1. Field of the Invention
The invention relates to wireless location systems, and more particularly, to enhanced precision in location estimation of a mobile station under different environments.
2. Description of the Related Art
Mobile location estimation is of considerable interest in wireless communications. A mobile station (MS) may locate itself by communicating with a plurality of geometrically distributed base stations (BS).
Where c is the speed of light, rl represents the measured relative distance between the mobile station (MS) and lth BS, composed of actual distance ζl and TOA measurement noise nl. The actual distance ζl can be obtained according to the formula:
ζl=√{square root over ((x−xl)2+(y−yl)2)}{square root over ((x−xl)2+(y−yl)2)} (2)
Where the coordinates (x, y) represents the MS's location to be determined, and (xl, yl) is the location of lth BS.
In
Location estimation methods are provided. An exemplary embodiment of a location estimation method comprises determining the coordinates corresponding to the location of a mobile station (MS) by referencing a plurality of base stations (BS). A geometric BS distribution is analyzed to provide a list of conditional equations. A virtual BS is allocated, having a virtual distance from the MS to provide a constraint equation. The MS location is derived from the conditional equations and the constraint equation.
When analyzing the geometric distribution, coordinates of each BS are transmitted to the MS. Time-of Arrival (TOA) signals transmitted to or from each BS are estimated to correspondingly calculate measured distances. The noise level of each transmission is measured to calculate standard deviations of the measured distances. The conditional equations are therefore derived based on the measured distances and the standard deviations.
Particularly, an initial estimate of the MS location is derived from the standard deviations and coordinates of the BS. The virtual distance is calculated based on the initial estimate of the MS location, the coordinates of the BS and a plurality of virtual coefficients corresponding to a BS. A geometric dilution of Precision (GDOP) contour is rendered, statistically presenting measurement error distribution of the BS.
When allocating the virtual BS, peak values distributed in the GDOP contour are observed. The virtual BS is allocated to a position where at least one peak value is causally smoothed away. Specifically, the position of the virtual BS is determined by adjusting the virtual coefficients. The constraint equation is a function of the coordinates of the virtual BS and the virtual distance.
When estimating the MS location, the conditional equations and the constraint equation are substituted into a two-step linear square algorithm. For a first step of the two-step least square algorithm, a variable is provided, equivalent to the square sum of the MS location: β=x2+y2, where (x,y) are the coordinates of the MS location, and β is the variable. A first linear vector is derived from the variable and MS location coordinates. A maximum likelihood search is then performed using the first linear vector, the conditional equations and the constraint equations. A preliminary solution is therefore obtained, comprising a preliminary coordinate of the MS location.
For a second step of the two-step least square algorithm, a second linear vector is derived from the preliminary coordinate of the MS location. The maximum likelihood search is performed using the second vector, the conditional equations and the constraint equations, such that a final solution is obtained.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
a shows a GDOP contour associated with the three BSs of
b shows an altered GDOP contour associated with the original BS and an additional virtual BS; and
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
According to N. Levanon, “Lowest GDOP in 2-D Scenarios” Published in Navig., vol. 147, June 2002, geometric BS distribution may affect MS estimation accuracy, thus a geometric dilution of precision (GDOP) is defined as a dimensionless expression to describe a ratio between location estimation error and the associated measurement error, such as NLOS or noise in TOA measurement. Typically, higher GDOP indicates worse conditions. The paper explained how to develop a GDOP contour for a given geometric distribution.
From the intuitional perspective of
At least three BSs are required to perform the TOA based location estimation, thus, three BSs, BS1, BS2, and BS3, are considered in the embodiment. To confine the estimated MS location within a reasonable range, define:
where X denotes the actual MS location (x,y). Coordinates of the BSs BS1, BS2 and BS3 are denoted as: Xa=(xa,ya), Xb=(xb,yb) and Xc=(xc,yc). αi for i=a, b and c are virtual coefficients. Calculation of the virtual coefficients αi will be described later. Physically, γ represents a virtual square distance between the MS and the three MSs, MS1, MS2 and MS3.
As is known, the two-step LS algorithm requires an initial estimate. A presumed solution Xe=(xe,ye) is chosen to be located within the confined region ABC under the intuitive assumption, and the expected virtual distance γe is given as an initial estimate of the embodiment:
where nγ is a deviation between the γ and γe, a target to be minimized after all. The initial value of Xe=(xe,ye) is chosen according to signal variation rates of the Xa, Xb and Xc with weighting factors (w1, w2, w3, expressed as:
The parameters, σ1, σ2 and σ3, are standard deviations obtained from the corresponding measured distances r1, r2 and r3 in formula (1). Taking the circle BS1 for example, the MS should be located around the circle boundary r1 if NLOS error is negligible. Conversely, if the standard deviation σ1 is relatively large, showing unstable interference caused by NLOS noise, the actual MS location (x,y) is considered to be closer to the center of circle. Consequently, the weighting factor w1 is assigned a larger value, moving the initial value of Xe=(xe,ye) closer toward the center of circle BS1. Similarly, the other weighting factors w2 and w3 are accordingly assigned. The initial value of Xe=(xe,ye) subsequently calculated from formulae (5), (6) and (7) is substituted into formula (4) to represent the expected virtual distance γe.
