Location-based incontinence detection

Abstract
The present disclosure include devices, systems, and methods for location-based incontinence detection and monitoring including a communication device receiving incontinence event indicators occurrence and location indicators.
Description
FIELD

The present disclosure relates to devices, systems, and methods for managing patients of care facilities. More specifically, devices, systems, and methods for detecting incontinence events of patients of care facilities.


BACKGROUND

Patients of care facilities, such as hospitals, may experience incontinence events. In addition to hygiene concerns, such incontinence events generally expose a patient to excessive moisture. Exposure to excessive moisture can have a negative impact on patient care conditions, for example, by increasing the risk and/or severity of bed sores and other mobility related complications. Some of the risks related to incontinence events can be reduced by cleaning and/or removing soiled materials from contact with a patient's skin in a timely manner to reduce the duration and/or severity of the exposure.


SUMMARY

The present application discloses one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter:


According to an aspect of the disclosure, an incontinence detection system may include a patient bed and an incontinence detection device that may be positioned on the patient bed to detect incontinence events. The incontinence detection device may include a sensor adapted to sense the presence of a threshold amount of moisture on the patient bed and to communicate a detection signal that may indicate the presence of the threshold amount of moisture and an RFID-incontinence transmitter that may be in communication with the sensor and that may be adapted to send an incontinence RFID signal that may indicate that the threshold amount of moisture has been sensed in response to the detection signal. The system may further have an RFID-location transmitter that may be fixed relative to the patient bed and that may be configured to send a location RFID signal indicating a unique location identifier. The system may further have an RFID reader that may be configured to receive the incontinence RFID signal and the location RFID signal, and to communicate the occurrence of an incontinence event and the unique location identifier in response to receiving the incontinence RFID signal and the location RFID signal.


In some embodiments, the RFID reader may be configured to generate a communications signal that may indicate both the occurrence of an incontinence event and the unique location identifier to remote devices. The RFID-incontinence transmitter may include a passive RFID device, for example. The passive RFID device may receive excitation from the RFID reader to power the RFID-incontinence transmitter. The RFID reader may be configured to transmit excitation signals at regular intervals to the RFID-incontinence transmitter to power the RFID-incontinence transmitter.


In some embodiments, the RFID-location transmitter may include an active RFID device. The active RFID device may include a power source that may include a photovoltaic cell. The RFID reader may be attached to the patient bed, for example. The incontinence device may include a removable and replaceable pad.


According to another aspect of the present disclosure, an incontinence detection system may include an incontinence detection device for detecting incontinence events. The incontinence detection device may include an incontinence pad and an RFID-incontinence transmitter. The incontinence pad may include at least one sensor that may be adapted to sense the presence of moisture and to communicate a detection signal indicating the presence of moisture to the RFID-incontinence transmitter. The RFID-incontinence transmitter may be adapted to send an incontinence RFID signal indicating that moisture has been sensed in response to receiving the detection signal. The system may include an RFID-location transmitter that may be fixed relative to the patient bed and that may be configured to send a location RFID signal that may indicate a unique location identifier. The system may further have an RFID reader that may be configured to receive the incontinence RFID signal and the location RFID signal, and that may be configured send a communication signal, in response to receiving the incontinence RFID signal and the location RFID signal, that may indicate the occurrence of an incontinence event and the unique location identifier.


In some embodiments, the RFID-incontinence transmitter may include a passive RFID device. The passive RFID device may receive excitation from the RFID reader to power the RFID-incontinence transmitter. The RFID reader may be configured to transmit excitation signals at regular intervals to the RFID-incontinence transmitter to power the RFID-incontinence transmitter.


In some embodiments, the RFID-location transmitter may include an active RFID device. The active RFID device may include a power source that may include a photovoltaic cell. The RFID reader may be attached to the patient support device. The incontinence pad may include a removable and replaceable pad.


According to a further aspect of the present disclosure, a method of detecting an incontinence event on a patient support device having an RFID reader may be provided. The method may include receiving with the RFID reader a location RFID signal that may indicate a unique location identifier, receiving with the RFID reader an incontinence RFID signal that may indicate the presence of moisture of the patient support device, and in response to receiving the incontinence RFID signal, generating a communications signal that may indicate the occurrence of an incontinence event and the unique location identifier.


In some embodiments, receiving with the RFID reader a location RFID signal that may indicate a unique location identifier may include storing the unique location identifier, and generating a communications signal may include retrieving the unique location identifier in response to receiving the incontinence RFID signal. In some embodiments, receiving at least one excitation signal for powering a passive RFID transmitter may include receiving an excitation signal from the RFID reader at regular intervals.


