Logical operations using memory cells

Information

  • Patent Grant
  • 11404109
  • Patent Number
    11,404,109
  • Date Filed
    Monday, April 6, 2020
    4 years ago
  • Date Issued
    Tuesday, August 2, 2022
    2 years ago
Abstract
The present disclosure includes apparatuses and methods related to logical operations using memory cells. An example apparatus comprises a first memory cell controlled to invert a data value stored therein and a second memory cell controlled to invert a data value stored therein. The apparatus may further include a controller coupled to the first memory cell and the second memory cell. The controller may be configured to cause performance of a logical operation between the data value stored in the first memory cell and the data value stored in the second memory cell.
Description
TECHNICAL FIELD

The present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatuses and methods related to logical operations using memory cells.


BACKGROUND

Memory devices are typically provided as internal, semiconductor, integrated circuits in computing systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others. Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.


Computing systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location. A processing resource can comprise a number of functional units such as arithmetic logic unit (ALU) circuitry, floating point unit (FPU) circuitry, and a combinatorial logic block, for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR, and invert (e.g., inversion) logical operations on data (e.g., one or more operands). For example, functional unit circuitry may be used to perform arithmetic operations such as addition, subtraction, multiplication, and division on operands via a number of logical operations.


A number of components in a computing system may be involved in providing instructions to the functional unit circuitry for execution. The instructions may be executed, for instance, by a processing resource such as a controller and/or host processor. Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the functional unit circuitry. The instructions and data may be retrieved from the memory array and sequenced and/or buffered before the functional unit circuitry begins to execute instructions on the data. Furthermore, as different types of operations may be executed in one or multiple clock cycles through the functional unit circuitry, intermediate results of the instructions and data may also be sequenced and/or buffered.


In many instances, the processing resources (e.g., processor and/or associated functional unit circuitry) may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions. Processing performance may be improved in a processing-in-memory (PIM) device, in which a processing resource may be implemented internal and/or near to a memory (e.g., directly on a same chip as the memory array). A PIM device may reduce time in processing and may also conserve power. Data movement between and within arrays and/or subarrays of various memory devices, such as PIM devices, can affect processing time and/or power consumption.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an apparatus in the form of a computing system including a memory device in accordance with a number of embodiments of the present disclosure.



FIG. 2A is a schematic drawing illustrating a portion of a memory array in accordance with a number of embodiments of the present disclosure.



FIG. 2B is another schematic drawing illustrating a portion of a memory array in accordance with a number of embodiments of the present disclosure.



FIG. 3 is a schematic diagram illustrating sensing circuitry in accordance with a number of embodiments of the present disclosure.



FIG. 4 is a schematic diagram illustrating sensing circuitry in accordance with a number of embodiments of the present disclosure.



FIG. 5 is another schematic diagram illustrating sensing circuitry in accordance with a number of embodiments of the present disclosure.



FIG. 6 is a flow diagram for performing logical operations using memory cells in accordance with a number of embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure includes apparatuses and methods related to logical operations using memory cells. An example apparatus comprises a first memory cell controlled to invert a data value stored therein and a second memory cell controlled to invert a data value stored therein. The apparatus may further include a controller coupled to the first memory cell and the second memory cell. The controller may be configured to cause performance of a logical operation between the data value stored in the first memory cell and the data value stored in the second memory cell.


Dynamic random access memory (DRAM) may be provided as part of a computing system to store data associated with the computing system. In some approaches, DRAM may comprise multiple one transistor, one capacitor (1T1C) memory cells, which may be coupled together to form a memory array. In 1T1C DRAM environments, binary data information may be stored in the capacitor in the form of an electric charge. Once a 1T1C memory cell has been read (e.g., once a read operation has been performed using data stored in the 1T1C memory cell), the electric charge corresponding to the binary data information stored in the capacitor may discharge (e.g., leak, become depleted, etc.) thereby destroying the binary data information that was stored in the capacitor. This phenomenon may be referred to as a “destructive read” or “destructive memory cell read.”


In contrast, DRAM memory cells having three transistors (3T) may preserve the binary data information (e.g., may preserve the charge stored therein) subsequent to performance of a read operation. This may allow for multiple word lines (e.g., read row lines, write row lines, etc.) to be fired without the need to refresh the memory cells or re-write data to the memory cells subsequent to performance of a read operation. This may reduce power consumption of a memory device since the memory cells do not need to be re-written or refreshed in comparison to conventional 1T1C DRAM memory cells, and may reduce an amount of time (e.g., a read-to-read delay) required between performance of read operations in comparison to conventional 1T1C DRAM memory cells.