xv=αaxa+αbxb+αcxc (8)
yv=αaya+αbyb+αcyc (9)
where the coordinates of BS Xa=(xa,ya), Xb=(xb,yb) and Xc=(xc,yc) are known values upon TOA. The virtual coefficients αa, αb and αc may be determined according to observation of the GDOP contour. As an example, to facilitate the formulation of the two-step LS algorithm, the virtual coefficients can be associated with a relationship:
The corresponding virtual BSs can be visualized as VBS1, VBS2 and VBS3.
a shows a GDOP contour associated with the three BSs of
b shows an altered GDOP contour associated with the original BSs and additional virtual BSs. Specifically, the original geometric distribution is changed by the virtual BS VBS1, VBS2 and VBS3 in
The two-step LS algorithm comprises two steps. The first step ignores non-linear dependencies of the variables to approximate a preliminary solution. The second step considers the non-linear dependencies and converges the preliminary solution to derive a final solution. Specifically, the actual MS location (x,y) is solved based on the joint equations:
r12≧ζ12=(x1−x)2+(y1−y)2=x12+y12−2x1x−2y1y+x2+y2 (11)
r22≧ζ22=(x2−x)2+(y2−y)2=x22+y22−2x2x−2y2y+x2+y2 (12)
r32≧ζ32=(x3−x)2+(y3−y)2=x32+y32−2x3x−2y3y+x2+y2 (13)
γe=(xv−x)2+(yv−y)2=xv2+yv2−2xvx−2yvy+x2+y2 (14)
Where r1, r2, r3 are measured distances respectively, and the expected virtual distance γe is given in formula (4). A new variable β is defined intended to ignore its non-linearity in the first step.
β=x2+y2 (15)
Furthermore, let:
ki=xi2+yi2 for i=1, 2, 3, v (16)
then equations (11), (12) and (13) can be rewritten as:
−2xix−2yiy+β≦ri2−ki for i=1, 2, 3 (17)
Likewise, equation (14) becomes
−2xvx−2yvy+β=γe−kv (18)
where kv can be extended from formulae (8) and (9):
kv=αa(xa2+ya2)+αb(xb2+yb2)+αc(xc2+yc2) (19)
The joint equations (17) and (18) can be rewritten in a matrix form:
Where ψ in equation (20) is a noise matrix, and its expectation value can be calculated by a known equation:
Ψ=E[ψψT]=4c2BQB (24)
in which B is a diagonal matrix of the actual distances:
and Q is a diagonal matrix of standard deviation values corresponding to each actual distance:
For the first step of least square algorithm, the matrixes H, J and Ψ in equations (22), (23) and (24) are substituted into a maximum likelihood function to generate a preliminary solution X′:
X′=[x′y′β′]T=(HTΨ−1H)−1HTΨ−1J (27)
The variable β′ is converged in the first step without considering dependency on coordinates (x,y). The preliminary solution is further fed back with non-linearity dependency considered. Let:
β′=x2+y2 (28)
A total of coordinates (x,y) satisfying equation (28) are searched in the second step of the LS algorithm, thus a constrained linear square problem as follows is to be solved:
min[(j−HX′)TΨ−1(j−HX′)] for HX′≦J (29)
In which, the expected value of noise term Ψ is recalculated by a diagonal distance matrix B′ based on the preliminary (x′,y′).
In Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans, Signal Processing, Vol. 42, no. 8, pp. 1905-1915, 1994, an approach is introduced to solve the covariance of X′:
cov(X′)=(HTΨ−1H)−1 (30)
Let the errors between the preliminary solution and actual value as:
x=x′+e1 (31)
y=y′+e2 (32)
β=β′+e3 (33)
Another error vector can be defined as:
By substituting formulae (31), (32) and (33) to (34), the error vector can be expressed as follows when errors are negligible:
and its expectation value can be calculated similar to formula (24):
Ψ′=E[ψ′ψ′T]=4B′cov(X′)B′ (37)
where B′ is a diagonal matrix defined as:
B′=diag[x,y,0.5] (38)
As an approximation, actual values x and y in matrix B′ can be replaced by preliminary values x′ and y′ in formula (27), and a maximum likelihood estimation of the matrix Zf in (35) is given by:
Thus, the final position (x,y) is obtained by root of Zf, where the sign of x and y coincide with the preliminary values (x′, y′).
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This application is a Continuation of pending U.S. patent application Ser. No. 11/619,635, filed on, Jan. 4, 2007, which claims the benefit of U.S. Provisional Application No. 60/757,140, filed Jan. 6, 2006, the entirety of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6134448 | Shoji et al. | Oct 2000 | A |
6526283 | Jang | Feb 2003 | B1 |
6727850 | Park et al. | Apr 2004 | B2 |
20020183071 | Shioda et al. | Dec 2002 | A1 |
20040127228 | You et al. | Jul 2004 | A1 |
20040198386 | Dupray | Oct 2004 | A1 |
20040266457 | Dupray | Dec 2004 | A1 |
20050054312 | Spirito et al. | Mar 2005 | A1 |
20050239478 | Spirito | Oct 2005 | A1 |
20050255854 | Sillasto et al. | Nov 2005 | A1 |
20050255865 | Sillasto et al. | Nov 2005 | A1 |
20050267677 | Poykko et al. | Dec 2005 | A1 |
20060276201 | Dupray | Dec 2006 | A1 |
20070287473 | Dupray | Dec 2007 | A1 |
20080261622 | Lee et al. | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100173648 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11619635 | Jan 2007 | US |
Child | 12728375 | US |