Additional features alone or in combination with any other feature(s), including those listed above and those listed in the claims and those described in detail below, may comprise patentable subject matter. Others will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures in which:



FIG. 1 is a perspective view of an incontinence detection system located within a room of a care facility showing that the incontinence detection system includes a communications device (embodied as an RFID reader) that is attached to a patient bed and is in communication with each of an incontinence detection device (in phantom) that is positioned on the bed and a location transmitter of the room to receive indications of the occurrence of incontinence events and location identifying information;



FIG. 2 is a diagrammatic view of the incontinence detection system of FIG. 1 showing various internal components of a communications device, the incontinence detection device, and the location transmitter, and showing that the communications device is in communication with a network of the care facility; and



FIG. 3 is a process flow diagram of operation of the incontinence detection system of FIGS. 1 and 2.





DETAILED DESCRIPTION OF THE DRAWINGS

Patient incontinence events can increase the risk of bed sores and other complications common to mobility-restricted persons. Reducing a patient's exposure to incontinence events can reduce the potential for related complications. However, in a care facility (such as a hospital) that may care for many patients simultaneously, it can be challenging to detect and/or monitor patients for incontinence events. These challenges can be particularly important to patients with reduced mobility who may depend more intensely on hospital staff to remediate incontinence events. The present disclosure includes devices, systems, and methods for location-based incontinence detection and monitoring that can alert caregivers to the occurrence and location of incontinence events to assist in managing patients and can be easily and effectively retrofitted into existing care facilities and/or patient support devices.


An illustrative embodiment of an incontinence detection system 10 located within a room 100 of a care facility is shown in FIG. 1. The incontinence detection system 10 illustratively includes a patient support device 12 embodied as a patient bed, an incontinence detection device 14 embodied as an incontinence pad installed on the bed 12, a location transmitter 16, and a communication device 18 for receiving information from the incontinence detection device 14 and the location transmitter 16. In the illustrative embodiment, the communication device 18 is embodied as an RFID reader, also known as an interrogator, configured to communicate wirelessly (through radio frequency (RF) signals) with each of the incontinence detection device 14 and the location transmitter 16 to receive indication of incontinence events and location identifiers for communication to caregivers.


The RFID reader 18 illustratively communicates with a network 20 of the care facility as shown in FIG. 1. The RFID reader 18 illustratively sends a signal to the network 20 indicating the occurrence and location of an incontinence event as communicated by the incontinence detection device 14 and the location transmitter 16, respectively. Thus, caregivers can be timely alerted to the occurrence and location of incontinence events, even at remote locations, via the network 20.


As shown in FIG. 1, the patient bed 12 illustratively includes a frame 54 and a mattress 56 supported above the floor by the frame 54. In the illustrative embodiment, the incontinence detection device 14 is positioned on top of the mattress 56 and beneath the bed linens, and the RFID reader 18 is illustratively attached to the frame 54. In some embodiments, the RFID reader 18 may be located in any suitable position for communication with each of the incontinence detection device 14, the location transmitter 18, and the network 20.


In the illustrative embodiment as shown in FIG. 2, the incontinence detection device 14 is embodied as an incontinence pad including a substrate 22, at least one sensor 24 mounted on the substrate 22 to sense the presence of moisture, and communications circuitry 26 communicating with the sensor 24 to receive an indication of moisture presence. The incontinence detection device 14, as an incontinence pad, is illustratively removable and replaceable for easy change out by caregivers and while permitting the new pad to automatically communicate wirelessly with the RFID reader 18 of the same patient bed 12 based on proximity. In some embodiments, upon change out by a caregiver, a new pad may be affirmatively linked to the RFID reader 18 by wireless and/or wired connection. The communications circuitry 26 generates an incontinence signal in response to the sensor 24 having sensed the presence of moisture for communication to the RFID reader 18.


In the illustrative embodiment, the communications circuitry 26 is embodied as a passive RFID device, but in some embodiments may include any number of passive, semi-active, and/or active RFID devices. The communications circuitry 26 is embodied to include at least a microchip 28 and an antenna 30 configured to receive radio frequency (RF) waves from the RFID reader 18 to power the microchip 28. In some embodiments, the communications circuitry 26 may include any variety of hardware and/or software to communicate incontinence detection to the communications device 18 (i.e., the RFID reader).