In some approaches, performing logical operations between binary data (e.g., operands) stored in memory cells and binary data stored in an accumulator may require multiple latches per column because binary data may need to be inverted (e.g., using a latch in addition to a sense amplifier latch) prior to performance of a logical operation. For example, in some approaches, data would be transferred to a first latch to be inverted, and the inverted data stored in the first latch may have been used as an operand in a logical operation between the inverted operands and operands stored in an accumulator. In contrast, embodiments disclosed herein allow for logical operations to be performed between binary data (e.g., operands) stored in the memory cells without using an additional latch to perform the inversion. For example, a 3T memory cell may be controlled to invert the data stored therein without the need for an additional latch. In some embodiments, the inverted data associated with the 3T memory cell may then be used as an operand for a logical operation.


In some embodiments, when the word lines (e.g., read row lines, write row lines, etc.) coupled to a memory cell are enabled, the read digit lines of the memory device may be driven low thereby creating a NOR read. The number of word lines enabled corresponds to the number of inputs of a NOR gate created by enabling the word lines.


In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, designators such as “n, “N,” etc., particularly with respect to reference numerals in the drawings, indicate that a number of the particular feature so designated can be included. As used herein, “a number of” a particular thing refers to one or more of such things (e.g., a number of memory arrays can refer to one or more memory arrays). A “plurality of” is intended to refer to more than one of such things.


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 306 may reference element “06” in FIG. 3, and a similar element may be referenced as 406 in FIG. 4. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present invention, and should not be taken in a limiting sense.



FIG. 1 is a block diagram of an apparatus in the form of a computing system 100 including a memory device 120 in accordance with a number of embodiments of the present disclosure. As used herein, a memory device 120, controller 140, channel controller 143, memory array 130, and/or sensing circuitry 150 might also be separately considered an “apparatus.”


System 100 includes a host 110 coupled (e.g., connected) to memory device 120, which includes a memory array 130. Host 110 can be a host system such as a personal laptop computer, a desktop computer, a digital camera, a smart phone, or a memory card reader, among various other types of hosts. Host 110 can include a system motherboard and/or backplane and can include a number of processing resources (e.g., one or more processors, microprocessors, or some other type of controlling circuitry). The system 100 can include separate integrated circuits or both the host 110 and the memory device 120 can be on the same integrated circuit. The system 100 can be, for instance, a server system and/or a high performance computing (HPC) system and/or a portion thereof. Although the example shown in FIG. 1 illustrates a system having a Von Neumann architecture, embodiments of the present disclosure can be implemented in non-Von Neumann architectures, which may not include one or more components (e.g., CPU, ALU, etc.) often associated with a Von Neumann architecture.


For clarity, the system 100 has been simplified to focus on features with particular relevance to the present disclosure. The memory array 130 can be a DRAM array (e.g., a 3T DRAM array), SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance. The array 130 can comprise memory cells arranged in rows coupled by word lines, which may be referred to herein as access lines or select lines, and columns coupled by digit lines, which may be referred to herein as data lines or sense lines. Although a single array 130 is shown in FIG. 1, embodiments are not so limited. For instance, memory device 120 may include a number of arrays 130 (e.g., a number of banks of DRAM cells, NAND flash cells, etc.). In some embodiments, the memory array may include the sense amplifier 150 in addition to the memory cells arranged in rows coupled by word lines and columns coupled by digit lines.


The memory device 120 includes address circuitry 142 to latch address signals for data provided over a data bus 156 (e.g., an I/O bus) through I/O circuitry 144. Status and/or exception information can be provided from the controller 140 on the memory device 120 to a channel controller 143, through a high speed interface (HSI) including an out-of-band bus 157, which in turn can be provided from the channel controller 143 to the host 110. Address signals are received through address circuitry 142 and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130. Data can be read from memory array 130 by sensing voltage and/or current changes on the digit lines using sensing circuitry 150. The sensing circuitry 150 can read and latch a page (e.g., row) of data from the memory array 130. The I/O circuitry 144 can be used for bi-directional data communication with host 110 over the data bus 156. The write circuitry 148 can be used to write data to the memory array 130.


