribution of the wave signal is non-linear. But even in environments, such as room 110, where the wave signal is distorted (e.g., by multi-path), the linear model described here is still useful for the initialization of non-linear systems according to what is disclosed herein.


As discussed above, multi-path occurs when the wave signal not only reaches the signal sensor 170 directly but also in other ways, such as by reflecting from nearby objects or walls (e.g. the right wall 130 in FIG. 1). As the sensor 170 moves closer to wall 130, due to occlusion and limited field of view, the sensor 170 receives more signal contributions from wall reflections. The result is a shift in the signal back to a position that appears to be further away from the wall 130.



FIG. 6 illustrates this scenario where right wall 130 reflects the signal from the spots 180. Note how the curve 610 bends over and switches to the opposite direction: when the mobile device 100 is 3 meters from its starting point the sensor 170 is reporting a detected value of approximately −0.3, the same value it reported at approximately 1.5 meters, instead of the expected value of approximately −0.55 predicted by a linear model. This compression of the sensor signal appears with any wave signal that shows reflections from walls or other objects. It makes position estimation particularly difficult because a range of signal sensor readings do not match to exactly one ground position but instead have a least two ground position candidates. Even more candidates are possible when taking measurements in 2D or higher dimensions, or when the multipath pattern involves multiple objects, for example.


However, if the expected signal strength as a particular location is known, then signal strength measurements can still be used for localization in a multi-path environment via, for example, a Bayesian localization framework such as an EKE. In an example embodiment, by way of illustration, a piece-wise linear approximation (pieces are illustrated in FIG. 6 by the solid vertical lines 620) is used to substantially simultaneously learn the signal shape or “map” (the strength of the signal throughout the environment) and estimate the pose of the mobile device 100. This is done using a simultaneous localization and mapping (SLAM) approach.


The second challenge mentioned was rotational variability. When turning a sensor 170 in place, the measurements of the observed vector signal can change. This is the rotational variability of the sensor 170. For example, a sensor 170 in an embodiment using spots 180 outputs (x y) coordinates of the center of a spot 180 on the sensor plane. The (x y) coordinates essentially are a vector representing bearing and elevation to the spot 180. Ideally, as the sensor 170 rotates in place, only the bearing should change—the elevation should stay constant. In practice, however, elevation changes (usually, but not always, by a relatively small amount) due to variations in manufacturing, calibration errors, or misalignments in mounting the sensor 170 on the mobile device 100.


For example, FIG. 7 shows a top-down perspective of an example of one embodiment of a signal sensor 170 mounted on a mobile device 100. Although FIG. 1 represents the sensor 170 as protruding from the mobile device 100, FIG. 7 depicts an embodiment in which the sensor 170 is recessed in a cavity or depression with a substantially circular perimeter (although other perimeters could also be used). The sensor 170 comprises four infrared photodiodes 710 mounted on a pyramidal structure 720. The top of the pyramid 720 does not contain a photodiode 710 and is substantially coplanar with the top surface of the mobile device 100. In other embodiments, the sensor 170 may have a different structure including, for example, more or fewer photodiodes 710 arranged in a similar or different configuration. The approach described herein can be adapted to account for the geometric properties of the sensor 170 used. In the arrangement shown in FIG. 7, each of the photodiodes 710 measures incoming light by producing an electric current substantially proportional to the received light. Each of the two opposing photodiode pairs is then used for measuring the direction of light on the corresponding axis. Below, the computation of the light direction and the effects of rotational variability for the x axis of the sensor are discussed. The computations for the y axis are analogous. Thus, what follows describes a mathematical system that models rotational variability for the signal sensor 170 of FIG. 7 and can be readily adapted to a wide range of signal sensors.



FIG. 8 illustrates a representation 800 of the sensor 170 of FIG. 7, simplified for the purposes of clarity. Only the pair of photodiodes 710 measuring along the x axis is shown. Light from one of the spots 180 (it can be assumed to be spot 181 without any loss of generality) is directed at the sensor 170 as illustrated by light vectors 810. The x coordinate reported by the sensor 170 is proportional to the tangent of the elevation angle (β) to spot 181. This tangent of β is measured through the two currents i1 and i2 of the opposing photodiodes 801 and 802, respectively. The angle α of the pyramid is a parameter that may vary among embodiments. Some embodiments may have an adjustable angle α. The below assumes that α is greater than zero or that such an effect is simulated (e.g., through the use of apertures above the photodiodes which cast shadows and limit the exposure of the photodiodes to light from the spots). Generally, the larger the angle α is, the larger the sensitivity of the sensor 170 to changes in location, but the smaller the field of view (e.g., the closer the sensor 170 must remain to the spots). While any effective angle α between 0 and 90 degrees may be used, it is preferably within the range of 15 to 75 degrees. Some embodiments may use, for example, 30, 45, or 60 degrees.


The coordinate hx1 of spot 181 is equal to the tangent of β and is measured by:










h

x





1


=




i
1

-

i
2




i
1

+

i
2



=

tan






βtanα
.







(
4
)







The rotational variability is modeled by an offset in β that changes with the orientation of the sensor 170 such that Equation (5) holds, where β′ is the angle to the ideal axis of rotation perpendicular to the ground plane and βε is the angular error that changes with rotation.

β=β′+βε  (5)


Inserting (5) in (4) and applying the rule of the tangent of the sum of angles yields:















i
1

-

i
2




i
1

+

i
2



=


tan


(


β


+

β
ɛ


)



tan





α







=




tan






β



+

tan






β
ɛ




1
-

tan






β



tan






β
ɛ





tan





α








(
6
)







Since βε is small, tan βε is approximated by:










tan






β
ɛ


=




sin






β
ɛ



cos






β
ɛ






β
ɛ

1


=

β
ɛ






(
7
)







Substituting (7) into (6) yields:












i
1

-

i
2




i
1

+

i
2








tan






β



+

β
ɛ



1
-


β
ɛ


tan






β






tan





α





(
8
)







For elevation angles β′ that are much less then 90°, 1−βε tan β′ is approximated as 1, yielding Equation (9), where cx is the rotational variance on the x axis depending on the orientation of the signal sensor 170.















i
1

-

i
2




i
1

+

i
2








tan






β



tan





α

+


β
ɛ


tan





α








=




tan






β



tan





α

+

c
x









(
9
)







For the y axis of the sensor 170 another bias term cy is derived in an analogous way. Together both parameters form the vector c of rotational variability.









c
=


(




c
x






c
y




)

.





(
10
)







Since the direction β to the spots 180 can be arbitrary, the parameters for rotational variability are substantially independent of where the spots 180 are located. All spots 180 may therefore share substantially the same parameters.


Similar and analogous results can be obtained for other signal sources and sensor types. Rotational variability is not limited to the illustrated embodiment. Other sensor(s) 170 that measures bearing-to-signal sources 180 can show similar effects when the vertical axis of the sensor 170 is slightly misaligned or the sensor 170 otherwise rotates around an axis different from the ideal one. For example, antennas for radio or other wireless communication can show slight changes in the received signal when they rotate. Thus, an optional useful model of the way the vector of signal values changes on rotation of the sensor 170 is a function that only depends on the orientation of signal sensor 170 and parameters describing the rotational variability of the signal sensor 170.



FIGS. 9 and 10 illustrate rotational variability and non-linearity arising from multi-path signals. The two figures depict the environment of room 110 from a top down perspective. FIG. 9 shows a regular grid 900 consisting of 8×7 positions (every 50 cm in this example) on the floor 150. A system using spots 180 was deployed with an appropriately configured signal sensor 170. At a given location 910, sensor measurements were taken with eight different sensor orientations (every 45°).


The measurements were then rotated back and drawn in a common reference frame. FIG. 10 shows the resulting signal measurements using different symbols for the eight orientations. At a given location 910, the measurements form a ring which shows the rotational variability at this location. In this experiment the radius is almost constant over the entire room 110. The mean of rotational variability is about 0.0072 sensor units, which corresponds to an angular error of about βε=0.72°. The error caused by rotational variability can be constant (as in this example) but might also change over time or location, e.g., if the angular error βε is more significant or if there are other similarly variable sources of error, such as uneven floors or motion dependent device vibration, not modeled in Equations (4)-(9).


Changes in the pitch or angle of the mobile device relative to the surface it is traversing can also cause or contribute to rotational variability. For example, uneven floors or ground such as might result from rolling terrain, general bumpiness, twigs or branches, brickwork, and the like can cause the pitch of the mobile device to change. In some embodiments, rotational variability due to change in pitch is monotonic, although it complements rotational variability due to manufacturing and other sources At least some rotational variability due to changes in pitch may be accounted for using the methods described herein. For example, changes in pitch of less than 3, 5, or 7 degrees (or other pitches) may be accommodated by some embodiments without modification to what is disclosed herein.



FIG. 9 also shows the effect of multi-path signals. In the illustrated scenario, the walls on the left 120, right 130, and front 135 cause signal reflections. While the left wall 120 and right wall 130 create some level of signal compression, the front wall 135 causes severe reflections that make the signal bend over. Even worse, in the corners of the room, the signal is reflected from two walls and therefore the resulting measurement is even more distorted.


Although there is significant signal distortion, it has been determined that the error is systematic and continuous. This allows modeling the nature of the signal using non-linear systems. An example embodiment approximates the non-linearity caused by multi-path through the use of piece-wise linear functions. This example technique is described below in greater detail. Other approximations, e.g., using Splines (piecewise polynomial (parametric) curves which may be used to approximate complex shapes using curve fitting) or Nurbs (non-uniform rational basis splines, which are mathematical models which may be used to generate and represent surfaces and curves) may also be used and may provide more accurate representations of the non-linear signal distortion. However, experimentation with certain embodiments has indicated that the use of bi-linear interpolation results in faster processes and produces sufficiently good results in embodiments that have limited computational resources. Embodiments with more computational resources or those with relaxed time constraints may beneficially use other representations, including Splines or Nurbs.


In some embodiments, localization of a mobile device 100 equipped with a signal sensor 170 is performed by learning the signal distribution in the environment 110 while at the same time (or at substantially the same time) localizing the mobile device 100. This is known as simultaneous localization and mapping (SLAM). As discussed above, in the following it is assumed that the pose of the mobile device 100 and the signal sensor 170 are substantially identical. In some embodiments they are not, and it is straightforward to add, for example, a fixed coordinate transformation between the two poses. However, assuming pose identity facilitates understanding of the various disclosed aspects.


In SLAM, a device moves through a time series of poses x0 . . . xT, xt=(x, y, θ)ε SE(2), in an environment (e.g. room 110) containing N map features m1 . . . mN, miεcustom characterM. Here SE(2) is the space of poses in the 2 dimensional plane and custom characterM the space of the map features. Without loss of generality, x0=(0, 0, 0)T. At each time step t=1 . . . T the system receives a motion input ut (e.g., odometry from dead reckoning sensors 190) with covariance Rt and a measurement zt (e.g., of signal strength from signal sensors 170) with covariance Qt.


The motion input ut is measured, for example, by motion sensors 190 on the mobile device 100 and describes the change in pose of the sensor 170 from time step t−1 to t. As mentioned above, in certain embodiments the motion input may be provided by external sensors or a combination of internal and external sensors. The input vector ut is associated with a covariance Rt that models the accuracy of the pose change. Typical motion sensors 190 include wheel encoders, gyroscopes, accelerometers, IMUs and other dead-reckoning systems. A motion model defined by a function g describes the motion of the device 100 since the previous time step where eu is a zero mean error with covariance Rt:

xt=g(xt−1,ut)+eu  (11)


An example of input ut is a forward translation d followed by a rotation α: ut=(dα)T. Equation (11) then resolves into the following form:










x
t

=


(



x




y




θ



)

+

(




d





cos





θ






d





sin





θ





α



)

+

e
u






(
12
)







For those skilled in the art it is straightforward to substitute different motion models g and input vectors ut depending on the geometry of the mobile device 100 and available motion sensors 190. The systems and methods disclosed herein apply regardless of the motion model.


When the signal sensor 170 on the mobile device 100 obtains a new reading zt of the wave signals, the SLAM system uses a sensor model to predict the observation. As in the case of motion, the sensor reading zt is associated with a covariance Qt modeling the accuracy of the measurement. The sensor model is defined by a function h that predicts an observation given the sensor 170 pose at time step t and map features as in Equation (13), where ez is a zero mean error with covariance Qt. The sensor model h depends on the map features and the available signal sensor 170 in the mobile device 100. In early SLAM applications such as those described in Thrun et al. [2005, Chapter 10], map features are landmarks and the sensor model h computes bearing and distance to them. The systems and methods disclosed herein optionally use a very different approach: some or all of the features are signal values at predetermined or fixed locations and, few or none of the features are landmarks in the environment. The expected values of wave signals at a given device 100 pose are computed by h as follows.

zt=h(xt,m1 . . . mN)+ez  (13)


In SLAM it is possible to include in the sensor model calibration parameters like those describing rotational variability of the sensor 170. The SLAM algorithm then not only estimates device pose and map features, but also estimates the calibration parameters. All calibration parameters are summarized in a vector c. The size of this vector depends on the sensor 170. For example, in an embodiment using the reflection from spots of modulated light created by a project 160 as the signal sources 180, the calibration parameters include the two bias constants (cx, cy) in Equation (10). The observation model in Equation (13) then includes this parameter:

zt=h(xt,c,mN)+ez  (14)


Embodiments also learn the vector field generated by M signals over the environment. This vector field can mathematically be described as a function that maps a ground pose to a vector of M signal values.

VF:SE(2)→custom characterM  (15)


Since signals are independent of sensor 170 orientation (per the preferences set forth above), the space of poses SE(2) can be decomposed into position and orientation. The vector field over position is then modeled as a piece-wise linear function by laying a regular grid of node positions bi=(bi;x; bi;y)T, i=1 . . . N onto the ground 150 (or onto whatever surface the mobile device 100 is traversing). This creates rectangular cells with one node at each of the cell's four corners. Each node i holds a vector miεcustom characterM describing the expected signal values when placing the sensor at bi and pointing at a pre-defined direction θ0. Returning to the running example of signal sources 180 being spots of modulated light, the vector mi holds four values—the coordinates of both spots 180: mi=(mi,x1, mi,y1, mi,x2, mi,y2)T.


The spacing of cells in the regular grid defines the granularity and precision with which the wave-signal distribution in the environment 110 is modeled. A finer spacing leads to more cells, yielding better precision but requiring more memory. A coarser spacing results in fewer cells, requiring less memory but at the possible cost of precision. The exact parameter for the cell size depends on the environment, mobile device, and the application. For the purpose of covering an environment 110 with reasonable precision (e.g., for systematic floor cleaning), the cell size could be 0.5 m to 2 meters for a system using spots of frequency modulated light as signal sources 180 in an environment with a ceiling height of 2.5 to 5 meters.


For an arbitrary sensor position with orientation θ0, the expected signal values are computed by bilinear interpolation from the nodes of a cell (e.g., the four nodes) containing the sensor position. Such a cell is illustrated in FIG. 11. The four nodes may be determined from the sensor position at time t and node positions bi. “Current cell” refers to the cell in which the sensor is positioned at the current time step t. Let xt=(x, y, θ) be the sensor pose and bi0 . . . bi3 the cell nodes enclosing the sensor 170 as shown in FIG. 11.


The expected signal values at (x, y) with orientation θ0 are then computed as Equation (16), where mi0, mi1, mi2 and mi3 are the signal values at the four cell nodes and w0, w1, w2 and w3 are the weights of the bilinear interpolation computed as Equation (17).











h
0



(

x
,
y
,


m
1













m
N



)


=



w
0



m

i





0



+


w
1



m

i





1



+


w
2



m

i





2



+


w
3



m

i





3








(
16
)








w
0

=



(


b


i





1

,
x


-
x

)



(


b


i





2

,
y


-
y

)




(


b


i





1

,
x


-

b


i





0

,
x



)



(


b


i





2

,
y


-

b


i





0

,
y



)











w
1

=



(

x
-

b


i





0

,
x



)



(


b


i





2

,
y


-
y

)




(


b


i





1

,
x


-

b


i





0

,
x



)



(


b


i





2

,
y


-

b


i





0

,
y



)











w
2

=



(


b


i





1

,
x


-
x

)



(

y
-

b


i





0

,
y



)




(


b


i





1

,
x


-

b


i





0

,
x



)



(


b


i





2

,
y


-

b


i





0

,
y



)











w
3

=




(

x
-

b


i





0

,
x



)



(

y
-

b


i





0

,
y



)




(


b


i





1

,
x


-

b


i





0

,
x



)



(


b


i





2

,
y


-

b


i





0

,
y



)



.






(
17
)







The final expected signal values are computed by taking into account sensor orientation θ and the parameters c describing the rotational variability of the sensor 170:

h(xt,c,m1, . . . mN)=hR(h0(x,y,m1 . . . mN),θ,c).  (18)


Here hR is a continuous function that transforms the interpolated signal values obtained through Eq. (16) by the sensor orientation and rotational variability. This is usually a rotation by orientation θ followed by a correction with the rotational variability c. In the running example, turning the sensor 170 in place causes the spot 181 coordinates to change according to the rotation angle θ but in the opposite direction. The rotational component hR therefore becomes Equation (19), where (hx1, hy1, hx2, hy2) is the output vector of Equation (16). It is also possible to formulate the equations for a variable number of spots 180 since the components in Equations (16)-(19) are not correlated between spots 180. Similar equations can be readily obtained for other signal sources.











h
R



(


h

x





1


,

h

y





1


,

h

x





2


,

h

y





2


,
θ
,

c
x

,

c
y


)


=



(




cos





θ




sin





θ



0


0






-
sin






θ




cos





θ



0


0




0


0



cos





θ




sin





θ





0


0




-
sin






θ




cos





θ




)



(




h

x





1







h

y





1







h

x





2







h

y





2





)


+

(




c
x






c
y






c
x






c
y




)






(
19
)







It is possible to apply more complex schemes for predicting the sensor signal that use more than only the four nodes of the current cell. A cell with fewer nodes could also be used. In another embodiment, the function in Equation (16) is evaluated for the current and several neighboring cells and then a weighted mean of them is computed as the final result. The weights are taken as the mass of probability of the current position estimate that falls into each cell. The weight of a given cell is a function of the probability that the sensor or mobile device is within this cell. This probability can be derived from the current mobile device pose and associated uncertainty as it is computed by the localization filter.


The above understandings and equations enable the application of a SLAM algorithm for estimating device path, rotational variability, and/or the signal values at the node positions. Optionally, full SLAM and/or on-line SLAM may be used.


In full SLAM, the complete trajectory of the device 100, rotational variability of the sensor 170, and/or some or all map features are computed. For example, the state that is estimated is:









Y
=


(




x
1











x
T





c





m
1











m
N




)

.





(
20
)







One algorithm that computes an estimate of Y is GraphSLAM, which is used in some embodiments and is described in more detail below.


In contrast, on-line SLAM estimates the current pose and some or all map features at each time step t=1 . . . T. The state estimated at each time step t is:










y
t

=


(




x
t





c





m
1











m
N




)

.