After occurrence of an incontinence event, RF waves from the RFID reader 18 that are transmitted periodically to interrogate circuitry 26, power the microchip 28 such that if the sensor 24 senses the presence of moisture, the microchip 28 generates an incontinence signal indicating the presence of moisture for communication to the RFID reader 18. If the sensor 24 does not sense the presence of moisture, the microchip 28 illustratively does not generate an incontinence signal regardless of any RF waves received from the RFID reader 18. Alternatively, in the absence of moisture on sensor 24 from an incontinence event, the data transmitted by circuitry 26 indicates the absence of moisture. By using RF-based communications to the RFID reader, the illustrative incontinence detection system 10 enables easy retrofitting to existing equipment and facilities, using components with low power demand as well as low cost incontinence detection design, for example, with the removable and replaceable incontinence pad, to provide location specific incontinence detection and monitoring.


In the illustrative embodiment, the incontinence detection device 14 has a predetermined moisture detection threshold at which to communicate the incontinence signal embodied as a sensing threshold of the sensor 24. In some embodiments, the predetermined moisture detection threshold may include a sensing threshold of the sensor 24, may be adjustable, may be a signal threshold determined by the microchip 28 and/or the RFID reader 18, and/or any combinations thereof.


In the illustrative embodiment as shown in FIG. 2, the RFID reader 18 communicates with the incontinence detection device 14, the location transmitter 16, and the network 20. The RFID reader 18 illustratively includes device communications circuitry 32 for communicating with each of the location transmitter 16 and the incontinence detection device 14, a processor 34, a memory device 36 storing instructions for execution by the processor 34, and a network communication module 38 including circuitry for communicating with the network 20. In the illustrative embodiment, the RFID reader 18 is connected to the on-board battery of the patient bed 12, but in some embodiments may include a dedicated power source. Alternatively or additionally, a power cord of bed 12 is plugged into an alternating current (AC) power outlet and reader 18 is powered from the AC power source via circuitry of bed 12.


In the illustrative embodiment, the RFID reader 18 generates and sends RF waves as an excitation signal at regular intervals to power the incontinence detection device 14 to transmit incontinence signals responsive to sensing the presence of moisture. The device communications circuitry 32 is illustratively embodied to include any number of antennas, receivers, transmitters, amps, modulators, demodulators, and/or other components, and/or combinations thereof arranged to communicate with active and passive RFID devices as directed by the processor 34. The device communications circuitry 32 illustratively powers the communications circuitry 26 of the incontinence detection device 14 and receives any incontinence signals generated therefrom.


In the illustrative embodiment, the location transmitter 16 is configured to communicate with the RFID reader 18. The location transmitter 16 is illustratively embodied as an active RFID device including at least a power source 40, a microchip 42 powered by the power source 40, and an antenna 44 for sending and receiving signals as directed by the microchip 42. In the illustrative embodiment, the power source 40 comprises a photovoltaic cell, but in some embodiments may include a battery, hardwired power from the care facility, any other suitable power source, and/or combinations thereof. In the illustrative embodiment, the location transmitter 16 is embodied as a beacon that transmits the location signal at regular intervals, but in some embodiments may comprise a transponder which receives a request (or activation signal) from one or more devices, for example, the RFID reader 18 to trigger the location transmitter 16 to send the location signal.


In the illustrative embodiment, the RFID reader 18 receives a location signal from the location transmitter 16 indicating a unique location identifier. The unique location identifier is illustratively embodied as an identification code associated with a particular location within the care facility as discussed in additional detail below. The RFID reader 18 illustratively receives the location signal from the location transmitter 16 and stores the indicated unique location identifier in the memory device 36 for retrieval. Upon receiving a new location signal, the RFID reader 18 illustratively updates the stored unique location identifier for retrieval.


When the RFID reader 18 receives an incontinence signal from the incontinence detection device 14, the RFID reader 18 illustratively retrieves the unique location identifier and sends a communications signal to the network 20. The communications signal illustratively indicates the unique location identifier and the occurrence of the incontinence event. In the illustrative embodiment, the communications signal is embodied to indicate a combined identification code generated by the RFID reader 18 and indicating the unique location identifier and the occurrence of the incontinence event. In some embodiments, the communications signal may include separate indicators, for example, separation identification codes, for each of the unique location identifier and the occurrence of the incontinence event.


In the illustrative embodiment, the RFID reader 18 illustratively sends the communications signal to the network 20. The network 20 illustratively receives the communications signal from the RFID reader 18 and alerts caregivers to the occurrence and location of the incontinence event. The network 20 illustratively includes a call system 46 including circuitry for communicating with RFID reader 18 and for conducting various other network communications (for example, communications with caregivers via local terminals and/or mobile devices), a database 48 embodied as a relational database for storing information and/or associating identifying information of the care facility (for example, staff, caregivers, patients, equipment, and locations), a server 50 for facilitating various network operations, and a user interface 52 for interacting with information on the network 20 and communicating over the network 20. An example of a suitable call system 46 may include the NaviCare® Nurse Call system marketed by Hill-Rom Company, Inc. In some embodiments, the network 20 may include any number and/or configuration of hardware and/or software components to perform network operations.