Controller 140 (e.g., memory controller) decodes signals provided by control bus 154 from the host 110. These signals can include chip enable signals, write enable signals, and address latch signals that are used to control operations performed on the memory array 130, including data read, data write, and data erase operations. In various embodiments, the controller 140 is responsible for executing instructions from the host 110 and sequencing access to the array 130. The controller 140 can be a state machine, sequencer, or some other type of controller, and include hardware and/or firmware (e.g., microcode instructions) in the form of an application specific integrated circuit (ASIC), field programmable gate array, etc. The controller 140 can control, for example, performance of logical operations between operands stored in the memory array 130.


As described further below, in a number of embodiments, the sensing circuitry 150 and/or the array 130 can comprise a sense amplifier. The sense amplifier may also be referred to herein as an accumulator, and can be used in the performance of logical operations.


In a number of embodiments, the sensing circuitry 150 can be used to perform logical operations using data stored in array 130 as inputs and/or store the results of the logical operations back to the array 130 without transferring data via a digit line address access (e.g., without firing a column decode signal). As such, various compute functions can be performed using, and within, sensing circuitry 150 rather than (or in association with) being performed by processing resources external to the sensing circuitry (e.g., by a processing resource associated with host 110 and/or other processing circuitry, such as ALU circuitry, located on device 120 (e.g., on controller 140 or elsewhere)).


In various previous approaches, data associated with an operand, for instance, would be read from memory via sensing circuitry and provided to external ALU circuitry via I/O lines (e.g., via local I/O lines and/or global I/O lines). The external ALU circuitry could include a number of registers and would perform compute functions using the operands, and the result would be transferred back to the array via the I/O lines. In contrast, in a number of embodiments of the present disclosure, sensing circuitry 150 is configured to perform logical operations on data stored in memory array 130 and store the result back to the memory array 130 without enabling an I/O line (e.g., a local I/O line) coupled to the sensing circuitry 150. The sensing circuitry 150 can be formed on pitch with the memory cells of the array.


In a number of embodiments, circuitry external to array 130 and sensing circuitry 150 is not needed to perform compute functions as the sensing circuitry 150 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 150 may be used to compliment and/or to replace, at least to some extent, such an external processing resource (or at least the bandwidth consumption of such an external processing resource).


However, in a number of embodiments, the sensing circuitry 150 may be used to perform logical operations (e.g., to execute instructions) in addition to logical operations performed by an external processing resource (e.g., host 110). For instance, host 110 and/or sensing circuitry 150 may be limited to performing only certain logical operations and/or a certain number of logical operations.


Enabling an I/O line can include enabling (e.g., turning on) a transistor having a gate coupled to a decode signal (e.g., a column decode signal) and a source/drain coupled to the I/O line. However, embodiments are not limited to performing logical operations using sensing circuitry (e.g., 150) without enabling column decode lines of the array. Whether or not local I/O lines are used in association with performing logical operations via sensing circuitry 150, the local I/O line(s) may be enabled in order to transfer a result to a suitable location other than back to the array 130 (e.g., to an external register).



FIG. 2A is a schematic drawing illustrating a portion of a memory array in accordance with a number of embodiments of the present disclosure. FIG. 2A illustrates one memory cell 232, which can be one of a number of memory cells corresponding to memory array 130 shown in FIG. 1. In the example shown in FIG. 2, the memory cell 232 is a 3T DRAM memory cell. In this example, the memory cell 232 comprises three transistors 202-1, 202-2, and 202-3. The memory cell 232 may be operated to store a data value (e.g., stored charge at node 204). In some embodiments, a charge associated with the data value may be stored at node 204 using the parasitic capacitance generated between transistor 202-3 and transistor 203-2. Embodiments are not so limited; however, and the memory cell 232 may optionally include a discrete capacitor 203 to store the data value.


The memory cell 232 includes two word lines 209-1/209-2 (e.g., row lines) and two digit lines 205-1/205-2 (e.g., bit lines). Word line 209-1 may be referred to herein as a read row line, and the word line 209-2 may be referred to herein as a write row line. Digit line 205-1 may be referred to herein as a write digit line, and digit line 205-2 may be referred to herein as a read digit line. The word lines 209-1/209-2 and the digit lines 205-1/205-2 may be enabled and/or disabled in conjunction with reading and writing data to the node 204 of the memory cell 232.