(
21
)







There are several algorithms that estimate yt over time. Examples using EKF-SLAM, EIF-SLAM and ESEIF-SLAM are described below. Embodiments may use any of the described full SLAM or on-line SLAM algorithms, as well as other algorithms. Some embodiments can be configured to use a particular SLAM algorithm depending on, for example, a user's preference, the computational resources available, and other operational constraints.


GraphSLAM is a non-linear optimization method for estimating the state vector in Equation 20 by finding the values in Y that best explain the sensor and motion data from sensors 170 and 190. GraphSLAM estimates Y as the solution to a non-linear least squares problem in finding the minimum of the following objective function where the quantities are defined as described before:









J
=





t
=
1

T





(


x
t

-

g


(


x

t
-
1


,

u
t


)



)

T




R
t

-
1




(


x
t

-

g


(


x

t
-
1


,

u
t


)



)




+




t
=
1

T





(


z
t

-

h


(

y
t

)



)

T




Q
t

-
1




(


z
t

-

h


(

y
t

)



)









(
22
)







An example implementation of GraphSLAM is illustrated in FIG. 12. One general approach is to first provide an initial estimate of the state vector Y at state 1210. This may be based on, for example, data from the dead reckoning sensors 190 or data from the signal sensors 170. Then the embodiment approximates motion model g(.) and sensor model h(.) by linear models using Taylor expansion at the current estimate of the state vector at state 1220. This results in a quadratic function of Equation (22). The linear equation system that reduces or minimizes the quadratic function obtained in state 1220 is solved or optimized at state 1230. This provides an improved estimate of Y. The second and third states are repeated until the solution converges to a desired degree at state 1240. If sufficient convergence is not obtained, then optimization state 1230 is repeated. If it is obtained, then at state 1250 a path is output.


The linear equation system may optionally be solved during optimization state 1230 using Conjugate Gradient, since the system is usually sparse and positive definite.


For providing an initial estimate of the state vector in state 1210, the following method can be used. First, the initial device poses x1 . . . xT are computed from x0=(0, 0, 0)T by iteratively applying the motion model in (11) for each t=1 . . . T. Second, the initial rotational variability is c=ĉ where ĉ is a rough guess about the values of rotational variability that depend on the sensor 170. In the running example, some embodiments use ĉ=(0, 0)T because the rotational variability is usually small. The initial node values mi are computed from Equations (1) and (2). For example, the parameters in Equation (1) are computed by applying RANSAC over a short initial sequence, as discussed above. The node values mi are then obtained from the node position bi through Equation (2).


The short initial sequence typically contains a minimum or relatively low number of sensor samples (e.g., 2 to 50) while the mobile device 100 moves a certain distance. This distance is usually proportional to the chosen cell size such that enough samples are available that cover a reasonable fraction of the cell. For example, for a cell size of 1 meter, the distance threshold may be selected within the range of 0.5 m to 1 meter. More generally, some embodiments may be configured to travel a distance of ⅓ to ⅔ of the cell size. This distance may also depend on the size of the mobile device 100: typically, larger mobile devices should travel further during the initialization phase. Optionally, a given sample is spaced a minimum distance from an adjacent sample. This distance may be determined based on a dynamically configured initialization travel distance and sample count, for example. It may also be fixed a priori so that samples are taken after every half second of travel or after every 10 centimeters of travel, for example, although other time periods and distances may be used.


GraphSLAM may be implemented as a batch method since the motion and sensor data needs to be available when computing the non-linear optimization. Furthermore, the amount of computation is significant. These constraints may make it difficult to use GraphSLAM in certain embedded systems with limited computational resources, such as if the mobile device 100 is a conventional vacuum cleaner or other consumer product. GraphSLAM is nevertheless useful as a baseline algorithm for computing the best possible result given the sensor data and a chosen model. For example, it can be used during the development of products or selectively run when computational resources are available to check the performance of other methods. Further, there are certain embodiments of product mobile devices where there are sufficient computational and memory resources to utilize GraphSLAM.


One such method for state estimation used by some embodiments is an Extended Kalman Filter (EKF). The EKF is a non-linear variant of the Kalman Filter (KF). EKF-SLAM is an on-line SLAM method. The state vector contains the current pose of the device 100 but not older or future poses (or estimates thereof). Furthermore, the size of the state grows as the mobile device 100 moves in the environment 110. Initially the state contains only device pose, rotational variability and the node estimates of the 4 nodes of the initial cell.










y
0

=

(




x
0





c





m
1






m
2






m
3






m
4




)





(
23
)







As the mobile device 100 moves around and visits further cells, the system grows by augmenting the state vector with further nodes. After t time steps and visiting cells with a total of n nodes the state becomes:










y
t

=

(




x
t





c





m
1











m
n




)





(
24
)







The EKF computes an estimate of this state by maintaining mean and covariance modeling a Gaussian distribution over the state.

y˜N(μ,Σ)  (25)


The initial mean is set to equation (26), where ĉ is a rough guess/estimate of the rotational variability of the sensor 170 and {circumflex over (m)}1 . . . {circumflex over (m)}4 are initial values of the four nodes obtained from sensor data of a short initial sequence as described before using Equations (1) and (2). Again, in a sample embodiment using spots 180, the initial rotational variability can be set to ĉ=(0, 0)T.










μ
0

=

(




x
0






c
^







m
^

1







m
^

2







m
^

3







m
^

4




)





(
26
)







The initial covariance is a diagonal matrix where the vehicle uncertainty is set to 0 and the uncertainties of rotational variability and the four initial nodes are infinite. For implementation on a computer, ∞ can be replaced by a large number.











0



=

(



0

















0







0














0










0











0
















0





0













0































0




0


0


0


0





0






)






(
27
)







On object motion u, with covariance Rt, EKF-SLAM updates the state as Equations (28) and (29), where f extends the motion model g over all state variables and Fy is its Jacobian with respect to state per Equations (30)-(31).











μ
_

t

=

f


(


μ

t
-
1


,

u
t


)






(
28
)









_

t



=



F
y






t
-
1




F
y
T



+

R
t







(
29
)







f


(


y

t
-
1


,

u
t


)


=

(




g


(


x

t
-
1


,

u
t


)






c





m
1











m
N




)





(
30
)







F
y

=




f



y




(


μ

t
-
1


,

u
t


)






(
31
)







When a new sensor observation zt with covariance Qt is taken, the system determines the current cell, i.e. the cell in which the mean estimate of current device pose {circumflex over (x)}t falls, and then updates the mean and covariance of the state.


In general the current cell at time t can be:

    • 1. A cell where all four nodes are already part of the state vector.
    • 2. A cell where at least one node but not all four nodes are part of the state vector.
    • 3. A cell where none of the four nodes are in the state vector.


In the first case no changes are required to the state vector and the system can continue updating mean and covariance as described further below.


In the second and third cases, nodes not yet present in the state vector need to be added by augmenting the state with the new nodes. In general, adding a node to the state vector containing n nodes is achieved by Equations (32) and (33), where {circumflex over (m)}n+1 and Mn+1 are the mean and covariance of the new node. This mean and covariance can be computed from nodes already contained in the state vector by linear extrapolation per Equations (34) and (35), where Ai, i=1 . . . n are matrices weighting the contribution of each node in the extrapolation, M is the covariance over all nodes, and S is additional noise for inflating the new covariance to allow the new node to vary for accommodating the non-linear structure of the wave signal. In some embodiments and in certain scenarios, the vector field changes slowly over space (i.e., the signal is relatively constant). Thus, in such embodiments, change between adjacent nodes is limited and extrapolation might degenerate into a linear model. Some embodiments use a smaller S in introduced in such circumstances, and some embodiments use introduced a larger S if the vector field is known or predicted to change more rapidly over space.











μ
_

t



(




μ
t







m
^


n
+
1





)





(
32
)









_

t





(






_

t



0




0



M

n
+
1





)






(
33
)








m
^


n
+
1


=




i
=
1

n




A
i




m
^

i







(
34
)







M
n

=



(




A
1







A
n




)



M


(




A
1











A
n




)



+
S





(
35
)







The initialization of a new node is graphically illustrated in FIGS. 13 and 14. In an embodiment, a new node 1330 is initialized by taking into account the 8-neighborhood directions around the new node 1330, as illustrated in FIG. 13. As shown in FIG. 14, for each of the eight directions, the two neighbors on the straight line from the new node 1330 are used to extrapolate the mean and covariance of the new node. For any such pair the new node can be computed as shown in FIG. 14. The mean and covariance are computed from node j1 1340 and j2 1350 only. Both nodes contain the mean estimates of both sensor spots. The corresponding contribution matrices are:











A

j





1


=


-

1
2




(



1


0


1


0




0


1


0


1




1


0


1


0




0


1


0


1



)










A

j





2


=


1
2



(



3


0


1


0




0


3


0


1




1


0


3


0




0


1


0


3



)







(
36
)







The extrapolation is such that the mid point between the spots 180 is used for extrapolation. The orientation of the line between the two new spot estimates is taken over from the closer one. This has the effect that changes in orientation are not propagated when initializing new nodes.


Some embodiments optionally only consider cases where a new node can be initialized from a pair of the 8 directions. In case there are several possible candidates, an embodiment may chose the one with the smallest resulting covariance Mn. For comparing covariances, the matrix determinant, the trace of the matrix, its Frobenius norm, or other norms can be used.


If there are no neighbors for initialization, some embodiments discard the sensor observation. Such a situation may occur, for example, when the mobile device 100 travels over a full cell without any sensor 170 observations and then arrives in a cell where all four cells are not yet part of the state vector (scenario 3, above). In this scenario, the utility of the new observation for localization may be minimal. Nonetheless, some embodiments may still initialize a new node by linear combinations of other nodes in the state vector using Equations (34) and (35). Some embodiments may optionally only use the motion updates (e.g., the odometry from the dead reckoning sensors 190) of the mobile device 100 and wait until the device 100 returns to an existing cell or to a cell that can be initialized. Another approach is to start over and re-initialize the system from the current pose.


Once the state vector contains elements for all nodes of the current cell, the mean and covariance are updated with the measurement zt and its covariance Qt by application of the EKF equations per Equations (37)-(40) where h(yt) is the sensor model defined in Eq. (18), Hy the Jacobian of the sensor model and K the Kalman gain.










μ
t

=



μ
_

t

+

K


(


z
t

-

h


(


μ
_

t

)



)







(
37
)








t



=


(

I
-

KH
y


)





_

t







(
38
)







H
y

=





y




h


(


μ
_

t

)







(
39
)






K
=




_

t





H
y
T

(



H
y






_

t



H
y
T



+

Q
t


)


-
1







(
40
)







A flow chart of the EKF-SLAM method for object localization is shown in FIG. 15. At state 1510, the initial parameters are set per (26) and (27). At the next time interval, if there is a motion update such as from the dead reckoning sensors 190 then it is applied at state 1530 per (28) and (29). If there is a value from the signal sensor 170, and if a new cell is needed, it is initialized at state 1540 per (32)-(36). After it is initialized, or if no new cell was needed, then a sensor update is performed at state 1550 per (37) and (38). After any necessary updates, a new pose is output at state 1560 and the process continues with the next time period.


In general, EKF-SLAM has the advantage that it is an on-line method, integrating motion/odometry and signal sensor measurements as they appear. The most computationally expensive operation is the update of the covariance matrix on sensor update in Eq. (38), state 1550. This involves the update of large numbers (e.g., all) of the matrix elements, an operation that takes time quadratic in the number of nodes in the state.


In general, the covariance Σt is fully correlated. That is, there are few, if any, elements that are zero. This typically requires holding the full matrix in a data memory, which may limit the applicability of the method for embedded systems or other environments if there are overly limited memory resources.


An additional step in the EKF as well as in other filters is outlier rejection. In the case where measurements are received that seem implausible, the filter rejects these measurements. This may be accomplished by not updating the filter on such measurements, which may be the result of hardware errors, signal interference, or irregular timing problems, for example.


There are several options for detecting such outliers. For example, the sensor measurement itself can be examined for valid data. By way of illustration, a threshold on the absolute magnitude of the signal strength reported by a sensor if the range of allowable magnitudes for the signal being detected is known. If the measurement falls below or above this threshold it is rejected.


Another way to detect outliers is by comparing the received measurement zt with the expected one h( μt). If the difference (e.g., as reported by means of the Mahanalobis distance, which is based on correlations between variables via which different patterns can be identified and analyzed) is too large, the measurement is rejected.


Another approach used by some embodiments for state estimation is an Extended Information Filter (EIF). The EIF is similar to the Extended Kalman Filter in that it models a Gaussian distribution over the state space and processes motion and signal sensor data on-line. Its parameterization, often called a dual representation, differs from that used by EKF. The parameterization consists of an information vector ηt and an information matrix Λt that are related to the mean μt and covariance Σt of the EKF in the following way:

ηtt−1μt
Λtt−1  (41)


The EIF-SLAM algorithm processes data from the motion sensors 190 and signal sensors 170 in the same way as EKF-SLAM described above. The computation of information vector and information matrix on object motion and sensor measurement can be derived from Eqs. (26) to (40) by inserting Eq. (41) and simplifying the resulting equations.


In general a direct application of the EIF-SLAM algorithm does not provide a greater advantage than EKF-SLAM. Under some approximations, however, it is possible to keep the information matrix sparse, i.e. many elements are zero, allowing for a more compact storage and more efficient updates in terms of time and computational resources.


EIF-SLAM has the property that when inserting a signal sensor 170 measurement, only those elements in the state the measurement depends on need to be updated in the information matrix. For Vector Field SLAM this means that only elements related with the device 100's object pose and rotational variability and with the four nodes of the current cell are updated. All other elements in the information matrix stay unchanged. Therefore, the update on signal sensor 170 information turns only few elements from zero into non-zero and generally preserves the sparsity of the information matrix.


However, the update on device motion (e.g., when new data from the motion sensors 190 is received) causes a full update of the whole information matrix in the general case. This causes the information matrix to become non-zero in most if not all elements, which may destroy any sparsity that was present before the motion update.


Some embodiments may use strategies for approximating the update of the information matrix on device motion that preserve the sparsity of the information matrix. Two such methods are the Sparse Extended Information Filter (SEIF) and the Exactly Sparse Extended Information Filter (ESEIF).


Yet another approach available to some embodiments for state estimation is ESEIF. The principle of the ESEIF algorithm is maintaining a set of “active features”. In the original context, “features” refer to landmarks. In the case of Vector Field SLAM, the features are the nodes. The active features are a subset of all features. Typically those features that are currently observed by the mobile device 100 are the active ones. Other features are called “passive”.


Only the active features contain cross-information between the pose of the device 100 and the feature (where the cross-information between device pose and feature is non-zero for active features, whereas for passive features this cross-information is zero). A feature can change its state from passive to active at any time without the need of special operations. The cross-information between device pose and feature starts as zero and becomes non-zero when updating the system on device motion.


Changing an active feature to a passive one requires computationally non-trivial operations that approximate the actual information matrix by a sparsification. ESEIF-SLAM conceptually integrates out the device pose and then re-localizes the device 100 using observations from only those features (nodes) that should stay or become active. By integrating out the device pose, the state becomes free of the pose. Any uncertainty in the device pose is moved into the feature estimates through the cross-information between device pose and feature. When re-localizing the device 100, only the features used in the signal sensor 170 observation then establish non-zero cross information. This way the sparseness of the information matrix is preserved.


The following describes an implementation of the ESEIF algorithm in the context of Vector Field SLAM. FIGS. 16-22 show information matrices supporting this description. Initially the system starts with 4 nodes, as in Equation (23). The corresponding information matrix is shown in FIG. 16. Only the diagonal blocks in the information matrix contain information and are non-zero, as indicated by black solid squares. All other entries are zero (shown as white). The diagonal blocks refer to the device pose xt, the rotational variability c and the initial 4 nodes m1 . . . m4.


In an example embodiment, as long as the object stays within this initial cell, the system updates the complete information matrix using all 4 nodes as active features. Eventually the matrix becomes fully dense (most if not all elements become non-zero), as illustrated in FIG. 17.


When the mobile device 100 moves out of the current cell and enters a different cell, the procedure of integrating out the device pose, initializing new nodes, and re-localizing the device takes place. First, the uncertainty of the device pose is integrated out. This moves information from the object pose into the rotational variability and the 4 nodes through their cross information. The result is an information matrix as shown in FIG. 18, which usually contains stronger information between nodes than before and lacks a device pose.


Next, new nodes are initialized and added to the state. For example, two new nodes m5 and m6 may be added as shown in FIG. 19. This indicates that the device 100 moved into a neighboring cell sharing nodes m3 and m4 with the initial one. The processing necessary for the addition of these nodes is described below. Note that the description also applies for other situations where 1, 3, or 4 new nodes need to be added, or, in embodiments that use cells with greater than four nodes, more than four new nodes need to be added.


The initial values for the information vector and matrix are obtained similarly to Equations (32)-(36), but in the information form as set out in Equation (41). The new information matrix then becomes the one as shown in FIG. 19. Note that there is no cross information between the new nodes and other entries in the state.


The pose of the device 100 is then reintroduced. In the original ESEIF algorithm, an object is localized through observations of active features. In this application of Vector Field SLAM algorithm this is performed in two steps. First, the state is augmented with the new device pose as shown in FIG. 19.


The entries for the new device pose in information vector and matrix are computed using Equation (41) and the following mean and covariance per. Equations (42) and (43), where R0 is a parameter that increases the uncertainty of the new device pose. Thus, the new device pose stays unchanged but becomes less certain. At this time there are no active nodes since all cross information between device pose and nodes are zero. Any four nodes can be chosen as the next active set of features. Since the device 100 is in the cell defined by nodes m3 . . . m6, those nodes are chosen as the next set of active features.

μtt−1  (42)
Σtt−1+R0  (43)


On signal sensor measurement zt, the uncertainty of the device pose is reduced and elements related to rotational variability and the four active nodes m3 . . . m6 are updated. This creates new cross-information between device pose, rotational variability, and active nodes as shown in FIG. 21. Note that there is no cross information between nodes m1, m2 and nodes m6, m6. This shows how the information matrix stays sparse.


As the device 100 moves within the current cell, in this example embodiment optionally only the device pose, rotational variability, and active cells m3 . . . m6 are updated, as was noted during the discussion of the initial situation. When the device 100 moves into another cell, the state is extended and the information vector and matrix are augmented with new nodes as described above. If the new cell has been visited before, no new nodes need to be added to the state. In either case, the same procedure of integrating out device pose followed by re-localization takes place.



FIG. 22 shows the information matrix after a longer run of the system configured as described. The state contains a total of 29 nodes. The device pose (x, y, θ)T consists of three variables, rotational variability (cx, cy)T consists of two variables, and each node (mi,x1, mi,y1, mi,x2, mi,y2)T consists of four variables. This leads to a total of 3+2+4*29=121 variables. Non-zero information is indicated by solid blocks whereas white areas are zero information. The device pose contains cross information to the currently active nodes only (around rows 80 and 110). On the other hand, rotational variability contains cross information to all nodes. The nodes themselves have cross-information to spatially neighboring cells, which are at most eight neighbors per node. Overall the matrix is significantly sparse. From the 121×121=14641 entries in the information matrix, only 3521 or approximately 24% are non-zero. Furthermore since the matrix is symmetric, only the upper or lower half needs to be stored. This allows for compact storage and efficient computation within the ESEIF-SLAM algorithm—an efficient use of computational resources.


