This invention relates to a location server for and a method of communication information concerning the location of mobile devices in a radio telecommunications network.
Location-based services have become an important source of revenue for operators of mobile telecommunications networks, and a number of different applications are available and largely used. The location-determining functions of a network can be implemented by means of a location server, such as the Serving Mobile Location Centre (SMLC) of Global System for Mobile Communications (GSM). This server handles position measurements and the calculation of the position of mobile telecommunications devices with the network.
The clustering block 100 collects high precision A-GPS position measurements as reference points in clusters, where each cluster corresponds to a specific (ordered) list of CGIs, a TA and quantized signal strength measurements. This information is denoted the tag. Clusters of A-GPS position measurements that are associated with a region where a specific set of cells can be detected and where the TA and signal strengths have specific values are hence created automatically. When a sufficient amount of reference points have been collected in a cluster, a reportable polygon that describes the boundary of the tagged cluster is computed (102).
When a positioning request is received in the positioning node, the list of own and neighbour CGIs and the TA are retrieved, and signal strength measurements are performed and quantized. This information creates the tag of the terminal. The polygon that corresponds to the tag is collected from the database (104), and reported as the positioning result.
Problems can occur when time of flight, round trip time or TA tagging is used when cells become large:
According to a first aspect of the invention we provide a location server for a mobile telecommunications network, the location server comprising at least one network interface through which it is arranged to communicate with network nodes of the mobile telecommunications network, and a processor arranged to:
Thus, larger quanta are used at larger distances, thus reducing the number of areas required. Measurements at longer distances are likely to be more inaccurate, making smaller bands at higher distances less worthwhile.
Furthermore, given that the distance is likely to be being measured from a base station or other similar node in the network, which are generally (although not exclusively) in areas where there are likely to be many mobile devices, in some situations it will be likely that there will generally be more mobile devices at low distances, and fewer at high distances; the average quantisation error may therefore be less.
Preferably, the increase is at least partially exponential. For a plurality of the indicative values at least one of the upper and lower bounds may be calculated according to an exponential term. Typically, the indicative value is a number, and for a plurality of the indicative values at least one of the upper and lower bound depends exponentially on a term dependent on the number.
The location server may comprise storage, the processor being arranged so as to store a database in the storage, the database containing the information and the estimate for a plurality of mobile devices.
The location server may comprise a first network node comprising the storage on which the database is stored, and a second node comprising the processor. In such a case, the second network node may be arranged to send the first network node a message comprising the quantised information.
The first network node may be arranged to send the second network node a message comprising a quantisation scheme, the quantisation scheme comprising an indication of the ranges corresponding to each value.
The information may comprise data indicative of at least one of position data derived from location satellites, the time taken for radio signals to pass between a network node and the mobile device, the signal strength received at a network node from the mobile device or vice versa, the path loss between a network node and the mobile device.
The estimate may comprises a representation of a polygon inside which the mobile device is expected to be found, the polygon comprising vertices each having a position, the quantisation being in the position of the vertices of the polygon.
According to a second aspect of the invention, there is provided a method of communicating information concerning the location of mobile devices in a radio telecommunications network, each mobile device being in radio contact with a base station of the radio telecommunications network, the method comprising:
in which the method comprises quantising the characteristics to have one of a plurality of indicative values, each of the values indicating a range of distances having upper and lower bounds, wherein, for at least some successive pairs of the indicative values, for indicative values indicating increasing distance, the difference between the upper and lower bounds increases.
The quantisation may be at least partially exponential or an approximation thereto. Typically, for a plurality of the indicative values at least one of the upper and lower bound is calculated according to an exponential term.
The indicative value may be a number, and for a plurality of the indicative values at least one of the upper and lower bound may depend exponentially on a term dependent on the number.
The method may comprise storing a database containing the information and the estimate for a plurality of mobile devices on a first network node of the location server, the processor being on a second network node, the first and second network nodes sending each other messages comprising the information or the estimates as quantised. Alternatively, a database containing the information and the estimate for a plurality of mobile devices may be on the same network node as the processor.