In the illustrative embodiment, the network 20 stores and maintains association of the unique location identifier with the location of the location transmitter 16 for retrieval. The database 48 illustratively stores and the unique location identifier with a predetermined location of the location transmitter 16 within the care facility, illustratively embodied as within room 100.


The network 20 illustratively receives the communications signal from the RFID reader 18, retrieves the predetermined location associated with the indicated unique location identifier and communicates to caregivers the occurrence and location of the incontinence event. In some embodiments, the predetermined location may be any known location including a particular sub-section of room 100. In some embodiments, the unique location identifier may correspond directly to the predetermined location and be received and communicated throughout the network 20 without requiring retrieval of its location association. In the illustrative embodiment, the network 20 communicates the occurrence and location of the incontinence event to caregivers by display on the user interface 52, but in some embodiments may include indication, via the call system 46, through screen indicators, lights, and/or alarms at various locations within the care facility, indication on a mobile device carried by one or more of the caregivers, and/or combinations thereof.


Referring to FIG. 3, an illustrative process flow diagram is shown for detecting and monitoring incontinence event occurrence and location according to steps 60-68. In step 60, the RFID reader 18 receives an incontinence signal. As mentioned above, the RFID reader 18 illustratively receives the incontinence signal from the incontinence detection device 14 as a response to the sensor 24 having sensed the presence of moisture. In the illustrative embodiment, the communications circuitry 26 of the incontinence detection device 14 is a passive RFID device that is power by RF waves from the RFID reader 18. As indicated in step 60a, the RFID reader sends RF waves to power (excite) the incontinence detection device 14 to provide the applicable incontinence signal received in step 60.


In step 62, the RFID reader 18 receives the location signal. As mentioned above, the location transmitter 16 illustratively sends the location signal periodically as a beacon to the RFID reader 18 indicating the unique location identifier. The RFID reader 18 illustratively stores the unique location identifier for retrieval upon reception of an incontinence signal. In some embodiments, the RFID reader 18 may prompt the location transmitter 16 for a location signal in response to receiving the incontinence signal.


In step 64, the RFID reader 18 illustratively retrieves the stored unique location identifier in response to receiving the incontinence signal. In step 66, the RFID reader illustratively generates an identification code indicating the occurrence of an incontinence event and the unique location identifier.


In step 68, the RFID reader 18 communicates the identification code indicating the occurrence and location of the incontinence event to caregivers. The RFID reader 18 illustratively sends the communications signal indicating the occurrence of the incontinence event and the unique location identifier to the network 20 for communication to caregivers. In some embodiments, the communications signal may include an indication of any of the date, the time, the severity, and/or any other identifying information regarding the incontinence event.


In the illustrative embodiment, the RFID reader 18 communicates the communications signal to the network 20 for communication to caregivers, but in some embodiments the RFID reader 18 may communicate to any of local and/or remote devices and/or persons directly and/or indirectly. In some embodiments, in additional to, as a part of, and/or in place of communication with the network 20, the RFID reader 18 may communicate the communications signal to relatively local devices for direct communication to caregivers, for example, to a local user interface, and/or may communicate to intermediate communication devices as a communications relay to the network 20 and/or other devices.


In the illustrative embodiment, RFID communications, including passive, semi-active, and active, are embodied to use the same protocol, but in some embodiments may use any number and type of suitable protocols having appropriate conversion hardware and/or software as appropriate. In some embodiments, the communication device 18 may communicate with the incontinence detection device 14 and the location transmitter 16 by any suitable type of wired and/or wireless communication. The present disclosure includes hardware and/or software (including firmware) circuitry components and arrangements for conducting the communications functions as indicated herein.


The present disclosure includes devices, systems, and methods for detecting and communicating the occurrence and location of incontinence events without introduction of extensive additional hardware and/or software. This includes incontinence and location specific components which can be retrofitted to existing facilities and equipment while reducing the need for additional components and/or processes, for example, multipurpose components which can increase complexity and/or cost.


Although certain illustrative embodiments have been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.