The mathematical equations for motion update (e.g., from the dead reckoning motion sensors 190), signal sensor update (e.g., from the sensors 170), and sparsification can be formulated directly in the information space, i.e. only using μ and Λ for storing the state between motion and sensor updates. In addition an estimate of the mean μ is needed for computing the Jacobians of motion and sensor model.


A flow chart of an example implementation of the ESEIF-SLAM algorithm for object localization is shown in FIG. 23. It is similar to the EKF-SLAM algorithm, with an initialization state 2300, a motion update state 2310 if there is new motion (odometry) data, a signal update state 2340 if there is new signal sensor data, preceded by a new-node initialization state 2320 if new nodes are added, but also with an additional sparsification state 2330 that integrates out device pose and re-localizes the device 100 when changing to another cell. Also, there is another state 2350 for recovering the current mean μt from the information space by solving an equation system. After the solving state 2350, a new device pose is produced at state 2360 and the process repeats. This flow chart, like those illustrating the other algorithms, is illustrative. One of ordinary skill will make use of available optimizations when implementing an algorithm including these algorithms.


The state vector as defined in (20) and (21) only contains one field for rotational variability. This is under the assumption that rotational variability does not change with location and thus can be shared among all nodes. There are, however, situations where this is not the case, e.g. when the error βε in Equation (5) is significant and the approximations in Equations (7)-(9) introduce a larger error, or when the sensor 170 is tilted due to uneven floor. There are different ways to deal with changing rotational variability.


In one embodiment each node contains its own estimate of rotational variability. The state vector of full SLAM in Equation (20) containing the full object path changes into Equation (44), with similar changes for the state of on-line SLAM in Equation 21.









y
=

(




x
1











x
T






m
1






c
1











m
N






c
N




)





(
44
)







The rotational variability is computed similar to the expected node values by using bilinear interpolation per Equation (45), where ci0, ci1, ci2 and ci3 are the rotational variability estimates at the four cell nodes according to FIG. 11 and w0, w1, w2 and w3 are the weights from Equation 17. Using the obtained value for c the predicted measurement is computed as before using Equation 18.

c=w0ci0+w1ci1w2ci2+w3ci3  (45)


Initial estimates of rotational variability are 0 with a co-variance of total uncertainty. When initializing new nodes, the same techniques as described for initial mean and covariance of the node signal values apply for rotational variability.


The cost of storing rotational variability with each node is an increase in the number of state variables and therefore higher memory and run-time consumption. This can limit the application of this solution when computational resources are constrained.


In another embodiment, only one instance of rotational variability is kept, as originally defined in Equations (20) and (21), but it is allowed to change when the mobile device 100 moves. For EKF-SLAM this means that in the motion model in Equations (28)-(30), a component Vt is added to the sub-matrix of the rotational variability in the state covariance. Vt is an additive co-variance matrix modeling how much rotational variability is allowed to change when moving. It is usually a diagonal matrix of constant values.


In another embodiment, Vt=0 as long as the device 100 stays within a cell and Vt is set to a diagonal matrix with constant non-zero values on the diagonal only when the device 100 changes between cells. This has the advantage that while the device 100 stays within a cell, rotational variability is assumed to be constant and is only allowed to change when moving into another cell. In some situations this may offer a better approximation at the cost of additional computation time, but requires no significant additional computational space.


In another embodiment, Vt is used to allow a change in rotational variability when moving between cells in the ESEIF-SLAM system. In the sparsification state, the rotational variability is integrated out and re-localized as the device pose is. This is done because adding Vt in the information space would otherwise fully populate the information matrix, destroying or reducing its sparseness. The states for sparsification with rotational variability included are analogous to the previously described method. An additional advantage of this approach is the removal of cross-information between rotational variability and passive nodes. This further reduces memory requirements and saves computations, at least partially counteracting the additional computation necessary to perform the calculations.


These methods and systems may also be used for detecting and estimating “drift” on, for example, carpet. When a mobile device 100 moves on a carpeted surface, the carpet exhibits a force onto the mobile device 100 tending to slide or shift the mobile device 100 in a certain direction. This effect is caused by the directional grain, material, or other properties of the carpet. Other surfaces, such as lawns or artificial turf, may also exhibit similar properties.


The amount of this drift can be estimated by the localization filter in different ways. In one embodiment, the filter state in Equation (24) is augmented by two additional variables driftx and drifty that represent the amount of carpet drift in the x and y direction of the global coordinate frame. The motion model in Equation (11) then takes into account these new parameters and the filter estimates their values at the same time it estimates the other state variables.


In another embodiment, the mobile device 100 may be configured to move a certain distance forward followed by the same distance backward. From the difference in the position output of the localization system at the beginning and end of this sequence, the amount of carpet drift can be estimated because the carpet drift may be proportional to this position difference. Typically, such a distance would be small enough that it can be traversed rapidly but large enough that an appreciable difference can be detected and the results not obfuscated by noise. Some embodiments may use distances in the range of 10 cm to 2 meters. Some embodiments may use smaller distances. Some embodiments may use larger distances.


The systems and methods described above were evaluated by moving an indoor localization sensor 170, configured to detect infrared patterns 180 projected from a beacon 160, along a rail. Ground truth information—the actual pose of the sensor 170—was directly available from position and orientation sensors on the rail motor. Every 50 cm, sensed signal strength and other measurements were recorded with the sensor 170 in 8 different directions (every 45°), and approximately 50 readings were taken for each of those directions. Once the sensor 170 reached the end of the rail, it was moved 50 cm parallel to the previous rail line and another round of measurements was taken. This was repeated until a total of eight parallel tracks were completed. The previously discussed FIG. 9 shows the experimental setup with the ground truth positions of measurements. There is a wall 135 close to the rail at the top location. There are also walls on the left 120 and right 130 of the experimental space, but those walls are further from the sensor 170 than the upper wall 135 (at least when the sensor 170 is traversing the final rail. These walls contribute to multi-path signals and cause a significant disturbance of the sensor signal.


The previously discussed FIG. 10 shows the position of the sensor 170 directly determined by a linear sensor model in this environment. The compression on the left, right and top end is significant: a system using this linear model would loose significant accuracy in pose estimation.


Using the recorded data, a path for a virtual mobile device 100 through the grid was generated. Starting in the lower left corner the object moves along the rows and changes between rows on the left and right side. This results in a theoretically straightforward motion: along a row, a 90° turn at the end of the row, a brief movement to reach the next row, and then another 90° turn before traversing that next row. In practice, when zero-mean Gaussian noise is added to the motion information (simulating real-world error after extended use of dead-reckoning sensors), the odometry path is obtained as shown in FIG. 24. After attempting to move up and down the rail grid approximately ten times, the error in orientation is up to 90°: the mobile device is actually moving vertically when its own reckoning system indicates it is moving horizontally.


The simulated relative pose data and the resulting odometry path are plausible examples of internal motion estimates. Mobile devices such as autonomous vacuum cleaners or other consumer products can show a similar degradation of pose estimation when using the integration of wheel encoder counts as the only method for pose estimation for example.


For testing the Vector Field SLAM system, one of the approximately 50 sensor measurements from the ground truth pose was randomly chosen when reaching a grid position. This measurement was then provided to the SLAM method for object localization. The cell size for Vector Field SLAM was set to 1×1 meters. FIG. 25 shows the resulting object path. Although the figures speak for themselves, the conclusion is that a mobile device 100 equipped with a localization and mapping system as disclosed herein, can following a navigational plan with a dramatically higher degree of accuracy than one relying on dead reckoning alone. This result was computed using an implementation of EKF-SLAM. Similar results were obtained using GraphSLAM and ESEIF-SLAM implementations.


In another series of experiments, the accuracy of the individual Vector Field SLAM implementations was compared to ground truth. In general, all three methods provide higher accuracy than other methods that only use linear sensor models. The GraphSLAM method usually provided slightly better accuracy than EKF-SLAM and ESEIF-SLAM. The latter two usually provided similar accuracy. The absolute position error was determined to depend on several factors such as ceiling height and the size of environments. In the test environment, the overall mean position error was about 6 cm. In general, the sources of error may vary depending on the signal sources 180 used. For example, ceiling height may not be a significant contributor to error if the background signal used is generated by magnetic coils suspended over the operating environment.


Vector Field SLAM also provides information about the learned sensor model or map—the signal strength through the environment. FIGS. 26 and 27 show the learned coordinates for a signal source, in this example an infrared pattern 801 (the plots for a second infrared pattern or spot 802 are similar and omitted). Error bars indicate the 2 sigma levels of the mean values at each node position. One can see how the sensor signal is bent towards the rear wall 135. This shape is accounted for by the piece-wise approximation of the sensor signal.


A typical embodiment will run asynchronously in that a new time step is considered to occur whenever new data is available from signal sensor 170. This may be as often as six or seven times a second. In some embodiments, new sensor data may be ignored if the embodiment is still integrating previously available data and generating new pose information. In some embodiments the localization processor may request data from the signal sensor 170 or otherwise indicate that it is available to process that data. Some embodiments may run synchronously, with new data provided at fixed and regular time intervals.


The systems and methods disclosed herein can be implemented in hardware, software, firmware, or a combination thereof. Software can include compute readable instructions stored in memory (e.g., non-transitory memory, such as solid state memory (e.g., ROM, EEPROM, FLASH, RAM), optical memory (e.g., a CD, DVD, Bluray disc, etc.), magnetic memory (e.g., a hard disc drive), etc., configured to implement the algorithms on a general purpose computer, special purpose processors, or combinations thereof.


While certain embodiments may be illustrated or discussed as having certain example components, additional, fewer, or different components may be used. Further, with respect to the processes discussed herein, various states may be performed in a different order, not all states are required to be reached, and fewer, additional, or different states may be utilized.


Various aspects and advantages of the embodiments have been described where appropriate. It is to be understood that not necessarily all such aspects or advantages may be achieved in accordance with any particular embodiment. Thus, for example, it should be recognized that the various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may be taught or suggested herein. Further, embodiments may include several novel features, no single one of which is solely responsible for the embodiment's desirable attributes or which is essential to practicing the systems, devices, methods, and techniques described herein.

Claims
  • 1. A method for determining a pose (location and orientation) of a mobile device, the method comprising: dividing a representation of a substantially planar operating environment into a first plurality of cells, wherein a given cell in the first plurality of cells is defined by a set of three or more nodes having respective locations;associating at least a first node with properties comprising a location and at least one parameter related to a detected signal detected by the mobile device;computing, while the mobile device is at an actual pose in a first cell, an estimated value of at least one property of the signal at an estimated pose of the mobile device, the computing based at least in part on an estimated location of the estimated pose and one or more of the respective properties associated with two or more of the nodes defining the first cell, wherein computing the estimated value is based at least in part on the estimated orientation of the estimated pose and a rotational variation parameter; andrevising the estimated pose based at least in part on:the estimated pose, the estimated value of the signal property, and a value of the signal property measured at the actual pose.
  • 2. The method of claim 1 wherein the detected signal is a transmitted radio frequency signal or a light signal.
  • 3. The method of claim 2 wherein the detected signal is a digital signal transmitted by radio.
  • 4. The method of claim 2 wherein the detected signal is a digital signal used in wireless communications.
  • 5. The method of claim 1 wherein the at least one signal property is time invariant relative to a location.
  • 6. The method of claim 1 wherein the rotational variation parameter characterizes a change in a measurement made by a sensor on the mobile device as the sensor is rotated while the mobile device remains in a fixed location.
  • 7. The method of claim 6, wherein computing the estimated value comprises using the rotational variation parameter to compensate for elevation changes due to variations in manufacturing, calibration errors, or misalignments in mounting the sensor on the mobile device.
  • 8. The method of claim 1 wherein revising the estimated pose further comprises revising at least one of the parameters associated with at least one of the nodes defining the first cell.
  • 9. The method of claim 1 wherein revising the estimated pose comprises applying a SLAM implementation to at least the estimated pose, the estimated value of the signal property, and the value of the signal property measured at the actual pose.
  • 10. The method of claim 1 wherein revising the estimated pose occurs when the value of the signal property at the actual pose is measured.
  • 11. The method of claim 10 wherein the value of the signal property at the actual pose is not retained after a value of the signal property at a second actual pose is measured.
  • 12. The method of claim 1 further comprising preparing instructions to move the mobile device based at least in part on the revised estimated pose.
  • 13. The method of claim 1 wherein associating a node with properties comprises: associating the node with a node location;measuring a property of the signal at a first pose of the mobile device, the first pose located within a first cell defined in part by the node;moving the mobile device to a second pose in the first cell;measuring the signal property at the second pose;obtaining a measure of the relative change in location from the first pose to the second pose, said measure not determined by measuring the signal property;learning a relationship between the signal property and location within the cell;estimating a value of the signal property at the node location based at least on the node location and the learned relationship between the signal property and location; andassociating the node with the estimated value of the signal property.
  • 14. The method of claim 13 wherein associating a node with properties further comprises: obtaining a measure of the relative change in orientation from the first pose to the second pose, said measure not determined by measuring the signal property; andlearning a relationship between the signal property and orientation of the mobile device at a location within the cell; andwherein estimating a value of the signal property at the node location is further based on the learned relationship between the signal property and orientation; andwherein the node is further associated with a parameter indicative of orientation.
  • 15. The method of claim 14, further comprising moving the mobile device from a third pose in the first cell to a fourth pose in the first cell; and wherein computing an estimated value of the signal property at an estimate of the fourth pose of the mobile device comprises interpolating based on a measure of the distance of the estimated pose from the respective nodes of the set of nodes defining the first cell and the estimated value of the signal property associated with the respective nodes of the set;revising the estimated fourth pose comprises applying a SLAM implementation to a value of the signal property as measured at the fourth pose; the estimated value of the signal property; and a measure, not determined by measuring the signal property, of an estimated change in location from the third pose to the fourth pose.
  • 16. The method of claim 15, wherein computing the estimated value of the signal property at the estimated pose is further based at least in part on the relationship between the signal property and mobile device orientation.
  • 17. The method of claim 15, wherein the dividing, associating, computing, revising, obtaining, learning, associating, and moving steps are performed by elements of the mobile device.
  • 18. The method of claim 15, further comprising: moving the mobile device from the fourth pose to a charging station at a fourth location;moving the mobile device from the charging station back to the fourth pose.
  • 19. The method of claim 1 wherein the location of the first node is determined based at least in part on the location of the mobile device at the time the node's location is determined.
  • 20. The method of claim 1 wherein the location of the first node is determined based at least in part on the location of a second node.
  • 21. The method of claim 1 wherein the respective nodes are located at predefined distances from each other.
  • 22. The method of claim 1, further comprising emitting a signal configured to be detected by the mobile device.
  • 23. The method of claim 1, wherein the at least one parameter related to a signal and associated with a node comprises one or more parameters for an equation modeling a property of the signal within a cell defined in part by the node.
  • 24. The method of claim 23 wherein the equation is a linear interpolation.
  • 25. The method of claim 23, wherein the Spline is a Nurbs.
  • 26. The method of claim 23 wherein the equation is a Spline.
  • 27. The method of claim 23, wherein one or more of the learning or estimating steps are performed by elements distinct from the mobile device.
  • 28. The method of claim 1, wherein the, dividing, associating, computing, and revising steps are performed by elements of the mobile device.
  • 29. The method of claim 1, wherein the mobile device is an autonomous robot.
  • 30. The method of claim 1, wherein the mobile device is adapted for cleaning.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/280,677, filed Nov. 6, 2009, the entirety of which is hereby incorporated by reference.