As shown in FIG. 2A, the transistors 203-2, 203-2, and 203-3 are coupled to the word lines 209-1/209-2 and digit lines 205-1/205-2. In association with performing a write operation, the write row line 209-2 may be enabled, and data may be placed on the write digit line 205-1, thereby causing the data to be stored at node 204. Similarly, in association with performing a read operation, the read row line 209-1 may be enabled and the data may be transferred out of the node 204 via the read digit line 205-2. In some embodiments, the data value read out of the memory cell 232 as part of a read operation may be inverted in comparison to the data value written to the memory cell 232 as part of the write operation. For example, if a value of “1” is written to the memory cell 232, a value of “0” may be read out of the memory cell 232. Conversely, if a value of “0” is written to the memory cell 232, a value of “1” may be read out of the memory cell 232.


For example, memory cell 232 can be coupled to different digit lines 205-1/205-2 and word lines 209-1/209-2. For instance, in this example, a first source/drain region of transistor 202-3 is coupled to digit line 205-1, a second source/drain region of transistor 202-3 is coupled to node 204, and a gate of transistor 202-3 is coupled to word line 209-2. A first source/drain region of transistor 202-1 is coupled to digit line 205-2, a second source/drain region of transistor 202-1 is coupled to a first source/drain region of transistor 202-2, and a gate of transistor 202-1 is coupled to word line 209-1.


In some embodiments, the data value stored at node 204 of the memory cell 232 may be used as an operand for performance of a logical operation. For example, a data value stored at node 204 of the memory cell 232 may be used as an operand to perform a logical operation with a data value stored at node 204 of a different memory cell, as described in more detail in association with FIGS. 3-5. In some embodiments, the logical operation may comprise a NOR operation; however, embodiments are not so limited, and various logical operations such as ANDS, ORs, XORs, NANDs etc. operations may be performed by performing multiple combinations of NOR operations in the manner described herein.


In some embodiments, the memory cell 232 may be controlled to store a data value at node 204 subsequent to performance of a read operation. For example, the memory cell 232 may be controlled such that read operations are non-destructive. This may allow for multiple rows (e.g., read rows) to be fired without refreshing or re-writing data to the memory cell 232, which may allow for improved performance and reduced power consumption in comparison with previous approaches that utilize destructive read cells such as 1T1C memory cells.


Although schematically represented in a planar orientation, the transistors 202-1, 202-2, and/or 202-3 may be arranged in a vertical orientation (e.g., extending upward out of the page or downward into the page in FIG. 2). In some embodiments, the transistors 202-1, 202-2, and/or 202-3 of the memory cell 232 may be formed such that the transistors 202-1, 202-2, and/or 202-3 are contained within an area defined by the digit lines 205-1/205-2. For example, the transistors 202-1, 202-2, and/or 202-3 of the memory cell 232 may be formed on pitch with digit lines 205-1/205-2 of the memory cell 232. In some embodiments, the memory cell 232 may be formed such that the transistors 202-1, 202-2, and/or 202-3 of the memory cell 232 are disposed within an area that equal to or less than an area used by a conventional 1T1C DRAM memory cell.



FIG. 2B is another schematic drawing illustrating a portion of a memory array 230 in accordance with a number of embodiments of the present disclosure. As shown in FIG. 2B, the memory array 230 comprises a plurality of memory cells 232. For clarity, only one memory cell 232 is labeled in FIG. 2B; however, each set of three transistors illustrated in FIG. 2B represents one of a plurality of memory cells 232 associated with the memory array 230.


A plurality of memory cells 232 are coupled to a plurality of digit lines 205 and row lines 209. For example, a first memory cell 232 is coupled to digit lines 205-10/205-20 (e.g., write digit0 line 205-10 and read digit0 line 205-20) and row lines 209-10/209-20 (e.g., read row0 line 209-10 and write row0 line 209-20). Similarly, a second memory cell is coupled to digit lines 205-11/205-21 (e.g., write digit1 line 205-11 and read digit1 line 205-21) and word lines 209-10/209-20 (e.g., read row0 line 209-10 and write row0 line 209-20), a third memory cell is coupled to digit lines 205-10/205-20 (e.g., write digit0 line 205-10 and read digit0 line 205-20) and word lines 209-11/209-21 (e.g., read row1 line 209-11 and write row1 line 209-21, etc.