Claims
  • 1. An incontinence detection system, comprising: a patient bed,an incontinence detection device positioned on the patient bed to detect incontinence events, the incontinence detection device including a sensor adapted to sense the presence of a threshold amount of moisture on the patient bed and to communicate a detection signal indicating the presence of the threshold amount of moisture and an RFID-incontinence transmitter in communication with the sensor and adapted to send an incontinence RFID signal indicating that the threshold amount of moisture has been sensed in response to the detection signal,an RFID-location transmitter fixed relative to the patient bed and configured to send a location RFID signal indicating a unique location identifier, andan RFID reader configured to receive the incontinence RFID signal and the location RFID signal, configured to generate an identification code indicating both an occurrence of the threshold amount of moisture as an incontinence event and the unique location identifier, and configured to send, responsive to an incontinence event, a communications signal indicating the identification code to at least one remote device in response to receiving the incontinence RFID signal and the location RFID signal.
  • 2. The incontinence detection system of claim 1, wherein the RFID-incontinence transmitter comprises a passive RFID device.
  • 3. The incontinence detection system of claim 2, wherein the passive RFID device receives excitation from the RFID reader to power the RFID-incontinence transmitter.
  • 4. The incontinence detection system of claim 3, wherein the RFID reader is configured to transmit excitation signals at regular intervals to the RFID-incontinence transmitter to power the RFID-incontinence transmitter.
  • 5. The incontinence detection system of claim 1, wherein the RFID-location transmitter comprises an active RFID device.
  • 6. The incontinence detection system of claim 5, wherein the active RFID device includes a power source comprising a photovoltaic cell.
  • 7. The incontinence detection system of claim 1, wherein the RFID reader is attached to the patient bed.
  • 8. The incontinence detection system of claim 1, wherein the incontinence device comprises a removable and replaceable pad.
  • 9. The incontinence detection system of claim 1, wherein the RFID reader is configured to send the communications signal indicating the identification code to at least one remote device via a nurse call system of a care facility.
  • 10. The incontinence detection system of claim 1, wherein the threshold amount of moisture is a sensing threshold of the sensor.
  • 11. The incontinence detection system of claim 1, wherein the sensor is configured to communicate an indication of no incontinence event when the threshold amount of moisture is absent.
  • 12. An incontinence detection system, comprising: an incontinence detection device for detecting incontinence events, the incontinence detection device including an incontinence pad and an RFID-incontinence transmitter, the incontinence pad including at least one sensor adapted to sense the presence of moisture and to communicate a detection signal indicating the presence of moisture to the RFID-incontinence transmitter, the RFID-incontinence transmitter being adapted to send an incontinence RFID signal indicating that moisture has been sensed in response to receiving the detection signal,an RFID-location transmitter fixed relative to a patient support device and configured to send a location RFID signal indicating a unique location identifier, andan RFID reader configured to receive the incontinence RFID signal and the location RFID signal, and configured to generate an identification code and to transmit an indication of the identification code as a communication signal, in response to receiving the incontinence RFID signal and the location RFID signal, wherein the identification code indicates both an occurrence of the presence of moisture as an incontinence event and the unique location identifier to at least one remote device.
  • 13. The incontinence detection system of claim 12, wherein the RFID-incontinence transmitter comprises a passive RFID device.
  • 14. The incontinence detection system of claim 13, wherein the passive RFID device receives excitation from the RFID reader to power the RFID-incontinence transmitter.
  • 15. The incontinence detection system of claim 14, wherein the RFID reader is configured to transmit excitation signals at regular intervals to the RFID-incontinence transmitter to power the RFID-incontinence transmitter.
  • 16. The incontinence detection system of claim 12, wherein the RFID-location transmitter comprises an active RFID device.
  • 17. The incontinence detection system of claim 16, wherein the active RFID device includes a power source comprising a photovoltaic cell.
  • 18. The incontinence detection system of claim 12, wherein the RFID reader is attached to the patient support device.
  • 19. The incontinence detection system of claim 12, wherein the incontinence pad comprises a removable and replaceable pad.
  • 20. The incontinence detection system of claim 12, wherein the RFID reader is configured to transmit the communications signal over a nurse call system of a care facility.
  • 21. A method of detecting an incontinence event on a patient support device having an RFID reader, comprising: receiving with the RFID reader a location RFID signal indicating a unique location identifier and storing the unique location identifier,receiving with the RFID reader an incontinence RFID signal indicating the presence of moisture, andin response to receiving the incontinence RFID signal, generating an identification code indicating an occurrence of an incontinence event and the unique location identifier, wherein generating the identification code includes retrieving the unique location identifier from storage, and transmitting a communications signal indicating the identification code.
  • 22. The method of detecting an incontinence event of claim 21, further including receiving at least one excitation signal for powering a passive RFID transmitter, including receiving an excitation signal from the RFID reader at regular intervals.
Parent Case Info