US Referenced Citations (1084)
Number Name Date Kind
1755054 Darst Apr 1930 A
1780221 Buchmann Nov 1930 A
1970302 Gerhardt Aug 1934 A
2136324 John Nov 1938 A
2302111 Dow et al. Nov 1942 A
2353621 Sav et al. Jul 1944 A
2770825 Pullen Nov 1956 A
2930055 Fallen et al. Mar 1960 A
3119369 Harland et al. Jan 1964 A
3166138 Dunn Jan 1965 A
3333564 Waters Aug 1967 A
3375375 Robert et al. Mar 1968 A
3381652 Schaefer et al. May 1968 A
3457575 Bienek Jul 1969 A
3550714 Bellinger Dec 1970 A
3569727 Aggarwal et al. Mar 1971 A
3649981 Woodworth Mar 1972 A
3674316 De Bray Jul 1972 A
3678882 Kinsella Jul 1972 A
3690559 Rudloff Sep 1972 A
3744586 Leinauer Jul 1973 A
3756667 Bombardier et al. Sep 1973 A
3809004 Leonheart May 1974 A
3816004 Bignardi Jun 1974 A
3845831 James Nov 1974 A
RE28268 Autrand Dec 1974 E
3851349 Lowder Dec 1974 A
3853086 Asplund Dec 1974 A
3863285 Hukuba Feb 1975 A
3888181 Kups Jun 1975 A
3937174 Haaga Feb 1976 A
3952361 Wilkins Apr 1976 A
3989311 Debrey Nov 1976 A
3989931 Phillips Nov 1976 A
4004313 Capra Jan 1977 A
4012681 Finger et al. Mar 1977 A
4070170 Leinfelt Jan 1978 A
4099284 Shinozaki et al. Jul 1978 A
4119900 Kremnitz Oct 1978 A
4175589 Nakamura et al. Nov 1979 A
4175892 De bray Nov 1979 A
4196727 Verkaart et al. Apr 1980 A
4198727 Farmer Apr 1980 A
4199838 Simonsson Apr 1980 A
4209254 Reymond et al. Jun 1980 A
D258901 Keyworth Apr 1981 S
4297578 Carter Oct 1981 A
4305234 Pichelman Dec 1981 A
4306329 Yokoi Dec 1981 A
4309758 Halsall et al. Jan 1982 A
4328545 Halsall et al. May 1982 A
4367403 Miller Jan 1983 A
4369543 Chen et al. Jan 1983 A
4401909 Gorsek Aug 1983 A
4416033 Specht Nov 1983 A
4445245 Lu May 1984 A
4465370 Yuasa et al. Aug 1984 A
4477998 You Oct 1984 A
4481692 Kurz Nov 1984 A
4482960 Pryor Nov 1984 A
4492058 Goldfarb et al. Jan 1985 A
4513469 Godfrey et al. Apr 1985 A
D278732 Ohkado May 1985 S
4518437 Sommer May 1985 A
4534637 Suzuki et al. Aug 1985 A
4556313 Miller et al. Dec 1985 A
4575211 Matsumura et al. Mar 1986 A
4580311 Kurz Apr 1986 A
4601082 Kurz Jul 1986 A
4618213 Chen Oct 1986 A
4620285 Perdue Oct 1986 A
4624026 Olson et al. Nov 1986 A
4626995 Lofgren et al. Dec 1986 A
4628454 Ito Dec 1986 A
4638445 Mattaboni Jan 1987 A
4644156 Takahashi et al. Feb 1987 A
4649504 Krouglicof et al. Mar 1987 A
4652917 Miller Mar 1987 A
4654492 Koerner et al. Mar 1987 A
4654924 Getz et al. Apr 1987 A
4660969 Sorimachi et al. Apr 1987 A
4662854 Fang May 1987 A
4674048 Okumura Jun 1987 A
4679152 Perdue Jul 1987 A
4680827 Hummel Jul 1987 A
4696074 Cavalli Sep 1987 A
D292223 Trumbull Oct 1987 S
4700301 Dyke Oct 1987 A
4700427 Knepper Oct 1987 A
4703820 Reinaud Nov 1987 A
4709773 Clement et al. Dec 1987 A
4710020 Maddox et al. Dec 1987 A
4712740 Duncan et al. Dec 1987 A
4716621 Zoni Jan 1988 A
4728801 O'Connor Mar 1988 A
4733343 Yoneda et al. Mar 1988 A
4733431 Martin Mar 1988 A
4735136 Lee et al. Apr 1988 A
4735138 Gawler et al. Apr 1988 A
4748336 Fujie et al. May 1988 A
4748833 Nagasawa Jun 1988 A
4756049 Uehara Jul 1988 A
4767213 Hummel Aug 1988 A
4769700 Pryor Sep 1988 A
4777416 George et al. Oct 1988 A
D298766 Tanno et al. Nov 1988 S
4782550 Jacobs Nov 1988 A
4796198 Boultinghouse et al. Jan 1989 A
4806751 Abe et al. Feb 1989 A
4811228 Hyyppa Mar 1989 A
4813906 Matsuyama et al. Mar 1989 A
4815157 Tsuchiya Mar 1989 A
4817000 Eberhardt Mar 1989 A
4818875 Weiner Apr 1989 A
4829442 Kadonoff et al. May 1989 A
4829626 Harkonen et al. May 1989 A
4832098 Palinkas et al. May 1989 A
4846297 Field et al. Jul 1989 A
4851661 Everett Jul 1989 A
4854000 Takimoto Aug 1989 A
4854006 Nishimura et al. Aug 1989 A
4855915 Dallaire Aug 1989 A
4857912 Everett et al. Aug 1989 A
4858132 Holmquist Aug 1989 A
4867570 Sorimachi et al. Sep 1989 A
4880474 Koharagi et al. Nov 1989 A
4887415 Martin Dec 1989 A
4891762 Chotiros Jan 1990 A
4893025 Lee Jan 1990 A
4901394 Nakamura et al. Feb 1990 A
4905151 Weiman et al. Feb 1990 A
4909972 Britz Mar 1990 A
4912643 Beirne Mar 1990 A
4918441 Bohman Apr 1990 A
4919224 Shyu et al. Apr 1990 A
4919489 Kopsco Apr 1990 A
4920060 Parrent et al. Apr 1990 A
4920605 Takashima May 1990 A
4933864 Evans et al. Jun 1990 A
4937912 Kurz Jul 1990 A
4953253 Fukuda et al. Sep 1990 A
4954962 Evans et al. Sep 1990 A
4955714 Stotler et al. Sep 1990 A
4956891 Wulff Sep 1990 A
4961303 McCarty et al. Oct 1990 A
4961304 Ovsborn et al. Oct 1990 A
4962453 Pong et al. Oct 1990 A
4967862 Pong et al. Nov 1990 A
4971591 Raviv et al. Nov 1990 A
4973912 Kaminski et al. Nov 1990 A
4974283 Holsten et al. Dec 1990 A
4977618 Allen Dec 1990 A
4977639 Takahashi et al. Dec 1990 A
4986663 Cecchi et al. Jan 1991 A
5001635 Yasutomi et al. Mar 1991 A
5002145 Wakaumi et al. Mar 1991 A
5002501 Tucker Mar 1991 A
5012886 Jonas et al. May 1991 A
5018240 Holman May 1991 A
5020186 Lessig et al. Jun 1991 A
5022812 Coughlan et al. Jun 1991 A
5023788 Kitazume et al. Jun 1991 A
5024529 Svetkoff et al. Jun 1991 A
D318500 Malewicki et al. Jul 1991 S
5032775 Mizuno et al. Jul 1991 A
5033151 Kraft et al. Jul 1991 A
5033291 Podoloff et al. Jul 1991 A
5040116 Evans et al. Aug 1991 A
5045769 Everett Sep 1991 A
5049802 Mintus et al. Sep 1991 A
5051906 Evans et al. Sep 1991 A
5062819 Mallory Nov 1991 A
5070567 Holland Dec 1991 A
5084934 Lessig et al. Feb 1992 A
5086535 Grossmeyer et al. Feb 1992 A
5090321 Abouav Feb 1992 A
5093955 Blehert et al. Mar 1992 A
5094311 Akeel Mar 1992 A
5098262 Wecker et al. Mar 1992 A
5105502 Takashima Apr 1992 A
5105550 Shenoha Apr 1992 A
5109566 Kobayashi et al. May 1992 A
5111401 Everett, Jr. et al. May 1992 A
5115538 Cochran et al. May 1992 A
5127128 Lee Jul 1992 A
5136675 Hodson Aug 1992 A
5136750 Takashima et al. Aug 1992 A
5142985 Stearns et al. Sep 1992 A
5144471 Takanashi et al. Sep 1992 A
5144714 Mori et al. Sep 1992 A
5144715 Matsuyo et al. Sep 1992 A
5152028 Hirano Oct 1992 A
5152202 Strauss Oct 1992 A
5154617 Suman et al. Oct 1992 A
5155684 Burke et al. Oct 1992 A
5163202 Kawakami et al. Nov 1992 A
5163320 Goshima et al. Nov 1992 A
5164579 Pryor et al. Nov 1992 A
5165064 Mattaboni Nov 1992 A
5170352 McTamaney et al. Dec 1992 A
5173881 Sindle Dec 1992 A
5182833 Yamaguchi et al. Feb 1993 A
5187662 Kamimura et al. Feb 1993 A
5202742 Frank et al. Apr 1993 A
5204814 Noonan et al. Apr 1993 A
5206500 Decker et al. Apr 1993 A
5208521 Aoyama May 1993 A
5216777 Moro et al. Jun 1993 A
5222786 Sovis et al. Jun 1993 A
5227985 DeMenthon Jul 1993 A
5233682 Abe et al. Aug 1993 A
5239720 Wood et al. Aug 1993 A
5251358 Moro et al. Oct 1993 A
5258822 Nakamura et al. Nov 1993 A
5261139 Lewis Nov 1993 A
5276618 Everett Jan 1994 A
5276939 Uenishi Jan 1994 A
5277064 Knigga et al. Jan 1994 A
5279672 Betker et al. Jan 1994 A
5284452 Corona Feb 1994 A
5284522 Kobayashi et al. Feb 1994 A
5293955 Lee Mar 1994 A
D345707 Alister Apr 1994 S
5303448 Hennessey et al. Apr 1994 A
5307273 Oh et al. Apr 1994 A
5309592 Hiratsuka May 1994 A
5310379 Hippely et al. May 1994 A
5315227 Pierson et al. May 1994 A
5319827 Yang Jun 1994 A
5319828 Waldhauser et al. Jun 1994 A
5321614 Ashworth Jun 1994 A
5323483 Baeg Jun 1994 A
5324948 Dudar et al. Jun 1994 A
5331713 Tipton Jul 1994 A
5341186 Kato Aug 1994 A
5341540 Soupert et al. Aug 1994 A
5341549 Wirtz et al. Aug 1994 A
5345649 Whitlow Sep 1994 A
5352901 Poorman Oct 1994 A
5353224 Lee et al. Oct 1994 A
5363305 Cox et al. Nov 1994 A
5363935 Schempf et al. Nov 1994 A
5369347 Yoo Nov 1994 A
5369838 Wood et al. Dec 1994 A
5386862 Glover et al. Feb 1995 A
5399951 Lavallee et al. Mar 1995 A
5400244 Watanabe et al. Mar 1995 A
5404612 Ishikawa Apr 1995 A
5410479 Coker Apr 1995 A
5435405 Schempf et al. Jul 1995 A
5440216 Kim Aug 1995 A
5442358 Keeler et al. Aug 1995 A
5444965 Colens Aug 1995 A
5446356 Kim Aug 1995 A
5446445 Bloomfield et al. Aug 1995 A
5451135 Schempf et al. Sep 1995 A
5454129 Kell Oct 1995 A
5455982 Armstrong et al. Oct 1995 A
5465525 Mifune et al. Nov 1995 A
5465619 Sotack et al. Nov 1995 A
5467273 Faibish et al. Nov 1995 A
5471560 Allard et al. Nov 1995 A
5491670 Weber Feb 1996 A
5497529 Boesi Mar 1996 A
5498948 Bruni et al. Mar 1996 A
5502638 Takenaka Mar 1996 A
5505072 Oreper Apr 1996 A
5507067 Hoekstra et al. Apr 1996 A
5510893 Suzuki Apr 1996 A
5511147 Abdel Apr 1996 A
5515572 Hoekstra et al. May 1996 A
5534762 Kim Jul 1996 A
5535476 Kresse et al. Jul 1996 A
5537017 Feiten et al. Jul 1996 A
5537711 Tseng Jul 1996 A
5539953 Kurz Jul 1996 A
5542146 Hoekstra et al. Aug 1996 A
5542148 Young Aug 1996 A
5546631 Chambon Aug 1996 A
5548511 Bancroft Aug 1996 A
5551119 Wörwag Sep 1996 A
5551525 Pack et al. Sep 1996 A
5553349 Kilstrom et al. Sep 1996 A
5555587 Guha Sep 1996 A
5560077 Crotchett Oct 1996 A
5568589 Hwang Oct 1996 A
D375592 Ljunggren Nov 1996 S
5608306 Rybeck et al. Mar 1997 A
5608894 Kawakami et al. Mar 1997 A
5608944 Gordon Mar 1997 A
5610488 Miyazawa Mar 1997 A
5611106 Wulff Mar 1997 A
5611108 Knowlton et al. Mar 1997 A
5613261 Kawakami et al. Mar 1997 A
5613269 Miwa Mar 1997 A
5621291 Lee Apr 1997 A
5622236 Azumi et al. Apr 1997 A
5634237 Paranjpe Jun 1997 A
5634239 Tuvin et al. Jun 1997 A
5636402 Kubo et al. Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5646494 Han Jul 1997 A
5647554 Ikegami et al. Jul 1997 A
5650702 Azumi Jul 1997 A
5652489 Kawakami Jul 1997 A
5682313 Edlund et al. Oct 1997 A
5682839 Grimsley et al. Nov 1997 A
5696675 Nakamura et al. Dec 1997 A
5698861 Oh Dec 1997 A
5709007 Chiang Jan 1998 A
5710506 Broell et al. Jan 1998 A
5714119 Kawagoe et al. Feb 1998 A
5717169 Liang et al. Feb 1998 A
5717484 Hamaguchi et al. Feb 1998 A
5720077 Nakamura et al. Feb 1998 A
5722109 Delmas et al. Mar 1998 A
5732401 Conway Mar 1998 A
5735017 Barnes et al. Apr 1998 A
5735959 Kubo et al. Apr 1998 A
5742975 Knowlton et al. Apr 1998 A
5745235 Vercammen et al. Apr 1998 A
5752871 Tsuzuki May 1998 A
5756904 Oreper et al. May 1998 A
5761762 Kubo Jun 1998 A
5764888 Bolan et al. Jun 1998 A
5767437 Rogers Jun 1998 A
5767960 Orman Jun 1998 A
5770936 Hirai et al. Jun 1998 A
5777596 Herbert Jul 1998 A
5778486 Kim Jul 1998 A
5781697 Jeong Jul 1998 A
5781960 Kilstrom et al. Jul 1998 A
5784755 Karr et al. Jul 1998 A
5786602 Pryor et al. Jul 1998 A
5787545 Colens Aug 1998 A
5793900 Nourbakhsh et al. Aug 1998 A
5794297 Muta Aug 1998 A
5802665 Knowlton et al. Sep 1998 A
5812267 Everett et al. Sep 1998 A
5814808 Takada et al. Sep 1998 A
5815880 Nakanishi Oct 1998 A
5815884 Imamura et al. Oct 1998 A
5819008 Asama et al. Oct 1998 A
5819360 Fujii Oct 1998 A
5819936 Saveliev et al. Oct 1998 A
5820821 Kawagoe et al. Oct 1998 A
5821730 Drapkin Oct 1998 A
5825981 Matsuda Oct 1998 A
5828770 Leis et al. Oct 1998 A
5831597 West et al. Nov 1998 A
5836045 Anthony et al. Nov 1998 A
5839156 Park et al. Nov 1998 A
5839532 Yoshiji et al. Nov 1998 A
5841259 Kim et al. Nov 1998 A
5844232 Pezant Dec 1998 A
5867800 Leif Feb 1999 A
5867861 Kasen et al. Feb 1999 A
5869910 Colens Feb 1999 A
5894621 Kubo Apr 1999 A
5896611 Haaga Apr 1999 A
5903124 Kawakami May 1999 A
5905209 Oreper May 1999 A
5907886 Buscher Jun 1999 A
5910700 Crotzer Jun 1999 A
5911260 Suzuki Jun 1999 A
5916008 Wong Jun 1999 A
5924167 Wright et al. Jul 1999 A
5926909 McGee Jul 1999 A
5933102 Miller et al. Aug 1999 A
5933913 Wright et al. Aug 1999 A
5935179 Kleiner et al. Aug 1999 A
5935333 Davis Aug 1999 A
5940170 Berg et al. Aug 1999 A
5940346 Sadowsky et al. Aug 1999 A
5940927 Haegermarck et al. Aug 1999 A
5940930 Oh et al. Aug 1999 A
5942869 Katou et al. Aug 1999 A
5943730 Boomgaarden Aug 1999 A
5943733 Tagliaferri Aug 1999 A
5943933 Evans et al. Aug 1999 A
5947225 Kawakami et al. Sep 1999 A
5950408 Schaedler Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5968281 Wright et al. Oct 1999 A
5974348 Rocks Oct 1999 A
5974365 Mitchell Oct 1999 A
5983448 Wright et al. Nov 1999 A
5984880 Lander et al. Nov 1999 A
5987383 Keller et al. Nov 1999 A
5989700 Krivopal Nov 1999 A
5991951 Kubo et al. Nov 1999 A
5995883 Nishikado Nov 1999 A
5995884 Allen et al. Nov 1999 A
5996167 Close Dec 1999 A
5998953 Nakamura et al. Dec 1999 A
5998971 Corbridge Dec 1999 A
6000088 Wright et al. Dec 1999 A
6009358 Angott et al. Dec 1999 A
6012618 Matsuo Jan 2000 A
6021545 Delgado et al. Feb 2000 A
6023813 Thatcher et al. Feb 2000 A
6023814 Imamura Feb 2000 A
6025687 Himeda et al. Feb 2000 A
6026539 Mouw et al. Feb 2000 A
6030464 Azevedo Feb 2000 A
6030465 Marcussen et al. Feb 2000 A
6032327 Oka et al. Mar 2000 A
6032542 Warnick et al. Mar 2000 A
6036572 Sze Mar 2000 A
6038501 Kawakami Mar 2000 A
6040669 Hog Mar 2000 A
6041471 Charky et al. Mar 2000 A
6041472 Kasen et al. Mar 2000 A
6046800 Ohtomo et al. Apr 2000 A
6049620 Dickinson et al. Apr 2000 A
6050648 Keleny Apr 2000 A
6052821 Chouly et al. Apr 2000 A
6055042 Sarangapani Apr 2000 A
6055702 Imamura et al. May 2000 A
6061868 Moritsch et al. May 2000 A
6065182 Wright et al. May 2000 A
6070290 Schwarze et al. Jun 2000 A
6073432 Schaedler Jun 2000 A
6076025 Ueno et al. Jun 2000 A
6076026 Jambhekar et al. Jun 2000 A
6076226 Reed Jun 2000 A
6076227 Schallig et al. Jun 2000 A
6081257 Zeller Jun 2000 A
6088020 Mor Jul 2000 A
6094775 Behmer Aug 2000 A
6099091 Campbell Aug 2000 A
6101670 Song Aug 2000 A
6101671 Wright et al. Aug 2000 A
6108031 King et al. Aug 2000 A
6108067 Okamoto Aug 2000 A
6108269 Kabel Aug 2000 A
6108597 Kirchner et al. Aug 2000 A
6108859 Burgoon Aug 2000 A
6112143 Allen et al. Aug 2000 A
6112996 Matsuo Sep 2000 A
6119057 Kawagoe Sep 2000 A
6122798 Kobayashi et al. Sep 2000 A
6124694 Bancroft et al. Sep 2000 A
6125498 Roberts et al. Oct 2000 A
6131237 Kasper et al. Oct 2000 A
6138063 Himeda Oct 2000 A
6142252 Kinto et al. Nov 2000 A
6146041 Chen et al. Nov 2000 A
6146278 Kobayashi Nov 2000 A
6154279 Thayer Nov 2000 A
6154694 Aoki et al. Nov 2000 A
6160479 Ahlen et al. Dec 2000 A
6167332 Kurtzberg et al. Dec 2000 A
6167587 Kasper et al. Jan 2001 B1
6192548 Huffman Feb 2001 B1
6192549 Kasen et al. Feb 2001 B1
6202243 Beaufoy et al. Mar 2001 B1
6205380 Bauer et al. Mar 2001 B1
6216307 Kaleta et al. Apr 2001 B1
6220865 Macri et al. Apr 2001 B1
6226830 Hendriks et al. May 2001 B1
6230362 Kasper et al. May 2001 B1
6237741 Guidetti May 2001 B1
6240342 Fiegert et al. May 2001 B1
6243913 Frank et al. Jun 2001 B1
6255793 Peless et al. Jul 2001 B1
6259979 Holmquist Jul 2001 B1
6261379 Conrad et al. Jul 2001 B1
6263539 Baig Jul 2001 B1
6263989 Won Jul 2001 B1
6272936 Oreper et al. Aug 2001 B1
6276478 Hopkins et al. Aug 2001 B1
6278917 Bauer et al. Aug 2001 B1
6278918 Dickson et al. Aug 2001 B1
6279196 Kasen et al. Aug 2001 B2
6282526 Ganesh Aug 2001 B1
6283034 Miles Sep 2001 B1
6285778 Nakajima et al. Sep 2001 B1
6285930 Dickson et al. Sep 2001 B1
6286181 Kasper et al. Sep 2001 B1
6300737 Bergvall et al. Oct 2001 B1
6321337 Reshef et al. Nov 2001 B1
6321515 Colens Nov 2001 B1
6323570 Nishimura et al. Nov 2001 B1
6324714 Walz et al. Dec 2001 B1
6327741 Reed Dec 2001 B1
6332400 Meyer Dec 2001 B1
6339735 Peless et al. Jan 2002 B1
6362875 Burkley Mar 2002 B1
6370453 Sommer Apr 2002 B2
6374155 Wallach et al. Apr 2002 B1
6374157 Takamura Apr 2002 B1
6381802 Park May 2002 B2