In operation, the memory array 230 may be controlled to perform a logical operation using data values (e.g., operands) stored in the memory cells. In some embodiments, performance of such logical operations can include precharging at least one of the digit lines 205-20, . . . , 205-2N. Once the at least one digit line is precharged (e.g., to a supply voltage such as Vcc), one or more word lines 209-10, . . . , 209-1N and/or 209-20, . . . , 209-2N may be enabled. Each word line 209-10, . . . , 209-1N and/or 209-20, . . . , 209-2N that is enabled may correspond to an input of a K-input NOR operation where K is the quantity of word lines enabled. For example, if only two word lines (e.g., word line 209-10 and word line 209-11) are enabled, a 2-input NOR gate results, if three word lines (e.g., word line 209-10, word line 209-11, and word line 209-12) are enabled, a 3-input NOR operation results, etc. Further, each digit line 205-20, . . . , 205-2N that is enabled may correspond to an additional K-input NOR gate. Accordingly, each digit line 205-20, . . . , 205-2N that is enabled may correspond to N NOR gates that each comprise K-inputs where N is the number of enabled digit line 205-20, . . . , 205-2N. As an example, if three word lines (e.g., word lines 209-10, . . . , 209-13 and/or word lines 209-20, . . . , 209-23) are enabled and each word line enables 1024 digit lines (e.g., when K=3 and N=1024), then 1024 3-input NOR gates result. That is, in some embodiments, enabling combinations of K word lines and N digit lines yields N NOR gates each having K inputs associated therewith.


In some embodiments, if one or more memory cells 232 coupled to a particular digit line 205-20, . . . , 205-2N (e.g., if one or more memory cells in a particular column of memory cells) contains a high voltage (e.g., a logical value of “1”), the associated digit line 205-20, . . . , 205-2N will be driven to a ground reference potential. For example, if memory cell 232 (or any other memory cell in the column of memory cells coupled to digit line 205-20) contains a high voltage, digit line 205-20 will be driven to a ground reference potential.


As described in more detail in association with FIG. 3, herein, a sense amplifier (e.g., sense amplifier 306 illustrated in FIG. 3) is coupled to respective pairs of digit lines 205-10, . . . , 205-1N and 205-20, . . . , 205-2N. The sense amplifier may sense a low voltage (e.g., a logical value of “0”) if one or more of the memory cells coupled to a same pair of digit lines 205-10, . . . , 205-1N and 205-20, . . . , 205-2N that are also coupled to the sense amplifier contains a high voltage (e.g., a logical value of “1”). Conversely, the sense amplifier may sense a high voltage (e.g., a logical value of “1”) if one or more of the memory cells coupled to a same pair of digit lines 205-10, . . . , 205-1N and 205-20, . . . , 205-2N that are also coupled to the sense amplifier contains a low voltage (e.g., a logical value of “0”). That is, in some embodiments, the sense amplifier may sense a particular value (e.g., a “1” or a “0”) based on the value stored in the memory cell that is coupled thereto.


As mentioned above, because a read operation using the memory cell 232 described in FIGS. 2A and 2B may be non-destructive, the memory cell 232 may still contain the original data value (e.g., the same high or low voltage) that was stored therein prior to performance of the read operation and/or performance of the logical operation, while the sense amplifier may contain a result of the logical operation after performance of the logical operation. In some embodiments, the data value (e.g., the logical value of “0” or “1”) stored in the sense amplifier subsequent to performance of the logical operation may be written back to any memory cell 232 (or row of memory cells) in the memory array 230, as described in more detail in association with FIG. 3, herein.



FIG. 3 is a schematic diagram illustrating sensing circuitry 350 in accordance with a number of embodiments of the present disclosure. FIG. 3 illustrates one sensing component 350 which can be one of a number of sensing components corresponding to sensing circuitry 150 shown in FIG. 1. The sensing component 350 may be coupled to a memory cell, such as memory cell 232 shown in FIG. 2 via the digit line 305-2 (e.g., read digit line 305-2) and the digit line 305-1 (e.g., write digit line 305-1). In some embodiments, the sensing component 350 includes a sense amplifier 306. As shown in FIG. 3, the sense amplifier 306 is a current mode sense amplifier; however embodiments are not so limited and the sense amplifier 306 may be any suitable type of differential or non-differential sense amplifier.


The sense amplifier 306 can be operated to determine a data value (e.g., logic state) stored in a selected memory cell. The sense amplifier 306 can comprise a cross coupled latch 315 (e.g., gates of a pair of transistors, such as n-channel transistors 327-1 and 327-2 that are cross coupled with the gates of another pair of transistors, such as p-channel transistors 329-1 and 329-2); however, embodiments are not limited to this example. The sense amplifier 306 may further include a transistor 333-1, which is coupled to the digit line 305-2, and transistor 333-2, which is coupled to a reference potential (e.g., a reference voltage).