The present application claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Application No. 62/327,627, which was filed Apr. 26, 2016, and which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (212)
Number Name Date Kind
1772232 Guilder Aug 1930 A
2127538 Seiger Aug 1938 A
2644050 Seiger Jun 1953 A
2668202 Kaplan Feb 1954 A
2726294 Kroening et al. Dec 1955 A
2907841 Campbell Oct 1959 A
3199095 Ashida Aug 1965 A
3971371 Bloom Jul 1976 A
4069817 Fenote et al. Jan 1978 A
4106001 Mahoney Aug 1978 A
4163449 Regal Aug 1979 A
4191950 Levin et al. Mar 1980 A
4212295 Snyder Jul 1980 A
4228426 Roberts Oct 1980 A
4347503 Uyehara Aug 1982 A
4539559 Kelley et al. Sep 1985 A
4747166 Kuntz May 1988 A
4965554 Darling Oct 1990 A
5081422 Shih Jan 1992 A
5086294 Schwab, Jr. Feb 1992 A
5137033 Norton Aug 1992 A
5144284 Hammett Sep 1992 A
5291181 De Ponte Mar 1994 A
5438721 Pahno et al. Aug 1995 A
5459452 DePonte Oct 1995 A
5491609 Dankman et al. Feb 1996 A
5537095 Dick et al. Jul 1996 A
5675854 Zibetin Oct 1997 A
5760694 Nissim et al. Jun 1998 A
5790035 Ho Aug 1998 A
5824883 Park et al. Oct 1998 A
5910080 Selton Jun 1999 A
5947943 Lee Sep 1999 A
5949332 Kim Sep 1999 A
6028241 Armstead Feb 2000 A
6047419 Fergusaon Apr 2000 A
6104311 Lastinger Aug 2000 A
6292102 Smith Sep 2001 B1
6340932 Rodgers et al. Jan 2002 B1
6341393 Votel Jan 2002 B1
6351215 Rodgers et al. Feb 2002 B2
6362737 Rodgers et al. Mar 2002 B1
6384728 Kanor et al. May 2002 B1
6544200 Smith et al. Apr 2003 B1
6552661 Lastinger et al. Apr 2003 B1
6583722 Jeutter et al. Jun 2003 B2
6603403 Jeutter et al. Aug 2003 B2
6621410 Lastinger et al. Sep 2003 B1
6774800 Friedman et al. Aug 2004 B2
6831562 Rodgers et al. Dec 2004 B2
6832507 van de Berg et al. Dec 2004 B1
6933849 Sawyer Aug 2005 B2
6948205 Van Der Wurf et al. Sep 2005 B2
6982646 Rodgers et al. Jan 2006 B2
7017213 Chisari Mar 2006 B2
7030731 Lastinger et al. Apr 2006 B2
7071830 Sahlberg et al. Jul 2006 B2
7120952 Bass et al. Oct 2006 B1
7181206 Pedersen Feb 2007 B2
7250547 Hofmeister et al. Jul 2007 B1
7253729 Lastinger et al. Aug 2007 B2
7274944 Lastinger et al. Sep 2007 B2
7302278 Lastinger et al. Nov 2007 B2
7305246 Lastinger et al. Dec 2007 B2
7308270 Lastinger et al. Dec 2007 B2
7348930 Lastinger et al. Mar 2008 B2
7349701 Lastinger et al. Mar 2008 B2
7355090 Ales, III et al. Apr 2008 B2
7359675 Lastinger et al. Apr 2008 B2
7400860 Lastinger et al. Jul 2008 B2
7424298 Lastinger et al. Sep 2008 B2
7489252 Long et al. Feb 2009 B2
7489282 Lastinger et al. Feb 2009 B2
7498478 Long et al. Mar 2009 B2
7551089 Sawyer Jun 2009 B2
7586385 Rokhsaz Sep 2009 B2
7595734 Long et al. Sep 2009 B2
7595756 Lastinger et al. Sep 2009 B2
7598853 Becker et al. Oct 2009 B2
7598862 Lastinger et al. Oct 2009 B2
7599699 Lastinger et al. Oct 2009 B2
7616959 Spenik et al. Nov 2009 B2
7633378 Rodgers et al. Dec 2009 B2
7649125 Ales, III et al. Jan 2010 B2
7663483 Spenik et al. Feb 2010 B2
7667600 Woodbury et al. Feb 2010 B2
7812731 Bunza et al. Oct 2010 B2
7822386 Lastinger et al. Oct 2010 B2
7834234 Roe et al. Nov 2010 B2