6385515 Dickson et al. May 2002 B1
6388013 Saraf et al. May 2002 B1
6389329 Colens May 2002 B1
6397429 Legatt et al. Jun 2002 B1
6400048 Nishimura et al. Jun 2002 B1
6401294 Kasper Jun 2002 B2
6408226 Byrne et al. Jun 2002 B1
6412141 Kasper et al. Jul 2002 B2
6415203 Inoue et al. Jul 2002 B1
6418586 Fulghum Jul 2002 B2
6421870 Basham et al. Jul 2002 B1
6427285 Legatt et al. Aug 2002 B1
6430471 Kintou et al. Aug 2002 B1
6431296 Won Aug 2002 B1
6437227 Theimer Aug 2002 B1
6437465 Nishimura et al. Aug 2002 B1
6438456 Feddema et al. Aug 2002 B1
6438793 Miner et al. Aug 2002 B1
6442476 Poropat Aug 2002 B1
6442789 Legatt et al. Sep 2002 B1
6443509 Levin et al. Sep 2002 B1
6444003 Sutcliffe Sep 2002 B1
6446302 Kasper et al. Sep 2002 B1
6454036 Airey et al. Sep 2002 B1
D464091 Christianson Oct 2002 S
6457206 Judson Oct 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463368 Feiten et al. Oct 2002 B1
6465982 Bergvall et al. Oct 2002 B1
6473167 Odell Oct 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6481515 Kirkpatrick et al. Nov 2002 B1
6482252 Conrad et al. Nov 2002 B1
6490539 Dickson et al. Dec 2002 B1
6491127 Holmberg et al. Dec 2002 B1
6493612 Bisset et al. Dec 2002 B1
6493613 Peless et al. Dec 2002 B2
6496754 Song et al. Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6502657 Kerrebrock et al. Jan 2003 B2
6504610 Bauer et al. Jan 2003 B1
6507773 Parker et al. Jan 2003 B2
6519808 Legatt et al. Feb 2003 B2
6525509 Petersson et al. Feb 2003 B1
D471243 Cioffi et al. Mar 2003 S
6530102 Pierce et al. Mar 2003 B1
6530117 Peterson Mar 2003 B2
6532404 Colens Mar 2003 B2
6535793 Allard Mar 2003 B2
6540424 Hall et al. Apr 2003 B1
6540607 Mokris et al. Apr 2003 B2
6548982 Papanikolopoulos et al. Apr 2003 B1
6553612 Dyson et al. Apr 2003 B1
6556722 Russell et al. Apr 2003 B1
6556892 Kuroki et al. Apr 2003 B2
6557104 Vu et al. Apr 2003 B2
D474312 Stephens et al. May 2003 S
6563130 Dworkowski et al. May 2003 B2
6571415 Gerber et al. Jun 2003 B2
6571422 Gordon et al. Jun 2003 B1
6572711 Sclafani et al. Jun 2003 B2
6574536 Kawagoe et al. Jun 2003 B1
6580246 Jacobs Jun 2003 B2
6584376 Van Kommer Jun 2003 B1
6586908 Petersson et al. Jul 2003 B2
6587573 Stam et al. Jul 2003 B1
6590222 Bisset et al. Jul 2003 B1
6594551 McKinney et al. Jul 2003 B2
6594844 Jones Jul 2003 B2
6597076 Scheible et al. Jul 2003 B2
D478884 Slipy et al. Aug 2003 S
6601265 Burlington Aug 2003 B1
6604021 Imai et al. Aug 2003 B2
6604022 Parker et al. Aug 2003 B2
6605156 Clark et al. Aug 2003 B1
6609269 Kasper Aug 2003 B2
6611120 Song et al. Aug 2003 B2
6611734 Parker et al. Aug 2003 B2
6611738 Ruffner Aug 2003 B2
6615108 Peless et al. Sep 2003 B1
6615434 Davis et al. Sep 2003 B1
6615885 Ohm Sep 2003 B1
6622465 Jerome et al. Sep 2003 B2
6624744 Wilson et al. Sep 2003 B1
6625843 Kim et al. Sep 2003 B2
6629028 Paromtchik et al. Sep 2003 B2
6633150 Wallach et al. Oct 2003 B1
6637546 Wang Oct 2003 B1
6639659 Granger Oct 2003 B2
6654482 Parent et al. Nov 2003 B1
6658325 Zweig Dec 2003 B2
6658354 Lin Dec 2003 B2
6658692 Lenkiewicz et al. Dec 2003 B2
6658693 Reed Dec 2003 B1
6661239 Ozick Dec 2003 B1
6662889 De Fazio et al. Dec 2003 B2
6670817 Fournier et al. Dec 2003 B2
6671592 Bisset et al. Dec 2003 B1
6671925 Field et al. Jan 2004 B2
6677938 Maynard Jan 2004 B1
6687571 Byrne et al. Feb 2004 B1
6688951 Kashiwaya et al. Feb 2004 B2
6690134 Jones et al. Feb 2004 B1
6690993 Foulke et al. Feb 2004 B2
6697147 Ko et al. Feb 2004 B2
6705332 Field et al. Mar 2004 B2
6711280 Stafsudd et al. Mar 2004 B2
6732826 Song et al. May 2004 B2
6735811 Field et al. May 2004 B2
6735812 Hekman et al. May 2004 B2
6737591 Lapstun et al. May 2004 B1
6741054 Koselka et al. May 2004 B2
6741364 Lange et al. May 2004 B2
6748297 Song et al. Jun 2004 B2
6756703 Chang Jun 2004 B2
6760647 Nourbakhsh et al. Jul 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769004 Barrett Jul 2004 B2
6774596 Bisset Aug 2004 B1
6779380 Nieuwkamp Aug 2004 B1
6781338 Jones et al. Aug 2004 B2
6809490 Jones et al. Oct 2004 B2
6810305 Kirkpatrick Oct 2004 B2
6810350 Blakley Oct 2004 B2
6830120 Yashima et al. Dec 2004 B1
6832407 Salem et al. Dec 2004 B2
6836701 McKee Dec 2004 B2
6841963 Song et al. Jan 2005 B2
6845297 Allard Jan 2005 B2
6848146 Wright et al. Feb 2005 B2
6854148 Rief et al. Feb 2005 B1
6856811 Burdue et al. Feb 2005 B2
6859010 Jeon et al. Feb 2005 B2
6859682 Naka et al. Feb 2005 B2
6860206 Rudakevych et al. Mar 2005 B1
6865447 Lau et al. Mar 2005 B2
6870792 Chiappetta Mar 2005 B2
6871115 Huang et al. Mar 2005 B2
6883201 Jones et al. Apr 2005 B2
6886651 Slocum et al. May 2005 B1
6888333 Laby May 2005 B2
6901624 Mori et al. Jun 2005 B2
6906702 Tanaka et al. Jun 2005 B1
6914403 Tsurumi Jul 2005 B2
6917854 Bayer Jul 2005 B2
6925357 Wang et al. Aug 2005 B2
6925679 Wallach et al. Aug 2005 B2
6929548 Wang Aug 2005 B2
D510066 Hickey et al. Sep 2005 S
6938298 Aasen Sep 2005 B2
6940291 Ozick Sep 2005 B1
6941199 Bottomley et al. Sep 2005 B1
6956348 Landry et al. Oct 2005 B2
6957712 Song et al. Oct 2005 B2
6960986 Asama et al. Nov 2005 B2
6965209 Jones et al. Nov 2005 B2
6965211 Tsurumi Nov 2005 B2
6968592 Takeuchi et al. Nov 2005 B2
6971140 Kim Dec 2005 B2
6975246 Trudeau Dec 2005 B1
6980229 Ebersole Dec 2005 B1
6985556 Shanmugavel et al. Jan 2006 B2
6993954 George et al. Feb 2006 B1
6999850 McDonald Feb 2006 B2
7013527 Thomas et al. Mar 2006 B2
7024278 Chiappetta et al. Apr 2006 B2
7024280 Parker et al. Apr 2006 B2
7027893 Perry et al. Apr 2006 B2
7030768 Wanie Apr 2006 B2
7031805 Lee et al. Apr 2006 B2
7032469 Bailey Apr 2006 B2
7040869 Beenker May 2006 B2
7041029 Fulghum et al. May 2006 B2
7051399 Field et al. May 2006 B2
7053578 Diehl et al. May 2006 B2
7054716 McKee et al. May 2006 B2
7055210 Keppler et al. Jun 2006 B2
7057120 Ma et al. Jun 2006 B2
7057643 Iida et al. Jun 2006 B2
7059012 Song et al. Jun 2006 B2
7065430 Naka et al. Jun 2006 B2
7066291 Martins et al. Jun 2006 B2
7069124 Whittaker et al. Jun 2006 B1
7075661 Petty et al. Jul 2006 B2
7079923 Abramson et al. Jul 2006 B2
7085623 Siegers Aug 2006 B2
7085624 Aldred et al. Aug 2006 B2
7113847 Chmura et al. Sep 2006 B2
7117067 McLurkin et al. Oct 2006 B2
7133746 Abramson et al. Nov 2006 B2
7142198 Lee Nov 2006 B2
7148458 Schell et al. Dec 2006 B2
7155308 Jones Dec 2006 B2
7167775 Abramson et al. Jan 2007 B2
7171285 Kim et al. Jan 2007 B2
7173391 Jones et al. Feb 2007 B2
7174238 Zweig Feb 2007 B1
7188000 Chiappetta et al. Mar 2007 B2
7193384 Norman et al. Mar 2007 B1
7196487 Jones et al. Mar 2007 B2
7201786 Wegelin et al. Apr 2007 B2
7206677 Hulden Apr 2007 B2
7211980 Bruemmer et al. May 2007 B1
7225500 Diehl et al. Jun 2007 B2
7246405 Yan Jul 2007 B2
7248951 Hulden Jul 2007 B2
7254464 McLurkin et al. Aug 2007 B1
7275280 Haegermarck et al. Oct 2007 B2
7283892 Boillot et al. Oct 2007 B1
7288912 Landry et al. Oct 2007 B2
7318248 Yan et al. Jan 2008 B1
7320149 Huffman et al. Jan 2008 B1
7321807 Laski Jan 2008 B2
7324870 Lee Jan 2008 B2
7328196 Peters Feb 2008 B2
7332890 Cohen et al. Feb 2008 B2
7346428 Huffman et al. Mar 2008 B1
7352153 Yan Apr 2008 B2
7359766 Jeon et al. Apr 2008 B2
7360277 Moshenrose et al. Apr 2008 B2
7363108 Noda et al. Apr 2008 B2
7388879 Sabe et al. Jun 2008 B2
7389156 Ziegler et al. Jun 2008 B2
7389166 Harwig et al. Jun 2008 B2
7408157 Yan Aug 2008 B2
7418762 Arai et al. Sep 2008 B2
7430455 Casey et al. Sep 2008 B2
7430462 Chiu et al. Sep 2008 B2
7441298 Svendsen et al. Oct 2008 B2
7444206 Abramson et al. Oct 2008 B2
7448113 Jones et al. Nov 2008 B2
7459871 Landry et al. Dec 2008 B2
7467026 Sakagami et al. Dec 2008 B2
7474941 Kim et al. Jan 2009 B2
7503096 Lin Mar 2009 B2
7515991 Egawa et al. Apr 2009 B2
7539557 Yamauchi May 2009 B2
7546891 Won Jun 2009 B2
7555363 Augenbraun et al. Jun 2009 B2
7556108 Won Jul 2009 B2
7557703 Yamada et al. Jul 2009 B2
7568259 Yan Aug 2009 B2
7571511 Jones et al. Aug 2009 B2
7578020 Jaworski et al. Aug 2009 B2
7597162 Won Oct 2009 B2
7600521 Woo Oct 2009 B2
7603744 Reindle Oct 2009 B2
7611583 Buckley et al. Nov 2009 B2
7617557 Reindle Nov 2009 B2
7620476 Morse et al. Nov 2009 B2
7636928 Uno Dec 2009 B2
7636982 Jones et al. Dec 2009 B2
7647144 Haegermarck Jan 2010 B2
7650666 Jang Jan 2010 B2
7660650 Kawagoe et al. Feb 2010 B2
7663333 Jones et al. Feb 2010 B2
7693605 Park Apr 2010 B2
7706917 Chiappetta et al. Apr 2010 B1
7720554 DiBernardo et al. May 2010 B2
7720572 Ziegler et al. May 2010 B2
7761954 Ziegler et al. Jul 2010 B2
7765635 Park Aug 2010 B2
7784147 Burkholder et al. Aug 2010 B2
7801645 Taylor et al. Sep 2010 B2
7805220 Taylor et al. Sep 2010 B2
7809944 Kawamoto Oct 2010 B2
7832048 Harwig et al. Nov 2010 B2
7849555 Hahm et al. Dec 2010 B2
7853645 Brown et al. Dec 2010 B2
7860680 Arms et al. Dec 2010 B2
7920941 Park et al. Apr 2011 B2
7937800 Yan May 2011 B2
7957836 Myeong et al. Jun 2011 B2
7996097 DiBernardo et al. Aug 2011 B2
8035255 Kurs et al. Oct 2011 B2
8087117 Kapoor et al. Jan 2012 B2
8106539 Schatz et al. Jan 2012 B2
8295955 DiBernardo et al. Oct 2012 B2
8304935 Karalis et al. Nov 2012 B2
8324759 Karalis et al. Dec 2012 B2
8380350 Ozick et al. Feb 2013 B2
8396592 Jones et al. Mar 2013 B2
8400017 Kurs et al. Mar 2013 B2
8410636 Kurs et al. Apr 2013 B2
8412377 Casey et al. Apr 2013 B2
8428778 Landry et al. Apr 2013 B2
8441154 Karalis et al. May 2013 B2
8461719 Kesler et al. Jun 2013 B2
8461720 Kurs et al. Jun 2013 B2
8461721 Karalis et al. Jun 2013 B2
8461722 Kurs et al. Jun 2013 B2
8466583 Karalis et al. Jun 2013 B2
8471410 Karalis et al. Jun 2013 B2
8476788 Karalis et al. Jul 2013 B2
8482158 Kurs et al. Jul 2013 B2
8487480 Kesler et al. Jul 2013 B1
8497601 Hall et al. Jul 2013 B2
8552592 Schatz et al. Oct 2013 B2
8569914 Karalis et al. Oct 2013 B2
8587153 Schatz et al. Nov 2013 B2
8587155 Giler et al. Nov 2013 B2
8594840 Chiappetta et al. Nov 2013 B1
8598743 Hall et al. Dec 2013 B2
8618696 Kurs et al. Dec 2013 B2
20010004719 Sommer Jun 2001 A1
20010013929 Torsten Aug 2001 A1
20010020200 Das et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010037163 Allard Nov 2001 A1
20010043509 Green et al. Nov 2001 A1
20010045883 Holdaway et al. Nov 2001 A1
20010047231 Peless et al. Nov 2001 A1
20010047895 De Fazio et al. Dec 2001 A1
20020011367 Kolesnik Jan 2002 A1
20020011813 Koselka et al. Jan 2002 A1
20020016649 Jones Feb 2002 A1
20020021219 Edwards Feb 2002 A1
20020027652 Paromtchik et al. Mar 2002 A1
20020036779 Kiyoi et al. Mar 2002 A1
20020081937 Yamada et al. Jun 2002 A1
20020095239 Wallach et al. Jul 2002 A1
20020097400 Jung et al. Jul 2002 A1
20020104963 Mancevski Aug 2002 A1
20020108209 Peterson Aug 2002 A1
20020112742 Bredo et al. Aug 2002 A1
20020113973 Ge Aug 2002 A1
20020116089 Kirkpatrick Aug 2002 A1
20020120364 Colens Aug 2002 A1
20020124343 Reed Sep 2002 A1
20020153185 Song et al. Oct 2002 A1
20020156556 Ruffner Oct 2002 A1
20020159051 Guo Oct 2002 A1
20020166193 Kasper Nov 2002 A1
20020169521 Goodman et al. Nov 2002 A1
20020173877 Zweig Nov 2002 A1
20020189871 Won Dec 2002 A1
20030009259 Hattori et al. Jan 2003 A1
20030015232 Nguyen Jan 2003 A1
20030019071 Field et al. Jan 2003 A1
20030023356 Keable Jan 2003 A1
20030024986 Mazz et al. Feb 2003 A1
20030025472 Jones et al. Feb 2003 A1
20030028286 Glenn et al. Feb 2003 A1
20030030399 Jacobs Feb 2003 A1
20030058262 Sato et al. Mar 2003 A1
20030060928 Abramson et al. Mar 2003 A1
20030067451 Tagg et al. Apr 2003 A1
20030097875 Lentz et al. May 2003 A1
20030120389 Abramson et al. Jun 2003 A1
20030124312 Autumn Jul 2003 A1
20030126352 Barrett Jul 2003 A1
20030137268 Papanikolopoulos et al. Jul 2003 A1
20030146384 Logsdon et al. Aug 2003 A1
20030159232 Hekman et al. Aug 2003 A1
20030168081 Lee et al. Sep 2003 A1
20030175138 Beenker Sep 2003 A1
20030192144 Song et al. Oct 2003 A1
20030193657 Uomori et al. Oct 2003 A1
20030208304 Peless et al. Nov 2003 A1
20030216834 Allard Nov 2003 A1
20030221114 Hino et al. Nov 2003 A1
20030229421 Chmura et al. Dec 2003 A1
20030229474 Suzuki et al. Dec 2003 A1
20030233171 Heiligensetzer Dec 2003 A1
20030233177 Johnson et al. Dec 2003 A1
20030233870 Mancevski Dec 2003 A1
20030233930 Ozick Dec 2003 A1
20040016077 Song et al. Jan 2004 A1
20040020000 Jones Feb 2004 A1
20040030448 Solomon Feb 2004 A1
20040030449 Solomon Feb 2004 A1
20040030450 Solomon Feb 2004 A1
20040030451 Solomon Feb 2004 A1
20040030570 Solomon Feb 2004 A1
20040030571 Solomon Feb 2004 A1
20040031113 Wosewick et al. Feb 2004 A1
20040049877 Jones et al. Mar 2004 A1
20040055163 McCambridge et al. Mar 2004 A1
20040068351 Solomon Apr 2004 A1
20040068415 Solomon Apr 2004 A1
20040068416 Solomon Apr 2004 A1
20040074038 Im et al. Apr 2004 A1
20040074044 Diehl et al. Apr 2004 A1
20040076324 Burl et al. Apr 2004 A1
20040083570 Song et al. May 2004 A1
20040085037 Jones et al. May 2004 A1
20040088079 Lavarec et al. May 2004 A1
20040093122 Galibraith May 2004 A1
20040098167 Yi et al. May 2004 A1
20040111184 Chiappetta et al. Jun 2004 A1
20040111821 Lenkiewicz et al. Jun 2004 A1
20040113777 Matsuhira et al. Jun 2004 A1
20040117064 McDonald Jun 2004 A1
20040117846 Karaoguz et al. Jun 2004 A1
20040118998 Wingett et al. Jun 2004 A1
20040125461 Kawamura Jul 2004 A1
20040128028 Miyamoto et al. Jul 2004 A1
20040133316 Dean Jul 2004 A1
20040134336 Solomon Jul 2004 A1
20040134337 Solomon Jul 2004 A1
20040143919 Wilder Jul 2004 A1
20040148419 Chen et al. Jul 2004 A1
20040148731 Damman et al. Aug 2004 A1
20040153212 Profio et al. Aug 2004 A1
20040156541 Jeon et al. Aug 2004 A1
20040158357 Lee et al. Aug 2004 A1
20040168148 Goncalves et al. Aug 2004 A1
20040181706 Chen et al. Sep 2004 A1
20040187249 Jones et al. Sep 2004 A1
20040187457 Colens Sep 2004 A1
20040196451 Aoyama Oct 2004 A1
20040200505 Taylor et al. Oct 2004 A1
20040201361 Koh et al. Oct 2004 A1
20040204792 Taylor et al. Oct 2004 A1
20040204804 Lee et al. Oct 2004 A1
20040210345 Noda et al. Oct 2004 A1
20040210347 Sawada et al. Oct 2004 A1
20040211444 Taylor et al. Oct 2004 A1
20040221790 Sinclair et al. Nov 2004 A1
20040236468 Taylor et al. Nov 2004 A1
20040244138 Taylor et al. Dec 2004 A1
20040255425 Arai et al. Dec 2004 A1
20050000543 Taylor et al. Jan 2005 A1
20050010330 Abramson et al. Jan 2005 A1
20050010331 Taylor et al. Jan 2005 A1
20050015920 Kim et al. Jan 2005 A1
20050021181 Kim et al. Jan 2005 A1
20050028316 Thomas et al. Feb 2005 A1
20050033124 Kelly et al. Feb 2005 A1
20050053912 Roth et al. Mar 2005 A1
20050055796 Wright et al. Mar 2005 A1
20050067994 Jones et al. Mar 2005 A1
20050081782 Buckley et al. Apr 2005 A1
20050085947 Aldred et al. Apr 2005 A1
20050091782 Gordon et al. May 2005 A1
20050091786 Wright et al. May 2005 A1
20050137749 Jeon et al. Jun 2005 A1
20050144751 Kegg et al. Jul 2005 A1
20050150074 Diehl et al. Jul 2005 A1
20050150519 Keppler et al. Jul 2005 A1
20050154795 Kuz et al. Jul 2005 A1
20050156562 Cohen et al. Jul 2005 A1
20050162119 Landry et al. Jul 2005 A1
20050163119 Ito et al. Jul 2005 A1
20050165508 Kanda et al. Jul 2005 A1
20050166354 Uehigashi Aug 2005 A1
20050166355 Tani Aug 2005 A1