In some embodiments, a source/drain region of a transistor 331 is coupled to the digit line 305-2 and a gate region of the transistor 331 is coupled to a Read enable signal line. In operation, when a memory cell (e.g., memory cell 232 illustrated in FIG. 2) is being sensed (e.g., read), the transistor 331 is operable to allow signals to pass between a memory cell coupled to the digit line 305-2 and the sense amplifier 306 when the Read enable signal line is driven high. In some embodiments, the transistor 331 may be operable to gate signals on the digit line 305-2 when the Read enable signal line is driven low.


The cross-coupled latch 315 includes a plurality of transistors 327-1, 327-2, 329-1, and 329-2. The gates of transistors 327-2 and 329-2 are coupled to common node 317-1, while the source/drain region of transistors 327-2 and 329-2 are coupled to common node 317-2. In a complementary fashion, the gates of transistors 327-1 and 329-1 are coupled to common node 317-2, while the source/drain region of transistors 327-1 and 329-1 are coupled to common node 317-1. In some embodiments, the sense amplifier 306 may be operated to amplify a differential voltage between common node 317-1 and common node 317-2 such that the common node 317-1 is driven to one of Vcc and a ground reference potential.


Embodiments are not limited to the sensing component configuration illustrated in FIG. 3. As an example, the sense amplifier 306 can be a single-ended sense amplifier (e.g., sense amplifier coupled to one digit line), or other suitable sense amplifier. Also, embodiments of the present disclosure are not limited to a single-ended sense amplifier architecture such as that shown in FIG. 3.


Memory cells (e.g., memory cell 232 illustrated in FIG. 2) can be arranged in rows coupled by word lines (e.g., row lines 209-1 and 209-2 illustrated in FIGS. 2A and 2B), etc., and columns coupled by digit lines 305-1 and 305-2. Although only two digit lines 305-1/305-2 are shown in FIG. 3, embodiments of the present disclosure are not so limited, and an array of memory cells can include additional columns of memory cells and digit lines (e.g., 4,096, 8,192, 16,384, etc.).


The digit lines 305-1 and 305-2 of memory array (e.g., memory array 130 shown in FIG. 1) are coupled to sensing component 350 in accordance with a number of embodiments of the present disclosure. In this example, the sensing component 350 comprises a sense amplifier 306 corresponding to a respective column of memory cells (e.g., coupled to respective digit lines 305-1/305-2). For example, the sense amplifier 306 is coupled to the digit lines 305-1 and 305-2, which may also be coupled to a memory cell (e.g., memory cell 232 shown in FIG. 2A) or column of memory cells (as shown in FIG. 2B).


The digit line 305-1 is coupled to write transistor 313-1 and write complement transistor 313-2. A gate region of the write transistor 313-1 is coupled to a write true signal line (“Write true”) and a gate region of the write complement transistor is coupled to a write complement signal line (“Write comp”). Source/drain regions of the write transistor 313-2 and the write complement transistor 313-2 are coupled to common nodes 317-1 and 317-2 of the sense amplifier, respectively. In some embodiments, the write transistor 313-1 is operable to transfer a data value stored in the sense amplifier 306 to the memory cell (e.g., memory cell 232 illustrated in FIG. 2) via the digit line 305-1, while in some embodiments the write complement transistor 313-2 is operable to transfer a complement of the data value stored in the sense amplifier 306 to the memory cell via the digit line 305-1. Providing the ability to write either the true or the complement of the data value stored in the sense amplifier 306 may facilitate performance of logical operations between operand stored in the memory cell(s) and/or performance of logical operations between operands stored in the memory cell and the sense amplifier 306 in accordance with a number of embodiments of the disclosure.


For example, when the write true signal line is driven high, the write transistor 313-1 is enabled such that a data value associated with common node 317-1 is transferred from the sense amplifier via the digit line 305-2. When the write complement signal line is driven high, the write complement transistor 313-2 is enabled such that a complement of the data value stored in the sense amp (e.g., a data value associated with common node 317-2) is transferred from the sense amplifier 306 via the digit line 305-1.


The digit line 305-1 may be coupled to a precharge line (“Precharge1”), which may be configured to drive the voltage at transistor 316-1 either low or high depending on whether the Precharge1 line is driven high or low. A pair of transistors 316-2/316-3 may be coupled to a precharge line (“Precharge2”) line, which may be configured to drive the transistors 316-2/316-3 either high or low depending on whether the Precharge2 line is driven high or low.