7834235 Long et al. Nov 2010 B2
7834765 Sawyer Nov 2010 B2
7834766 Sawyer Nov 2010 B2
7838720 Roe et al. Nov 2010 B2
7849544 Flocard et al. Dec 2010 B2
7873319 Lastinger et al. Jan 2011 B2
7977529 Bergman et al. Jul 2011 B2
8009646 Lastinger et al. Aug 2011 B2
8073386 Pedersen Dec 2011 B2
8081043 Rokhsaz Dec 2011 B2
8102254 Becker et al. Jan 2012 B2
8104126 Caminade et al. Jan 2012 B2
8106782 Fredriksson et al. Jan 2012 B2
8111165 Ortega et al. Feb 2012 B2
8111678 Lastinger et al. Feb 2012 B2
8121856 Huster et al. Feb 2012 B2
8181290 Brykalski et al. May 2012 B2
8191187 Brykalski et al. Jun 2012 B2
8196809 Thorstensson Jun 2012 B2
8237572 Clement et al. Aug 2012 B2
8248249 Clement et al. Aug 2012 B2
8270383 Lastinger et al. Aug 2012 B2
8279069 Sawyer Oct 2012 B2
8319633 Becker et al. Nov 2012 B2
8325695 Lastinger et al. Dec 2012 B2
8332975 Brykalski et al. Dec 2012 B2
8345651 Lastinger et al. Jan 2013 B2
8395014 Helmer et al. Mar 2013 B2
8428039 Lastinger et al. Apr 2013 B2
8428605 Pedersen et al. Apr 2013 B2
8461982 Becker et al. Jun 2013 B2
8482305 Johnson Jul 2013 B2
8487774 Reeder et al. Jul 2013 B2
8502684 Bunza et al. Aug 2013 B2
8628506 Ales, III et al. Jan 2014 B2
8674826 Becker et al. Mar 2014 B2
8742929 Sawyer Jun 2014 B2
8749319 Rokhsaz et al. Jun 2014 B2
8766804 Reeder et al. Jul 2014 B2
8842013 Sawyer Sep 2014 B2
8855089 Lastinger et al. Oct 2014 B2
8866615 Sawyer Oct 2014 B2
8878557 Kristiansen et al. Nov 2014 B2
8878676 Koblasz Nov 2014 B2
8896449 Sawyer Nov 2014 B2
8914923 Smith Dec 2014 B2
8933292 Abraham et al. Jan 2015 B2
8962909 Groosman et al. Feb 2015 B2
9048819 Rokhsaz et al. Jun 2015 B2
9107776 Bergman et al. Aug 2015 B2
20020002633 Colling, III Jan 2002 A1
20020011932 Rodgers et al. Jan 2002 A1
20020033757 Rodgers et al. Mar 2002 A1
20020145526 Friedman et al. Oct 2002 A1
20030030568 Lastinger et al. Feb 2003 A1
20050003763 Lastinger et al. Jan 2005 A1
20050003865 Lastinger et al. Jan 2005 A1
20050052282 Rodgers et al. Mar 2005 A1
20050060246 Lastinger et al. Mar 2005 A1
20050099294 Bogner et al. May 2005 A1
20050242946 Hubbard, Jr. et al. Nov 2005 A1
20050250453 Lastinger et al. Nov 2005 A1
20050277441 Lastinger et al. Dec 2005 A1
20050282545 Lastinger et al. Dec 2005 A1
20050282553 Lastinger et al. Dec 2005 A1
20060164320 Lastinger et al. Jul 2006 A1
20060270351 Lastinger et al. Nov 2006 A1
20060279427 Becker Dec 2006 A1
20070159332 Koblasz Jul 2007 A1
20070202809 Lastinger et al. Aug 2007 A1
20070270774 Bergman et al. Nov 2007 A1
20080116990 Rokhsaz May 2008 A1
20080204245 Blair et al. Aug 2008 A1
20080262376 Price Oct 2008 A1
20080263776 O'Reagan et al. Oct 2008 A1
20090160648 Rokhsaz Jun 2009 A1
20090289743 Rokhsaz Nov 2009 A1
20090292265 Helmer et al. Nov 2009 A1
20090315728 Ales, III et al. Dec 2009 A1
20090326417 Ales, III et al. Dec 2009 A1
20100043143 O'Reagan et al. Feb 2010 A1
20100072271 Thorstensson Mar 2010 A1
20110025458 Rokhsaz et al. Feb 2011 A1
20110025473 Rokhsaz et al. Feb 2011 A1
20110092890 Stryker et al. Apr 2011 A1
20110115635 Petrovski et al. May 2011 A1
20110263952 Bergman et al. Oct 2011 A1