20050172445 Diehl et al. Aug 2005 A1
20050183229 Uehigashi Aug 2005 A1
20050183230 Uehigashi Aug 2005 A1
20050187678 Myeong et al. Aug 2005 A1
20050192707 Park et al. Sep 2005 A1
20050194973 Kwon et al. Sep 2005 A1
20050204717 Colens Sep 2005 A1
20050209736 Kawagoe Sep 2005 A1
20050211880 Schell et al. Sep 2005 A1
20050212929 Schell et al. Sep 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20050217042 Reindle Oct 2005 A1
20050218852 Landry et al. Oct 2005 A1
20050222933 Wesby Oct 2005 A1
20050229340 Sawalski et al. Oct 2005 A1
20050229355 Crouch et al. Oct 2005 A1
20050235451 Yan Oct 2005 A1
20050251292 Casey et al. Nov 2005 A1
20050255425 Pierson Nov 2005 A1
20050258154 Blankenship et al. Nov 2005 A1
20050273967 Taylor et al. Dec 2005 A1
20050288819 De Guzman Dec 2005 A1
20050289527 Illowsky et al. Dec 2005 A1
20060000050 Cipolla et al. Jan 2006 A1
20060009879 Lynch et al. Jan 2006 A1
20060010638 Shimizu et al. Jan 2006 A1
20060020369 Taylor et al. Jan 2006 A1
20060020370 Abramson Jan 2006 A1
20060021168 Nishikawa Feb 2006 A1
20060025134 Cho et al. Feb 2006 A1
20060037170 Shimizu Feb 2006 A1
20060042042 Mertes et al. Mar 2006 A1
20060044546 Lewin et al. Mar 2006 A1
20060060216 Woo Mar 2006 A1
20060061657 Rew et al. Mar 2006 A1
20060064828 Stein et al. Mar 2006 A1
20060087273 Ko et al. Apr 2006 A1
20060089765 Pack et al. Apr 2006 A1
20060095169 Minor et al. May 2006 A1
20060100741 Jung May 2006 A1
20060107894 Buckley et al. May 2006 A1
20060119839 Bertin et al. Jun 2006 A1
20060143295 Costa-Requena et al. Jun 2006 A1
20060146776 Kim Jul 2006 A1
20060150361 Aldred et al. Jul 2006 A1
20060184293 Konandreas et al. Aug 2006 A1
20060185690 Song et al. Aug 2006 A1
20060190133 Konandreas et al. Aug 2006 A1
20060190134 Ziegler et al. Aug 2006 A1
20060190146 Morse et al. Aug 2006 A1
20060196003 Song et al. Sep 2006 A1
20060200281 Ziegler et al. Sep 2006 A1
20060220900 Ceskutti et al. Oct 2006 A1
20060229774 Park et al. Oct 2006 A1
20060259194 Chiu Nov 2006 A1
20060259494 Watson et al. Nov 2006 A1
20060278161 Burkholder et al. Dec 2006 A1
20060288519 Jaworski et al. Dec 2006 A1
20060293787 Kanda et al. Dec 2006 A1
20060293808 Qian Dec 2006 A1
20070006404 Cheng et al. Jan 2007 A1
20070016328 Ziegler et al. Jan 2007 A1
20070017061 Yan Jan 2007 A1
20070028574 Yan Feb 2007 A1
20070032904 Kawagoe et al. Feb 2007 A1
20070042716 Goodall et al. Feb 2007 A1
20070043459 Abbott et al. Feb 2007 A1
20070045018 Carter et al. Mar 2007 A1
20070061041 Zweig Mar 2007 A1
20070061043 Ermakov et al. Mar 2007 A1
20070097832 Koivisto et al. May 2007 A1
20070114975 Cohen et al. May 2007 A1
20070142964 Abramson Jun 2007 A1
20070150096 Yeh et al. Jun 2007 A1
20070156286 Yamauchi Jul 2007 A1
20070157415 Lee et al. Jul 2007 A1
20070157420 Lee et al. Jul 2007 A1
20070179670 Chiappetta et al. Aug 2007 A1
20070226949 Hahm et al. Oct 2007 A1
20070234492 Svendsen et al. Oct 2007 A1
20070244610 Ozick et al. Oct 2007 A1
20070245511 Hahm et al. Oct 2007 A1
20070250212 Halloran et al. Oct 2007 A1
20070261193 Gordon et al. Nov 2007 A1
20070266508 Jones et al. Nov 2007 A1
20070267230 Won Nov 2007 A1
20070267998 Cohen et al. Nov 2007 A1
20080007203 Cohen et al. Jan 2008 A1
20080009965 Bruemmer et al. Jan 2008 A1
20080039974 Sandin et al. Feb 2008 A1
20080047092 Schnittman et al. Feb 2008 A1
20080052846 Kapoor et al. Mar 2008 A1
20080058987 Ozick et al. Mar 2008 A1
20080063400 Hudson et al. Mar 2008 A1
20080086241 Phillips et al. Apr 2008 A1
20080091304 Ozick et al. Apr 2008 A1
20080109126 Sandin et al. May 2008 A1
20080121097 Rudakevych et al. May 2008 A1
20080133052 Jones et al. Jun 2008 A1
20080134458 Ziegler et al. Jun 2008 A1
20080140255 Ziegler et al. Jun 2008 A1
20080143063 Won Jun 2008 A1
20080143064 Won Jun 2008 A1
20080155768 Ziegler et al. Jul 2008 A1
20080184518 Taylor et al. Aug 2008 A1
20080236907 Won Oct 2008 A1
20080266254 Robbins et al. Oct 2008 A1
20080266748 Lee Oct 2008 A1
20080276407 Schnittman et al. Nov 2008 A1
20080276408 Gilbert, Jr. et al. Nov 2008 A1
20080281470 Gilbert, Jr. et al. Nov 2008 A1
20080282494 Won et al. Nov 2008 A1
20080294288 Yamauchi Nov 2008 A1
20080302586 Yan Dec 2008 A1
20080307590 Jones et al. Dec 2008 A1
20090007366 Svendsen et al. Jan 2009 A1
20090038089 Landry et al. Feb 2009 A1
20090048727 Hong et al. Feb 2009 A1
20090049640 Lee et al. Feb 2009 A1
20090055022 Casey et al. Feb 2009 A1
20090065271 Won Mar 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090107738 Won Apr 2009 A1
20090173553 Won Jul 2009 A1
20090232506 Hudson et al. Sep 2009 A1
20090292393 Casey et al. Nov 2009 A1
20100001991 Jeong et al. Jan 2010 A1
20100006028 Buckley et al. Jan 2010 A1
20100011529 Won et al. Jan 2010 A1
20100049365 Jones et al. Feb 2010 A1
20100063628 Landry et al. Mar 2010 A1
20100076600 Cross et al. Mar 2010 A1
20100082193 Chiappetta Apr 2010 A1
20100107355 Won et al. May 2010 A1
20100139995 Rudakevych Jun 2010 A1
20100257690 Jones et al. Oct 2010 A1
20100257691 Jones et al. Oct 2010 A1
20100263158 Jones et al. Oct 2010 A1
20100268384 Jones et al. Oct 2010 A1
20100274387 Pitzer Oct 2010 A1
20100293742 Chung et al. Nov 2010 A1
20100312429 Jones et al. Dec 2010 A1
20130245937 DiBernardo et al. Sep 2013 A1
Foreign Referenced Citations (358)
Number Date Country
2128842 Dec 1980 DE
3317376 Dec 1987 DE
3536907 Feb 1989 DE
3404202 Dec 1992 DE
199311014 Oct 1993 DE
4338841 May 1995 DE
4414683 Oct 1995 DE
19849978 Feb 2001 DE
102004038074 Jun 2005 DE
10357636 Jul 2005 DE
102004041021 Aug 2005 DE
102005046813 Apr 2007 DE
338988 Dec 1988 DK
0265542 May 1988 EP
0281085 Sep 1988 EP
0286328 Oct 1988 EP
0294101 Dec 1988 EP
0358628 Sep 1989 EP
0352045 Jan 1990 EP
0433697 Jun 1991 EP
0437024 Jul 1991 EP
0479273 Apr 1992 EP
0554978 Aug 1993 EP
0615719 Sep 1994 EP
0792726 Sep 1997 EP
0 798 567 Oct 1997 EP
0930040 Jul 1999 EP
0845237 Apr 2000 EP
0861629 Sep 2001 EP
1228734 Aug 2002 EP
1380245 Jan 2004 EP
1380246 Jan 2004 EP
1018315 Nov 2004 EP
1553472 Jul 2005 EP
1557730 Jul 2005 EP
1642522 Apr 2006 EP
1836941 Sep 2007 EP
2238196 Aug 2005 ES
722755 Mar 1932 FR
2601443 Jan 1998 FR
2828589 Feb 2003 FR
702426 Jan 1954 GB
2128842 May 1984 GB
2213047 Aug 1989 GB
2225221 May 1990 GB
2267360 Dec 1993 GB
2283838 May 1995 GB
2284957 Jun 1995 GB
2300082 Oct 1996 GB
2344747 Jun 2000 GB
2404330 Feb 2005 GB
2417354 Feb 2006 GB
53021869 Feb 1978 JP
53110257 Sep 1978 JP
57064217 Apr 1982 JP
59005315 Jan 1984 JP
59033511 Mar 1984 JP
59094005 May 1984 JP
59099308 Jun 1984 JP
59112311 Jun 1984 JP
59120124 Jul 1984 JP
59131668 Sep 1984 JP
59164973 Sep 1984 JP
59184917 Oct 1984 JP
2283343 Nov 1984 JP
59212924 Dec 1984 JP
59226909 Dec 1984 JP
60089213 May 1985 JP
60211510 Oct 1985 JP
60259895 Dec 1985 JP
61023221 Jan 1986 JP
61097712 May 1986 JP
61160366 Jul 1986 JP
62070709 Apr 1987 JP
62074018 Apr 1987 JP
62120510 Jun 1987 JP
62154008 Jul 1987 JP
62164431 Jul 1987 JP
62263507 Nov 1987 JP
62263508 Nov 1987 JP
62189057 Dec 1987 JP
63079623 Apr 1988 JP
63158032 Jul 1988 JP
63203483 Aug 1988 JP
63241610 Oct 1988 JP
1118752 Aug 1989 JP
2-6312 Jan 1990 JP
3051023 Mar 1991 JP
4019586 Jan 1992 JP
4074285 Mar 1992 JP
4084921 Mar 1992 JP
5023269 Feb 1993 JP
5042076 Feb 1993 JP
05046239 Feb 1993 JP
5046246 Feb 1993 JP
5060049 Mar 1993 JP
5091604 Apr 1993 JP
5095879 Apr 1993 JP
5150827 Jun 1993 JP
5150829 Jun 1993 JP
5054620 Jul 1993 JP
5040519 Oct 1993 JP
05257527 Oct 1993 JP
5257533 Oct 1993 JP
05285861 Nov 1993 JP
5302836 Nov 1993 JP
5312514 Nov 1993 JP
5341904 Dec 1993 JP
6003251 Jan 1994 JP
6038912 Feb 1994 JP
6105781 Apr 1994 JP
6137828 May 1994 JP
6154143 Jun 1994 JP
6293095 Oct 1994 JP
06327 598 Nov 1994 JP
7047046 Feb 1995 JP
07129239 May 1995 JP
7059702 Jun 1995 JP
7222705 Aug 1995 JP
7270518 Oct 1995 JP
7281752 Oct 1995 JP
7311041 Nov 1995 JP
7313417 Dec 1995 JP
7319542 Dec 1995 JP
8000393 Jan 1996 JP
8016241 Jan 1996 JP
8016776 Jan 1996 JP
8063229 Mar 1996 JP
8084696 Apr 1996 JP
8089449 Apr 1996 JP
08089451 Apr 1996 JP
8123548 May 1996 JP
8152916 Jun 1996 JP
8256960 Oct 1996 JP
8263137 Oct 1996 JP
8286741 Nov 1996 JP
8286744 Nov 1996 JP
8286745 Nov 1996 JP
8286747 Nov 1996 JP
8322774 Dec 1996 JP
8335112 Dec 1996 JP
8339297 Dec 1996 JP
9044240 Feb 1997 JP
9047413 Feb 1997 JP
9066855 Mar 1997 JP
9145309 Jun 1997 JP
09160644 Jun 1997 JP
9179625 Jul 1997 JP
09179625 Jul 1997 JP
09185410 Jul 1997 JP
9192069 Jul 1997 JP
2555263 Aug 1997 JP
9204223 Aug 1997 JP
9204224 Aug 1997 JP
09206258 Aug 1997 JP
9233712 Sep 1997 JP
9265319 Oct 1997 JP
9269807 Oct 1997 JP
9269810 Oct 1997 JP
9319431 Dec 1997 JP
9319432 Dec 1997 JP
9319434 Dec 1997 JP
9325812 Dec 1997 JP
10-27018 Jan 1998 JP
10055215 Feb 1998 JP
10117973 May 1998 JP
10118963 May 1998 JP
10165738 Jun 1998 JP
10177414 Jun 1998 JP
10214114 Aug 1998 JP
10240342 Sep 1998 JP
10240343 Sep 1998 JP
10260727 Sep 1998 JP
10295595 Nov 1998 JP
10314088 Dec 1998 JP
11015941 Jan 1999 JP
11065655 Mar 1999 JP
11102219 Apr 1999 JP
11102220 Apr 1999 JP
11162454 Jun 1999 JP
11174145 Jul 1999 JP
11175149 Jul 1999 JP
11178764 Jul 1999 JP
11178765 Jul 1999 JP
11212642 Aug 1999 JP
11213157 Aug 1999 JP
11508810 Aug 1999 JP
11510935 Sep 1999 JP
11282532 Oct 1999 JP
11282533 Oct 1999 JP
11295412 Oct 1999 JP
11346964 Dec 1999 JP
2000047728 Feb 2000 JP
2000056006 Feb 2000 JP
2000056831 Feb 2000 JP
2000060782 Feb 2000 JP
2000066722 Mar 2000 JP
2000075925 Mar 2000 JP
2000102499 Apr 2000 JP
2000275321 Oct 2000 JP
2000279353 Oct 2000 JP
2000353014 Dec 2000 JP
2001022443 Jan 2001 JP
2001067588 Mar 2001 JP
2001087182 Apr 2001 JP
2001121455 May 2001 JP
2001125641 May 2001 JP
2001508572 Jun 2001 JP
2001197008 Jul 2001 JP
3197758 Aug 2001 JP
3201903 Aug 2001 JP
2001216482 Aug 2001 JP
2001258807 Sep 2001 JP
2001265437 Sep 2001 JP
2001275908 Oct 2001 JP
2001289939 Oct 2001 JP
2001-522079 Nov 2001 JP
2001306170 Nov 2001 JP
2001525567 Dec 2001 JP
2002-82720 Mar 2002 JP
2002073170 Mar 2002 JP
2002078650 Mar 2002 JP
2002204768 Jul 2002 JP
2002204769 Jul 2002 JP
2002247510 Aug 2002 JP
2002532178 Oct 2002 JP
2002532180 Oct 2002 JP
2002323925 Nov 2002 JP
2002333920 Nov 2002 JP
03356170 Dec 2002 JP
2002355206 Dec 2002 JP
2002360471 Dec 2002 JP
2002360482 Dec 2002 JP
2002366227 Dec 2002 JP
2002369778 Dec 2002 JP
2003005296 Jan 2003 JP
2003010076 Jan 2003 JP
2003010088 Jan 2003 JP
2003028528 Jan 2003 JP
03375843 Feb 2003 JP
2003036116 Feb 2003 JP
2003038401 Feb 2003 JP
2003038402 Feb 2003 JP
2003047579 Feb 2003 JP
2003505127 Feb 2003 JP
2003061882 Mar 2003 JP
2003084994 Mar 2003 JP
2003-515210 Apr 2003 JP
2003167628 Jun 2003 JP
2003180586 Jul 2003 JP
2003180587 Jul 2003 JP
2003186539 Jul 2003 JP
2003190064 Jul 2003 JP
2003241836 Aug 2003 JP
2003262520 Sep 2003 JP
2003304992 Oct 2003 JP
2003310509 Nov 2003 JP
2003330543 Nov 2003 JP
2004123040 Apr 2004 JP
2004148021 May 2004 JP
2004160102 Jun 2004 JP
2004166968 Jun 2004 JP
2004198330 Jul 2004 JP
2004219185 Aug 2004 JP
2004351234 Dec 2004 JP
2005118354 May 2005 JP
2005211360 Aug 2005 JP
2005224265 Aug 2005 JP
2005230032 Sep 2005 JP
2005245916 Sep 2005 JP
2005346700 Dec 2005 JP
2005352707 Dec 2005 JP
2006043071 Feb 2006 JP
2006155274 Jun 2006 JP
2006164223 Jun 2006 JP
2006227673 Aug 2006 JP
2006247467 Sep 2006 JP
2006260161 Sep 2006 JP
2006293662 Oct 2006 JP
2006296697 Nov 2006 JP
2007034866 Feb 2007 JP
2007213180 Aug 2007 JP
2009015611 Jan 2009 JP
2010198552 Sep 2010 JP
9526512 Oct 1995 WO
9530887 Nov 1995 WO
9617258 Jun 1996 WO
9715224 May 1997 WO
9740734 Nov 1997 WO
9741451 Nov 1997 WO
9853456 Nov 1998 WO
9905580 Feb 1999 WO
9916078 Apr 1999 WO
WO 9923543 May 1999 WO
9938056 Jul 1999 WO
9938237 Jul 1999 WO
9943250 Sep 1999 WO
0038026 Jun 2000 WO
0038028 Jun 2000 WO
0038029 Jun 2000 WO
0004430 Oct 2000 WO
0078410 Dec 2000 WO
0106904 Feb 2001 WO
0106905 Feb 2001 WO
WO 0137060 May 2001 WO
01080703 Nov 2001 WO
0191623 Dec 2001 WO
0224292 Mar 2002 WO
0239864 May 2002 WO
0239868 May 2002 WO
02062194 Aug 2002 WO
02067744 Sep 2002 WO
02067745 Sep 2002 WO
02067752 Sep 2002 WO
02069774 Sep 2002 WO
02069775 Sep 2002 WO
02071175 Sep 2002 WO
02074150 Sep 2002 WO
02075356 Sep 2002 WO
02075469 Sep 2002 WO
02075470 Sep 2002 WO
2002075350 Sep 2002 WO
02081074 Oct 2002 WO
02101477 Dec 2002 WO
03015220 Feb 2003 WO
03024292 Mar 2003 WO
03040546 May 2003 WO
03040845 May 2003 WO
03040846 May 2003 WO
03062850 Jul 2003 WO
03062852 Jul 2003 WO
2004004533 Jan 2004 WO
2004004534 Jan 2004 WO
2004006034 Jan 2004 WO
2004025947 Mar 2004 WO
2004058028 Jul 2004 WO
2004059409 Jul 2004 WO
2005006935 Jan 2005 WO
2005037496 Apr 2005 WO
2005055795 Jun 2005 WO
2005055796 Jun 2005 WO
2005076545 Aug 2005 WO
2005077243 Aug 2005 WO
2005077244 Aug 2005 WO
2005081074 Sep 2005 WO
2005082223 Sep 2005 WO
2005083541 Sep 2005 WO
2005098475 Oct 2005 WO
2005098476 Oct 2005 WO
2006046400 May 2006 WO
2006061133 Jun 2006 WO
2006068403 Jun 2006 WO
2006073248 Jul 2006 WO
2006089307 Aug 2006 WO
2007028049 Mar 2007 WO
2007036490 Apr 2007 WO
2007065033 Jun 2007 WO
2007137234 Nov 2007 WO
Non-Patent Literature Citations (207)
Entry
Gutmann et al., A Constant-Time Algorithm for Vector Field SLAM using an Exactly Sparse Extended Information Filter, Evolution Robotics, 8 pages.
Gutmann et al., Vector Field SLAM, Evolution Robotics, 7 pages.
Becker, C.; Salas, J.; Tokusei, K.; Latombe, J.-C.; .: “Reliable navigation using landmarks,” Robotics and Automation, 1995. Proceedings, 1995 IEEE International Conference on Robotics and Automation, vol. 1, 21-27, May 21-27, 1995 pp. 401-406, vol. 1.
International Search Report for PCT/US05/010200, dated Aug. 2, 2005.
International Search Report for PCT/US05/010244, dated Aug. 2, 2005.
Japanese Office Action, JP Patent Application No. 2007-506413, dated May 26, 2010, English Translation and Japanese Office Action.
Andersen et al., “Landmark based navigation strategies,” SPIE Conference on Mobile Robots XIII, SPIE vol. 3525, pp. 170-181, Jan. 8, 1999.
Ascii, Mar. 25, 2002, http://ascii.jp/elem/000/000/330/330024/, accessed Nov. 2011, 15 pages (with English translation).
Barker, “Navigation by the Stars—Ben Barker 4th Year Project,” Nov. 2004, 20 pages.
Benayad-Cherif et al., “Mobile Robot Navigation Sensors,” SPIE vol. 1831 Mobile Robots, VII, pp. 378-387, 1992.
Betke et al. “Mobile robot localization using landmarks,” Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems '94 Advanced Robotic Systems and the Real World' (IROS '94), Accessed via IEEE Xplore, 1994, 8 pages.
Bison et al., “Using a structured beacon for cooperative position estimation,” Robotics and Autonomous Systems, 29(1):33-40, Oct. 1999.
Blaasvaer et al., “AMOR—An Autonomous Mobile Robot Navigation System,” Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 2266-2271, 1994.
Borges et al., “Optimal Mobile Robot Pose Estimation Using Geometrical Maps,” IEEE Transactions on Robotics and Automation, 18(1): 87-94, Feb. 2002.
Braunstingl et al., “Fuzzy Logic Wall Following of a Mobile Robot Based on the Concept of General Perception,” ICAR '95, 7th International Conference on Advanced Robotics, Sant Feliu De Guixols, Spain, pp. 367-376, Sep. 1995.