As shown in FIG. 3, each of the precharge transistors 316-1, 316-2, 316-3 can have a source/drain region that is driven to Vcc and a gate coupled to a respective one of the Precharge lines. For example, the gate of transistor 316-1 is coupled to the Precharge1 line and the gates of transistors 316-2 and 316-3 are coupled to the Precharge2 line. A drain/source region of transistor 316-1 is coupled to digit line 305-2 via sense amplifier input node 319, while respective source/drain regions of transistors 316-2 and 316-3 are coupled to digit line 305-1. As will be appreciated, a charge present on digit line 305-2 will be the same as a charge present at sense amplifier input node 319 during operation of the sensing component 350.


In operation, the sense amplifier 306 is configured to latch a data value (e.g., a data value read from a memory cell via digit line 305-1). In contrast to approaches that utilize a 1T1C DRAM memory cell, in order to write the data value from the sense amplifier 306 to the memory cell (e.g., memory cell 232 illustrated in FIG. 2), the digit line 305-1 is enabled by, for example, operating the write true transistor 313-1 and/or the write complement transistor 313-2. In some embodiments, this is due to the non-destructive nature of read operations performed by the memory cell when the memory cell is a 3T memory cell.



FIG. 4 is a schematic diagram illustrating sensing circuitry in accordance with a number of embodiments of the present disclosure. FIG. 4 shows a number of sense amplifiers 406 coupled to respective digit lines 405-1 and 405-2. The sense amplifiers 406 shown in FIG. 4 can correspond to sensing circuitry 150 shown in FIG. 1 and/or sense amplifier 306 shown in FIG. 3, for example.


Although not shown, memory cells, such as those described in FIG. 2, are coupled to the respective digit lines 405-1 and 405-2 The cells of the memory array can be arranged in rows coupled by word lines and columns coupled by pairs of digit lines Read digit(n−1)/Write digit(n−1), Read digit(n)/Write digit(n), Read digit(n+1)/Write digit(n+1), etc. The individual digit lines corresponding to each pair of respective digit lines can also be referred to as data lines. Although only three pairs of digit lines (e.g., three columns) are shown in FIG. 4, embodiments of the present disclosure are not so limited.


A data value present on a digit line 405-2 can be loaded into the corresponding sense amplifier 406. In some embodiments, the data value may be shifted from a memory cell associated with a first column of the array to sense amplifier 406 associated with a second column of the array. For example, a data value present on the Read digit_n digit line 405-2 can be loaded into sense amplifier 406-3, which is in a column adjacent to the column associated with the Read digit_n digit line 405-2. In some embodiments, the data may be shifted in this manner by enabling shift right transistor 421-3. Similarly, a data value present on the Read digit_n digit line 405-2 can be loaded into sense amplifier 406-1, which is in a column adjacent to the column associated with the Read digit_n digit line 405-2 by enabling shift left transistor 421-1. As will be appreciated, when the no shift transistor 421-2 is enabled, a data value present on the Read digit_n digit line 405-2 may be read into sense amplifier 406-2.


Embodiments are not limited to shifting data that is being read into the sense amplifier 406, and the shift left transistor 421-1, the no shift transistor 421-2, and/or the shift right transistor 421-3 may be individually enabled to shift data being written out the sense amplifiers 406 via digit line 405-1 to memory cells coupled to columns adjacent to the sense amplifier 406 from which the data value is being written.


Although not shown in FIG. 4, each column may be coupled to memory cells (e.g., memory cell 232 shown in FIG. 2), which can be coupled to a column decode line that can be activated to transfer, via a local I/O line, data values from corresponding sense amplifiers 406 to a control component external to the array such as an external processing resource (e.g., host processor and/or other functional unit circuitry). The column decode line can be coupled to a column decoder. However, as described herein, in a number of embodiments, data need not be transferred via such I/O lines to perform shift operations in accordance with embodiments of the present disclosure. In a number of embodiments, shift circuitry (e.g., shift left transistor 421-1, the no shift transistor 421-2, and/or the shift left transistor 421-3) can be operated in conjunction with sense amplifiers 406 to perform shift operations without transferring data to a control component external to the array, for instance. As used herein, transferring data, which may also be referred to as moving data or shifting data is an inclusive term that can include, for example, copying data from a source location to a destination location and/or moving data from a source location to a destination location without necessarily maintaining a copy of the data at the source location (e.g., at the sense amplifier 406).