20110283459 Essers Nov 2011 A1
20110291810 Rokhsaz et al. Dec 2011 A1
20110295619 Tough Dec 2011 A1
20110300808 Rokhsaz et al. Dec 2011 A1
20110302720 Yakam et al. Dec 2011 A1
20110309937 Bunza et al. Dec 2011 A1
20120092027 Forster Apr 2012 A1
20120119912 Ortega et al. May 2012 A1
20120119915 Clement et al. May 2012 A1
20120130330 Wilson et al. May 2012 A1
20120165772 Groosman et al. Jun 2012 A1
20120217311 Rokhsaz et al. Aug 2012 A1
20120268278 Lewis et al. Oct 2012 A1
20130079590 Bengtson Mar 2013 A1
20130109929 Menzel May 2013 A1
20130123726 Yu et al. May 2013 A1
20130189946 Swanson Jul 2013 A1
20130254141 Barda et al. Sep 2013 A1
20140070950 Snodgrass Mar 2014 A1
20140120836 Rokhsaz et al. May 2014 A1
20140148772 Hu et al. May 2014 A1
20140152442 Li Jun 2014 A1
20140200538 Euliano et al. Jul 2014 A1
20140236629 Kim et al. Aug 2014 A1
20140244644 Mashinchi et al. Aug 2014 A1
20140247125 Barsky Sep 2014 A1
20140266735 Riggio et al. Sep 2014 A1
20140296808 Curran et al. Oct 2014 A1
20140358099 Durgin et al. Dec 2014 A1
20150076221 Rushing Mar 2015 A1
20150080819 Charna et al. Mar 2015 A1
20150080834 Mills Mar 2015 A1
20150087935 Davis et al. Mar 2015 A1
20150164438 Halperin et al. Jun 2015 A1
20160157755 Becker Jun 2016 A1
20170098044 Lai Apr 2017 A1
Foreign Referenced Citations (68)
Number Date Country
2361145 Dec 1999 CA
2494896 Dec 1999 CA
102568259 Jul 2012 CN
202711437 Jan 2013 CN
102985853 Mar 2013 CN
4137631 May 1992 DE
69906388 Feb 2004 DE
69915370 Mar 2005 DE
69917491 May 2005 DE
60016946 Jun 2006 DE
102007050074 Apr 2009 DE
0335279 Oct 1989 EP
1286179 Dec 1999 EP
1147603 Oct 2001 EP
1149305 Oct 2001 EP
1153317 Nov 2001 EP
1218771 Jul 2002 EP
1153317 Mar 2003 EP
1147603 Mar 2004 EP
1410353 Apr 2004 EP
1149305 May 2004 EP
1218771 Dec 2004 EP
1684615 Aug 2006 EP
2014267 Jun 2007 EP
1868553 Dec 2007 EP
1897278 Mar 2008 EP
1959900 Aug 2008 EP
1994650 Nov 2008 EP
2019659 Feb 2009 EP
1410353 Dec 2009 EP
1897278 Jan 2010 EP
1684615 Feb 2010 EP
2156222 Feb 2010 EP
2313044 Apr 2011 EP
2579069 Jun 2011 EP
2444039 Aug 2011 EP
1959900 Feb 2012 EP
2738748 Apr 2012 EP
2452183 May 2012 EP
2496197 Sep 2012 EP
1994650 Dec 2012 EP
2542200 Jan 2013 EP
2582341 Apr 2013 EP
2729107 May 2014 EP
2739254 Jun 2014 EP
2156222 Aug 2015 EP
2739254 Nov 2016 EP
145859 Mar 1919 GB
2145859 Apr 1985 GB
2408204 Nov 2003 GB
WO 8910110 Apr 1989 WO
WO 9420002 Mar 1994 WO
WO 0044091 Jul 2000 WO
WO 0125817 Apr 2001 WO
WO 0185085 Nov 2001 WO
WO 02103645 Dec 2002 WO
WO 2006108540 Oct 2006 WO
WO 2007069968 Jun 2007 WO
WO 2008130298 Oct 2008 WO
2010001271 Jan 2010 WO
WO 2010001271 Jan 2010 WO
WO 2010043368 Apr 2010 WO
2011107580 Sep 2011 WO
WO 2011107580 Sep 2011 WO
2012136157 Oct 2012 WO
WO 2012136157 Oct 2012 WO
WO 2014165041 Oct 2014 WO
WO 2015137999 Sep 2015 WO
Non-Patent Literature Citations (1)
Entry
European Search Report dated Oct. 2, 2017 for European Patent Application No. 17167606.7, 8 pages.
Related Publications (1)
Number Date Country
20170309155 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
62327627 Apr 2016 US