Bulusu et al., “Self Configuring Localization systems: Design and Experimental Evaluation,”ACM Transactions on Embedded Computing Systems, 3(1):24-60, 2003.
Caccia et al., “Bottom-Following for Remotely Operated Vehicles,” 5th IFAC Conference, Alaborg, Denmark, pp. 245-250, Aug. 2000.
Chae et al., “StarLITE: A new artificial landmark for the navigation of mobile robots,” http://www.irc.atr.jp/jk-nrs2005/pdf/Starlite.pdf, 4 pages, 2005.
Chamberlin et al., “Team 1: Robot Locator Beacon System,” NASA Goddard SFC, Design Proposal, 15 pages, Feb. 2006.
Champy, “Physical management of IT assets in Data Centers using RFID technologies,” RFID 2005 University, Oct. 12-14, 2005 , 19 pages.
Chiri, “Joystick Control for Tiny OS Robot,” http://www.eecs.berkeley.edu/Programs/ugrad/superb/papers2002/chiri.pdf. 12 pages, Aug. 2002.
Christensen et al. “Theoretical Methods for Planning and Control in Mobile Robotics,” 1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 81-86, May 1997.
CleanMate 365, Intelligent Automatic Vacuum Cleaner, Model No. QQ-1, User Manual www.metapo.com/support/user—manual.pdf, Dec. 2005, 11 pages.
Clerentin et al., “A localization method based on two omnidirectional perception systems cooperation,” Proc of IEEE International Conference on Robotics & Automation, San Francisco, CA vol. 2, pp. 1219-1224, Apr. 2000.
Corke, “High Performance Visual serving for robots end-point control,” SPIE vol. 2056, Intelligent Robots and Computer Vision, 1993, 10 pages.
Cozman et al., “Robot Localization using a Computer Vision Sextant,” IEEE International Midwest Conference on Robotics and Automation, pp. 106-111, 1995.
D'Orazio et al., “Model based Vision System for mobile robot position estimation”, SPIE, vol. 2058 Mobile Robots VIII, pp. 38-49, 1992.
De Bakker et al., “Smart PSD- array for sheet of light range imaging”, Proc. Of SPIE, vol. 3965, pp. 1-12, May 2000.
Denning Roboscrub image (1989), 1 page.
Desaulniers et al., “An Efficient Algorithm to find a shortest path for a car-like Robot,” IEEE Transactions on robotics and Automation, 11(6):819-828, Dec. 1995.
Dorfmüller-Ulhaas, “Optical Tracking From User Motion to 3D Interaction,” http://www.cg.tuwien.ac.at/research/publications/2002/Dorfmueller-Ulhaas-thesis, 182 pages, 2002.
Dorsch et al., “Laser Triangulation: Fundamental uncertainty in distance measurement,” Applied Optics, 33(7):1306-1314, Mar. 1994.
Doty et al., “Sweep Strategies for a Sensory-Driven, Behavior-Based Vacuum Cleaning Agent,” AAAI 1993 Fall Symposium Series, Instantiating Real-World Agents, pp. 1-6, Oct. 22-24, 1993.
Dudek et al., “Localizing a Robot with Minimum Travel” Proceedings of the sixth annual ACM-SIAM symposium on Discrete Algorithms, 27(2):583-604, Apr. 1998.
Dulimarta et al., “Mobile Robot Localization in Indoor Environment”, Pattern Recognition, 30(1):99-111, 1997.
Dyson's Robot Vacuum Cleaner—the DC06, May 2004, Retrieved from the Internet: URL< http://www.gizmag.com/go/1282/>. Accessed Nov. 2011, 3 pages.
EBay, “Roomba Timer -> Timed Cleaning-Floorvac Robotic Vacuum,” Retrieved from the Internet: URL Cgi.ebay.com/ws/eBay|SAP|.dll?viewitem&category=43526&item=4375198387&rd=1, 5 pages, Apr. 2005.
Electrolux Trilobite, “Time to enjoy life,” Retrieved from the Internet: URL<http://www.robocon.co.kr/trilobite/Presentation—Trilobite—Kor—030104.ppt, 26 pages, accessed Dec. 2011.
Electrolux Trilobite, Jan. 12, 2001, http://www.electroluxui.com:8080/2002%5C822%5C833102EN.pdf, accessed Jul. 2, 2012, 10 pages.
Electrolux, “Designed for the well-lived home,” Retrieved from the Internet: URL<http://www.electroluxusa.com/node57.as[?currentURL=node142.asp%3F >. Accessed Mar. 2005, 2 pages.
Eren et al., “Accuracy in position estimation of mobile robots based on coded infrared signal transmission,” Proceedings: Integrating Intelligent Instrumentation and Control, Instrumentation and Measurement Technology Conference, 1995, IMTC/95. pp. 548-551, 1995.
Eren et al., “Operation of Mobile Robots in a Structured Infrared Environment,” Proceedings ‘Sensing, Processing, Networking’, IEEE Instrumentation and Measurement Technology Conference, 1997 (IMTC/97), Ottawa, Canada vol. 1, pp. 20-25, May 1997.
Euroflex Intelligente Monstre, (English excerpt only), 2006, 15 pages.
Euroflex, Jan. 2006, Retrieved from the Internet: URL<http://www.euroflex.tv/novita—dett.php?id=15, accessed Nov. 2011, 1 page.
eVac Robotic Vacuum S1727 Instruction Manual, Sharper Image Corp, Copyright 2004, 16 pages.
Everyday Robots, “Everyday Robots: Reviews, Discussion and News for Consumers,” Aug. 2004, Retrieved from the Internet: URL<www.everydayrobots.com/index.php?option=content&task=view&id=9> (Sep. 2012), 4 pages.
Evolution Robotics, “NorthStar- Low-cost Indoor Localiztion—How it Works,” E Evolution Robotics , 2 pages, 2005.
Facchinetti Claudio et al., “Self-Positioning Robot Navigation Using Ceiling Images Sequences,” ACCV '95, 5 pages, Dec. 1995.
Facchinetti Claudio et al., “Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation,” ICARCV '94, vol. 3, pp. 1694-1698, 1994.
Facts on Trilobite, webpage, Retrieved from the Internet: URL<http://trilobiteelectroluxse/presskit—en/model11335asp?print=yes&pressID=>. 2 pages, accessed Dec. 2003.
Fairfield et al., “Mobile Robot Localization with Sparse Landmarks,” SPIE vol. 4573, pp. 148-155, 2002.
Favre-Bulle, “Efficient tracking of 3D—Robot Position by Dynamic Triangulation,” IEEE Instrumentation and Measurement Technology Conference IMTC 98 Session on Instrumentation and Measurement in Robotics, vol. 1, pp. 446-449, May 1998.
Fayman, “Exploiting Process Integration and Composition in the context of Active Vision,” IEEE Transactions on Systems, Man, and Cybernetics—Part C: Application and reviews, vol. 29, No. 1, pp. 73-86, Feb. 1999.
Floorbot GE Plastics—IMAGE, available at http://www.fuseid.com/, 1989-1990, Accessed Sep. 2012, 1 page.
Floorbotics, VR8 Floor Cleaning Robot, Product Description for Manufacturing, URL: <http://www.consensus.sem.au/SoftwareAwards/CSAarchive/CSA2004/CSAart04/FloorBot/F>. Mar. 2004, 11 pages.
Franz et al., “Biomimetric robot navigation”, Robotics and Autonomous Systems, vol. 30 pp. 133-153, 2000.
Friendly Robotics, “Friendly Robotics—Friendly Vac, Robotic Vacuum Cleaner,” Retrieved from the Internet: URL< www.friendlyrobotics.com/vac.htm > 5 pages, Apr. 2005.
Friendly Robotics, Retrieved from the Internet: URL<http://www.robotsandrelax.com/PDFs/RV400Manual.pdf>. 18 pages, accessed Dec. 2011.
Fuentes et al., “Mobile Robotics 1994,” University of Rochester. Computer Science Department, TR 588, 44 pages, Dec. 1994.
Fukuda et al., “Navigation System based on Ceiling Landmark Recognition for Autonomous mobile robot,” 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Pittsburgh, PA, pp. 1466/1471, Aug. 1995.
Gat, “Robust Low-Computation Sensor-driven Control for Task-Directed Navigation,” Proc of IEEE International Conference on Robotics and Automation , Sacramento, CA pp. 2484-2489, Apr. 1991.
Gionis, “A hand-held optical surface scanner for environmental Modeling and Virtual Reality,” Virtual Reality World, 16 pages, 1996.
Goncalves et al., “A Visual Front-End for Simultaneous Localization and Mapping”, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 44-49, Apr. 2005.
Gregg et al., “Autonomous Lawn Care Applications,” 2006 Florida Conference on Recent Advances in Robotics, Miami, Florida, May 25-26, 2006, Florida International University, 5 pages.
Grumet, “Robots Clean House,” Popular Mechanics, Nov. 2003, 3 pages.
Hamamatsu “Si PIN Diode S5980, S5981 S5870- Multi-element photodiodes for surface mounting,” Hamatsu Photonics, 2 pages, Apr. 2004.
Hammacher Schlemmer , “Electrolux Trilobite Robotic Vacuum,” Retrieved from the Internet: URL< www.hammacher.com/publish/71579.asp?promo=xsells>. 3 pages, Mar. 2005.
Haralick et al. “Pose Estimation from Corresponding Point Data”, IEEE Transactions on Systems, Man, and Cybernetics, 19(6):1426-1446, Nov. 1989.
Hausler, “About the Scaling Behaviour of Optical Range Sensors,” Fringe '97, Proceedings of the 3rd International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, pp. 147-155, Sep. 1997.
Hitachi, http://www.hitachi.co.jp/New/cnews/hi—030529—hi—030529.pdf , 15 pages, May 29, 2003 (with English translation).
Hitachi: News release: “The home cleaning robot of the autonomous movement type (experimental machine),” Retrieved from the Internet: URL< www.i4u.com./japanreleases/hitachirobot.htm>. 5 pages, Mar. 2005.
Hoag et al., “Navigation and Guidance in interstellar space,” ACTA Astronautica, vol. 2, pp. 513-533 , Feb. 1975.
Home Robot—UBOT; Microbotusa.com, retrieved from the WWW at www.microrobotusa.com, accessed Dec. 2, 2008, 2 pages.
Huntsberger et al., “CAMPOUT: A Control Architecture for Tightly Coupled Coordination of Multirobot Systems for Planetary Surface Exploration,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 33(5):550-559, Sep. 2003.
Iirobotics.com, “Samsung Unveils Its Multifunction Robot Vacuum,” Retrieved from the Internet: URL<.www.iirobotics.com/webpages/hotstuff.php?ubre=111>. 3 pages, Mar. 2005.
InMach “Intelligent Machines,” Retrieved from the Internet: URL<www.inmach.de/inside.html>. 1 page , Nov. 2008.
Innovation First, “2004 EDU Robot Controller Reference Guide,” Retrieved from the Internet: URL<http://www.ifirobotics.com>. 13 pages, Mar. 2004.
IT media, Retrieved from the Internet: URL<http://www.itmedia.co.jp/news/0111/16/robofesta—m.html>. Accessed Nov. 1, 2011, 8 pages (with English translation).
It's eye, Retrieved from the Internet: URL< www.hitachi.co.jp/rd/pdf/topics/hitac2003—10.pdf>. 11 pages, 2003.
Jarosiewicz et al., “Final Report—Lucid,” University of Florida, Departmetn of Electrical and Computer Engineering, EEL 5666—Intelligent Machine Design Laboratory, 50 pages, Aug. 1999.
Jensfelt et al., “Active Global Localization for a mobile robot using multiple hypothesis tracking,” IEEE Transactions on Robots and Automation, 17(5): 748-760, Oct. 2001.
Jeong et al., “An intelligent map-building system for indoor mobile robot using low cost photo sensors,” SPIE, vol. 6042, 6 pages, 2005.
Kahney, “Robot Vacs are in the House,” Retrieved from the Internet: URL<www.wired.com/news/technology/o,1282,59237,00.html>. 6 pages, Jun. 2003.
Karcher “Karcher RoboCleaner RC 3000,” Retrieved from the Internet: URL<www.robocleaner.de/english/screen3.html>. 4 pages, Dec. 2003.
Karcher RC 3000 Cleaning Robot-user manual Manufacturer: Alfred-Karcher GmbH & Co, Cleaning Systems, Alfred Karcher-Str 28-40, PO Box 160, D-71349 Winnenden, Germany, Dec. 2002, 8 pages.
Karcher RC3000 RoboCleaner,- IMAGE, Accessed at <http://www.karcher.de/versions/int/assets/video/2—4—robo—en.swf>. Accessed Sep. 2009, 1 page.
Karcher USA, RC3000 Robotic Cleaner, website: http://www.karcher-usa.com/showproducts.php?op=view prod&param1=143&param2=&param3=, 3 pages, accessed Mar. 2005.
Karcher, “Product Manual Download Karch”, available at www.karcher.com, 16 pages, 2004.
Karlsson et al, “Core Technologies for service Robotics,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2979-2984, Sep. 2004.
Karlsson et al., The vSLAM Algorithm for Robust Localization and Mapping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 24-29, Apr. 2005.
King and Weiman, “HelpmateTM Autonomous Mobile Robots Navigation Systems,” SPIE vol. 1388 Mobile Robots, pp. 190-198, 1990.
Kleinberg, The Localization Problem for Mobile Robots, Laboratory for Computer Science, Massachusetts Institute of Technology, 1994 IEEE, pp. 521-531, 1994.
Knights, et al., “Localization and Identification of Visual Landmarks,” Journal of Computing Sciences in Colleges, 16(4):312-313, May 2001.
Kolodko et al., “Experimental System for Real-Time Motion Estimation,” Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), pp. 981-986, 2003.
Komoriya et al., “Planning of Landmark Measurement for the Navigation of a Mobile Robot,” Proceedings of the 1992 IEEE/RSJ International Cofnerence on Intelligent Robots and Systems, Raleigh, NC pp. 1476-1481, Jul. 1992.
Koolvac Robotic Vacuum Cleaner Owner's Manual, Koolatron, 2004, 13 pages.
Krotkov et al., “Digital Sextant,” Downloaded from the internet at: http://www.cs.cmu.edu/˜epk/ , 1 page, 1995.
Krupa et al., “Autonomous 3-D Positioning of Surgical Instruments in Robotized Laparoscopic Surgery Using Visual Servoin,” IEEE Transactions on Robotics and Automation, 19(5):842-853, Oct. 2003.
Kuhl et al., “Self Localization in Environments using Visual Angles,” VRCAI '04 Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual Reality continuum and its applications in industry, pp. 472-475, 2004.
Kurs et al, Wireless Power transfer via Strongly Coupled Magnetic Resonances, Downloaded from www.sciencemag.org, Aug. 2007, 5 pages.
Kurth, “Range-Only Robot Localization and SLAM with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May 2004, accessed Jul. 27, 2012.
Kwon et al., “Table Recognition through Range-based Candidate Generation and Vision based Candidate Evaluation,” ICAR 2007, The 13th International Conference on Advanced Robotics Aug. 21-24, 2007, Jeju, Korea, pp. 918-923, 2007.
Lambrinos et al., “A mobile robot employing insect strategies for navigation,” Retrieved from the Internal: URL<http://www8.cs.umu.se/kurser/TDBD17/VT04/dl/Assignment%20Papers/lambrinos-RAS-2000.pdf>. 38 pages, Feb. 1999.
Lang et al., “Visual Measurement of Orientation Using Ceiling Features”, 1994 IEEE, pp. 552-555, 1994.
Lapin, “Adaptive position estimation for an automated guided vehicle,” SPIE, vol. 1831 Mobile Robots VII, pp. 82-94, 1992.
LaValle et al., “Robot Motion Planning in a Changing, Partially Predictable Environment,” 1994 IEEE International Symposium on Intelligent Control, Columbus, OH, pp. 261-266, Aug. 1994.
Lee et al., “Development of Indoor Navigation system for Humanoid Robot Using Multi-sensors Integration”, ION NTM, San Diego, CA pp. 798-805, Jan. 2007.
Lee et al., “Localization of a Mobile Robot Using the Image of a Moving Object,” IEEE Transaction on Industrial Electronics, 50(3):612-619, Jun. 2003.
Leonard et al., “Mobile Robot Localization by tracking Geometric Beacons,” IEEE Transaction on Robotics and Automation, 7(3):376-382, Jun. 1991.
Li et al. “Robust Statistical Methods for Securing Wireless Localization in Sensor Networks,” Information Processing in Sensor Networks, 2005, Fourth International Symposium on, pp. 91-98, Apr. 2005.
Li et al., “Making a Local Map of Indoor Environments by Swiveling a Camera and a Sonar,” Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 954-959, 1999.
Lin et al., “Mobile Robot Navigation Using Artificial Landmarks,” Journal of robotics System, 14(2): 93-106, 1997.
Linde, Dissertation-“On Aspects of Indoor Localization,” Available at: https://eldorado.tu-dortmund.de/handle/2003/22854, University of Dortmund, 138 pages, Aug. 2006.