A network according to a first embodiment of the invention is shown in
The network comprises a plurality of mobile telecommunication device 6, typically referred to as user equipment (UE). These are connected by radio transmissions to radio base stations 4. The radio base stations 4 are also connected to a location server 2, which is shown in more detail in
One method of determining the position of the mobile telecommunication devices 4 is to use a measure of the time of flight of the radio signals between the mobile telecommunications devices 6 and the radio base stations 4. This is referred to as Timing Advance (TA) in GSM or LTE and Round Trip Time (RTT) in WCDMA. Time of flight is a measure of the distance, as the radio transmissions will travel at the speed of light in the local medium (presumed to be air, and therefore only very slightly less than that in a vacuum) of 3.00×108 metres per second.
This time of flight data between each mobile telecommunications device 6 and the radio base station(s) 4 it is contact with is measured (step 20 in
The location server 2 receives this data through network interface 3 and processes it in processor 5. In order to reduce the complexity of the calculations and data storage required by the location server 2, the location server quantises (step 24) this time of flight data. The quantisation replaces the raw time of flight data into a number indicative of a range of distances. In order to keep the number of discrete values possible manageable, and to provide a quantisation table that is equally suitable to dense urban, urban and rural environments, the range of each discrete value increases with the distance from the radio base station. Whilst the closer, lower, values are set manually as shown in the table below, valid for an example embodiment, larger values are chosen so that the bounds of each value vary exponentially. The following Table 1 gives an example of the quantisation used for GSM.
Note that the table consists of less than 50 values, yet it covers a range of 200 km and allows for high accuracy quantization close to the base station. This means that all radio environments (dense urban, urban, suburban and rural) can be covered by a single quantization table, allowing for the handling of the quantization table at positioning node level, rather than at cell level. This is a significant advantage since the number of cells can approach 1 million in large telecommunication networks.
For LTE, a different quantisation table can be used, as follows in Table 2:
Note that this table consists of less than 40 values, yet it covers a range of 200 km and allows for high accuracy quantization close to the base station. This means that all radio environments (dense urban, urban, suburban and rural) can be covered by a single quantization table, allowing for the handling of the quantization table at positioning node level, rather than at cell level.
Use of either of these quantisation tables can result in:
Once the quantisation has been carried out, the location server 2 stores the quantised data and other position-related data (for example, data relating to the position of the mobile telecommunications devices 4 relative to positioning satellites 8, typically using the Global Positioning System or GPS, received signal strength and so on) in a database held on storage device 7. It also processes all of the position the data using well known methods to determine an estimate (step 26) of the position of the mobile telecommunications devices 6. The estimates can then be transmitted (step 28) using network interface 3 to any other node in the network that desires such information.
A second embodiment of the invention is shown in
In this embodiment, the location server 52 is split into two network nodes; using the terminology of WCDMA, these are the Standalone Serving Mobile Location Centre (SAS) 62 and an Adaptive Enhanced Cell Identification (AECID) server 60. These are connected to the mobile telecommunications devices 56 through a radio network controller (RNC, 64).
The SAS 62 receives and carries out the processing of the position-related data that was carried out by the location server of the first embodiment (and so will be provided with a suitable processor). However, the data itself is stored on a database stored on a storage means (for example, a hard disk) on the AECID server 60. The position data, such as time of flight and received signal strength, is transmitted from the mobile telecommunications devices to the RNC 64 over a Radio Resource Control (RRC) interface, whereas that data is then transmitted on from the RNC 64 to the SAS 62 through a Positioning Calculation Application Part (PCAP) interface.
Once the data has been received by the SAS 64, the SAS will quantise the time of flight data as in the previous embodiment. The quantised time of flight data is sent to the database of the AECID server 60 with the remainder of the data. The data can be retrieved by the SAS 62 from the AECID server 60 when it is desired to calculate the position estimates.
It is to be noted that the quantisation tables (such as tables 1 and 2 above) can be set on the AECID server 60; because one table fits many situations, the AECID server only needs to transmit the table to the SAS 62, rather than having to transmit tailored quantisation tables to many network nodes.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE11/50071 | 1/25/2011 | WO | 00 | 7/23/2013 |