Lumelsky et al., “An Algorithm for Maze Searching with Azimuth Input”, 1994 IEEE International Conference on Robotics and Automation, San Diego, CA vol. 1, pp. 111-116, 1994.
Luo et al., “Real-time Area-Covering Operations with Obstacle Avoidance for Cleaning Robots,” IEEE, pp. 2359-2364, 2002.
Ma, Thesis—“Documentation on Northstar,” California Institute of Technology, 14 pages, May 2006.
Madsen et al., “Optimal landmark selection for triangulation of robot position,” Journal of Robotics and Autonomous Systems, vol. 13 pp. 277-292, 1998.
Malik et al., “Virtual Prototyping for Conceptual Design of a Tracked Mobile Robot,” Electrical and Computer Engineering, Canadian Conference on, IEEE, PI. pp. 2349-2352, May 2006.
Martishevcky, “The Accuracy of point light target coordinate determination by dissectoral tracking system”, SPIE vol. 2591, pp. 25-30, Oct. 23, 2005.
Maschinemarkt Würzburg 105, No. 27, pp. 3, 30, Jul. 5, 1999 (with English translation).
Matsumura Camera Online Shop: Retrieved from the Internet: URL<http://www.rakuten.co.jp/matsucame/587179/711512/>. Accessed Nov. 2011, 15 pages (with English translation).
Matsutek Enterprises Co. Ltd, “Automatic Rechargeable Vacuum Cleaner,” http://matsutek.manufacturer.globalsources.com/si/6008801427181/pdtl/Home-vacuum/10 . . . , Apr. 2007, 3 pages.
McGillem et al., “Infra-red Lacation System for Navigation and Autonomous Vehicles,” 1988 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1236-1238, Apr. 1988.
McGillem,et al. “A Beacon Navigation Method for Autonomous Vehicles,” IEEE Transactions on Vehicular Technology, 38(3):132-139, Aug. 1989.
McLurkin “Stupid Robot Tricks: A Behavior-based Distributed Algorithm Library for Programming Swarms of Robots,” Paper submitted for requirements of BSEE at MIT, May 2004, 127 pages.
McLurkin, “The Ants: A community of Microrobots,” Paper submitted for requirements of BSEE at MIT, May 1995, 60 pages.
Michelson, “Autonomous navigation,” McGraw-Hill—Access Science, Encyclopedia of Science and Technology Online, 2007, 4 pages.
Miro et al., “Towards Vision Based Navigation in Large Indoor Environments,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2096-2102, Oct. 2006.
MobileMag, “Samsung Unveils High-tech Robot Vacuum Cleaner,” Retrieved from the Internet: URL<http://www.mobilemag.com/content/100/102/C2261/>. 4 pages, Mar. 2005.
Monteiro et al., “Visual Servoing for Fast Mobile Robot: Adaptive Estimation of Kinematic Parameters,” Proceedings of the IECON '93., International Conference on Industrial Electronics, Maui, HI, pp. 1588-1593, Nov. 1993.
Moore et al., “A simple Map-bases Localization strategy using range measurements,” SPIE, vol. 5804 pp. 612-620, 2005.
Morland,“Autonomous Lawnmower Control”, Downloaded from the internet at: http://cns.bu.edu/˜cjmorlan/robotics/lawnmower/report.pdf, 10 pages, Jul. 2002.
Munich et al., “ERSP: A Software Platform and Architecture for the Service Robotics Industry,” Intelligent Robots and Systems, 2005. (IROS 2005), pp. 460-467, Aug. 2005.
Munich et al., “SIFT-ing Through Features with ViPR”, IEEE Robotics & Automation Magazine, pp. 72-77, Sep. 2006.
Nam et al., “Real-Time Dynamic Visual Tracking Using PSD Sensors and extended Trapezoidal Motion Planning”, Applied Intelligence 10, pp. 53-70, 1999.
Nitu et al., “Optomechatronic System for Position Detection of a Mobile Mini-Robot,” IEEE Ttransactions on Industrial Electronics, 52(4):969-973, Aug. 2005.
On Robo, “Robot Reviews Samsung Robot Vacuum (VC-RP30W),” Retrieved from the Internet: URL <www.onrobo.com/reviews/AT—Home/vacuum—cleaners/on00vcrb30rosam/index.htm>. 2 pages, 2005.
OnRobo “Samsung Unveils Its Multifunction Robot Vacuum,” Retrieved from the Internet: URL <www.onrobo.com/enews/0210/samsung—vacuum.shtml>. 3 pages, Mar. 2005.
Pages et al., “A camera-projector system for robot positioning by visual serving,” Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW06), 8 pages, Jun. 2006.
Pages et al., “Optimizing Plane-to-Plane Positioning Tasks by Image-Based Visual Servoing and Structured Light,” IEEE Transactions on Robotics, 22(5):1000-1010, Oct. 2006.
Pages et al., “Robust decoupled visual servoing based on structured light,” 2005 IEEE/RSJ, Int. Conf. on Intelligent Robots and Systems, pp. 2676-2681, 2005.
Park et al., “A Neural Network Based Real-Time Robot Tracking Controller Using Position Sensitive Detectors,” IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on Neutral Networks, Orlando, Florida pp. 2754-2758, Jun./Jul. 1994.
Park et al., “Dynamic Visual Servo Control of Robot Manipulators using Neutral Networks,” The Korean Institute Telematics and Electronics, 29-B(10):771-779, Oct. 1992.
Paromtchik “Toward Optical Guidance of Mobile Robots,” Proceedings of the Fourth World Multiconference on Systemics, Cybermetics and Informatics, Orlando, FL, USA, Jul. 23, 2000, vol. IX, pp. 44-49, available at http://emotion.inrialpes.fr/˜paromt/infos/papers/paromtchik:asama:sci:2000.ps.gz, accessed Jul. 3, 2012, 6 pages.
Paromtchik et al., “Optical Guidance System for Multiple mobile Robots,” Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, vol. 3, pp. 2935-2940, May 2001.
Penna et al., “Models for Map Building and Navigation, IEEE Transactions on Systems. Man. And Cybernetics.,” 23(5):1276-1301, Sep./Oct. 1993.
Pirjanian et al. “Representation and Execution of Plan Sequences for Multi-Agent Systems,” Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, pp. 2117-2123, Oct. 2001.
Pirjanian et al., “A decision-theoretic approach to fuzzy behavior coordination”, 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1999. CIRA '99., Monterey, CA, pp. 101-106, Nov. 1999.
Pirjanian et al., “Distributed Control for a Modular, Reconfigurable Cliff Robot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 4083-4088, May 2002.
Pirjanian et al., “Improving Task Reliability by Fusion of Redundant Homogeneous Modules Using Voting Schemes,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM, pp. 425-430, Apr. 1997.
Pirjanian et al., “Multi-Robot Target Acquisition using Multiple Objective Behavior Coordination,” Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 2696-2702, Apr. 2000.
Pirjanian, “Challenges for Standards for consumer Robotics,” IEEE Workshop on Advanced Robotics and its Social impacts, pp. 260-264, Jun. 2005.
Pirjanian, “Reliable Reaction,” Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 158-165, 1996.
Prassler et al., “A Short History of Cleaning Robots,” Autonomous Robots 9, 211-226, 2000, 16 pages.
Put Your Roomba . . . On, Automatic webpages: http://www.acomputeredge.com/roomba, 5 pages, accessed Apr. 2005.
Remazeilles et al., “Image based robot navigation in 3D environments,” Proc. of SPIE, vol. 6052, pp. 1-14, Dec. 2005.
Rives et al., “Visual servoing based on ellipse features,” SPIE, vol. 2056 Intelligent Robots and Computer Vision pp. 356-367, 1993.
Roboking—not just a vacuum cleaner, a robot!, Jan. 21, 2004, infocom.uz/2004/01/21/robokingne-prosto-pyilesos-a-robot/, accessed Oct. 10, 2011, 5 pages.
RoboMaid Sweeps Your Floors So You Won't Have to, the Official Site, website: Retrieved from the Internet: URL<http://therobomaid.com/>. 2 pages, accessed Mar. 2005.
Robot Buying Guide, “LG announces the first robotic vacuum cleaner for Korea,” Retrieved from the Internet: URL<http://robotbg.com/news/2003/04/22/lg—announces—the—first—robotic—vacu>. 1 page, Apr. 2003.
Robotics World, “A Clean Sweep,” 5 pages, Jan. 2001.
Ronnback, “On Methods for Assistive Mobile Robots,” Retrieved from the Internet: URL<http://www.openthesis.org/documents/methods-assistive-mobile-robots-595019.html>. 218 pages, Jan. 2006.
Roth-Tabak et al., “Environment Model for mobile Robots Indoor Navigation,” SPIE, vol. 1388 Mobile Robots, pp. 453-463, 1990.
Sahin et al., “Development of a Visual Object Localization Module for Mobile Robots,” 1999 Third European Workshop on Advanced Mobile Robots, (Eurobot '99), pp. 65-72, 1999.
Salomon et al., “Low-Cost Optical Indoor Localization system for Mobile Objects without Image Processing,” IEEE Conference on Emerging Technologies and Factory Automation, 2006. (ETFA '06), pp. 629-632, Sep. 2006.
Sato, “Range Imaging Based on Moving Pattern Light and Spatio-Temporal Matched Filter,” Proceedings International Conference on Image Processing, vol. 1., Lausanne, Switzerland, pp. 33-36, Sep. 1996.
Schenker et al., “Lightweight rovers for Mars science exploration and sample return,” Intelligent Robots and Computer Vision XVI, SPIE Proc. 3208, pp. 24-36, 1997.
Schofield, “Neither Master nor slave—A Practical Study in the Development and Employment of Cleaning Robots, Emerging Technologies and Factory Automation,” 1999 Proceedings ETFA '99 1999 7th IEEE International Conference on Barcelona, Spain, pp. 1427-1434, Oct. 1999.
Shimoga et al., “Touch and Force Reflection for Telepresence Surgery,” Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, Baltimore, MD, pp. 1049-1050, 1994.
Sim et al, “Learning Visual Landmarks for Pose Estimation,” IEEE International Conference on Robotics and Automation, vol. 3, Detroit, MI, pp. 1972-1978, May 1999.
Sobh et al., “Case Studies in Web-Controlled Devices and Remote Manipulation,” Automation Congress, 2002 Proceedings of the 5th Biannual World, pp. 435-440, Dec. 2002.
Special Reports, “Vacuum Cleaner Robot Operated in Conjunction with 3G Celluar Phone,” 59(9): 3 pages, Retrieved from the Internet: URL<http://www.toshiba.co.jp/tech/review/2004/09/59—0>. 2004.
Stella et al., “Self-Location for Indoor Navigation of Autonomous Vehicles,” Part of the SPIE conference on Enhanced and Synthetic Vision SPIE vol. 3364, pp. 298-302, 1998.
Summet, “Tracking Locations of Moving Hand-held Displays Using Projected Light,” Pervasive 2005, LNCS 3468, pp. 37-46, 2005.
Svedman et al., “Structure from Stereo Vision using Unsynchronized Cameras for Simultaneous Localization and Mapping,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2998, 2005.
SVET Computers—New Technologies—Robot Vacuum Cleaner, Oct. 1999, available at http://www.sk.rs/1999/10/sknt01.html, 1 page, accessed Nov. 1, 2011.
Taipei Times, “Robotic vacuum by Matsuhita about to undergo testing,” Retrieved from the Internet: URL<http://www.taipeitimes.com/News/worldbiz/archives/2002/03/26/0000129338>. accessed Mar. 2002, 2 pages.
Takio et al., “Real-Time Position and Pose Tracking Method of Moving Object Using Visual Servo System,” 47th IEEE International Symposium on Circuits and Systems, pp. 167-170, 2004.
Tech-on!, Retrieved from the Internet: URL<http://techon.nikkeibp.co.jp/members/01db/200203/1006501/>. 7 pages, accessed Nov. 2011 (with English translation).
Teller, “Pervasive pose awareness for people, Objects and Robots,” http://www.ai.mit.edu/lab/dangerous-ideas/Spring2003/teller-pose.pdf, 6 pages, Apr. 2003.
Terada et al., “An Acquisition of the Relation between Vision and Action using Self-Organizing Map and Reinforcement Learning,” 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 429-434, Apr. 1998.
The Sharper Image, eVac Robotic Vacuum—Product Details, www.sharperiamge.com/us/en/templates/products/pipmoreworklprintable.jhtml, 1 page, Accessed Mar. 2005.
TheRobotStore.com, “Friendly Robotics Robotic Vacuum RV400—The Robot Store,” www.therobotstore.com/s.nl/sc.9/category.-109/it.A/id.43/.f, 1 page, Apr. 2005.
Thrun, Sebastian, “Learning Occupancy Grid Maps With Forward Sensor Models,” Autonomous Robots 15, 28 pages, Sep. 1, 2003.
TotalVac.com, RC3000 RoboCleaner website, 2004, Accessed at http://ww.totalvac.com/robot—vacuum.htm (Mar. 2005), 3 pages.
Trebi-Ollennu et al., “Mars Rover Pair Cooperatively Transporting a Long Payload,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 3136-3141, May 2002.
Tribelhorn et al., “Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education,” IEEE, pp. 1393-1399, 2007.
Tse et al., “Design of a Navigation System for a Household Mobile Robot Using Neural Networks,” Department of Manufacturing Engg. & Engg. Management, City University of Hong Kong, pp. 2151-2156, 1998.
UAMA (Asia) Industrial Co., Ltd., “RobotFamily,” 2005, 1 page.
UBOT, cleaning robot capable of wiping with a wet duster, Retrieved from the Internet: URL<http://us.aving.net/news/view.php?articleId=23031>. 4 pages, accessed Nov. 2011.
Watanabe et al., “Position Estimation of Mobile Robots With Internal and External Sensors Using Uncertainty Evolution Technique,” 1990 IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 2011-2016, May 1990.
Watts, “Robot, boldly goes where no man can,” The Times—pp. 20, Jan. 1985.
Wijk et al., “Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking,” IEEE Transactions on Robotics and Automation, 16(6):740-752, Dec. 2000.
Wolf et al., “Robust Vision-Based Localization by Combining an Image-Retrieval System with Monte Carol Localization,”, IEEE Transactions on Robotics, 21(2):208-216, Apr. 2005.
Wolf et al., “Robust Vision-based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C., pp. 359-365, May 2002.
Wong, “EIED Online>> Robot Business”, ED Online ID# 13114, 17 pages, Jul. 2006.
Yamamoto et al., “Optical Sensing for Robot Perception and Localization,” 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14-17, 2005.
Yata et al., “Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer,” Proceedings of the 1998 IEEE, International Conference on Robotics & Automation, Leuven, Belgium, pp. 1590-1596, May 1998.
Yujin Robotics,“An intelligent cleaning robot,” Retrieved from the Internet: URL<http://us.aving.net/news/view.php?articleId=7257>. 8 pages, accessed Nov. 2011.
Yun et al., “Image-Based Absolute Positioning System for Mobile Robot Navigation,” IAPR International Workshops SSPR, Hong Kong, pp. 261-269, Aug. 2006.
Yun et al., “Robust Positioning a Mobile Robot with Active Beacon Sensors,” Lecture Notes in Computer Science, 2006, vol. 4251, pp. 890-897, 2006.
Yuta et al., “Implementation of an Active Optical Range sensor Using Laser Slit for In-Door Intelligent Mobile Robot,” IEE/RSJ International Workshop on Intelligent Robots and Systems (IROS 91) vol. 1, Osaka, Japan, pp. 415-420, Nov. 3-5, 1991.
Zha et al., “Mobile Robot Localization Using Incomplete Maps for Change Detection in a Dynamic Environment,” Advanced Intelligent Mechatronics '97. Final Program and Abstracts., IEEE/ASME International Conference, pp. 110, Jun. 1997.
Zhang et al., “A Novel Mobile Robot Localization Based on Vision,” SPIE vol. 6279, 6 pages, Jan. 2007.
Zoombot Remote Controlled Vaccuum-RV-500 New Roomba 2, website: http://cgi.ebay.com/ws/eBayISAPI.d11?ViewItem&category=43526&item=4373497618&rd=1, accessed Apr. 20, 2005, 7 pages.
Written Opinion of the Searching Authority, PCT/US2004/001504, Aug. 20, 2004, 9 pages.
United States Office Action issued in U.S. Appl. No. 11/633,869, mailed Sep. 16, 2010, 43 pages.
Related Publications (1)
Number Date Country
20110125323 A1 May 2011 US
Provisional Applications (1)
Number Date Country
61280677 Nov 2009 US