FIG. 5 is another schematic diagram illustrating sensing circuitry in accordance with a number of embodiments of the present disclosure. FIG. 5 shows a number of sense amplifiers 506 coupled to respective digit lines 505-1 and 505-2. The sense amplifiers 506 shown in FIG. 5 can correspond to sensing circuitry 150 shown in FIG. 1 and/or sense amplifier 306 shown in FIG. 3, for example.


Although not shown, memory cells, such as those described in FIG. 2, are coupled to the respective digit lines 505-1 and 505-2 The cells of the memory array can be arranged in rows coupled by word lines and columns coupled by pairs of digit lines Read digit(n−1)/Write digit(n−1), Read digit(n)/Write digit(n)_, Read digit(n+1)/Write digit(n+1), etc. The individual digit lines corresponding to each pair of respective digit lines can also be referred to as data lines. Although only three pairs of digit lines (e.g., three columns) are shown in FIG. 5, embodiments of the present disclosure are not so limited.


A data value present on a digit line 505-1 can be loaded into the corresponding sense amplifier 506 via sense amplifier input node 519. In some embodiments, the data value may be shifted from a sense amplifier 506 associated with a first column of the array to sense amplifier 506 associated with a second column of the array. For example, a data value present on the Read digit_n digit line 505-2 can be loaded into the middle sense amplifier 506, which is in a column adjacent to the column associated with the Read digit n−1 digit line 505-2 and the Read digit n+1 digit line 506-2. The data value can then be shifted to the right sense amplifier 506 by enabling shift right transistor 521-3. Similarly, a data value present on the Read digit_n digit line 505-2 can be loaded into the middle sense amplifier 506 and shifted from the middle sense amplifier 506 to the left sense amplifier 506 by enabling shift left transistor 521-1. Accordingly, data values latched by the sense amplifiers 506 illustrated in FIG. 5 may be shifted to the left or right from one sense amplifier to another by enabling the shift left and shift right transistors, which connect an output of one sense amplifier 506 to the input of an adjacent sense amplifier 506, as shown in FIG. 5.



FIG. 6 is a flow diagram 670 for performing logical operations using memory cells in accordance with a number of embodiments of the present disclosure. At block 671, a digit line may be precharged to a first voltage (e.g., a high voltage corresponding to a logical value of “1”). The digit line may be one or more of the digit lines 205 illustrated in FIG. 2, for example. In some embodiments, the digit line that is precharged to the first voltage may be a read digit line.


At block 672, at least one word line of a memory array may be enabled (e.g., activated). The at least one word line may correspond to one or more of the word lines 209 illustrated in FIG. 2, for example. The enabled word line may be a read row word line. As discussed above, each word line that is enabled can correspond a quantity of inputs (e.g., K inputs, where K is a non-zero integer) of a logical operation such as a NOR logical operation. Accordingly, the NOR logical operation may be a K-input NOR logical NOR operation. For example, if two word lines are enabled, a 2-input NOR operation results, if three word lines are enabled, a 3-input NOR operations results, etc. In some embodiments, each one of the K memory cells may store a data value corresponding to a respective one of the K-inputs. Further, as described above, each digit line enabled may correspond to a number (N) of NOR gates that each have K inputs corresponding the number (K) of word lines enabled associated therewith.


In some embodiments, a read word line can be activated. The read word line may be a read word line corresponding to the K memory cells. While at least one of the read word lines corresponding to the K memory cells is activated, a sense amplifier coupled to the read digit line can be enabled. In some embodiments, subsequent to enabling the sense amplifier, a result of the K-input logical operation resides in the sense amplifier. The read word lines corresponding to the K memory cells may be activated simultaneously, or they may be activated at different times.


The sense amplifier may be configured to sense a particular logic value responsive to one or more of the K memory cells storing a first data value and sense a different logic value responsive to all of the K memory cells storing a second data value that is different than the first data value.


At block 674, a data value corresponding to the voltage of the digit line may be sensed by a sense amplifier coupled to the digit line. In some embodiments, if one more memory cells coupled to the digit line contains a first voltage (e.g., a logical value of “1”), the sense amplifier senses a second voltage (e.g., a low voltage corresponding to a logical value of “0”). Conversely, if one more memory cells coupled to the digit line contains the second voltage (e.g., a logical value of “0”), the sense amplifier senses the first voltage (e.g., a logical value of “1”).


As discussed above, a read operation may be non-destructive such that the original data value stored in the memory cell (e.g., the data value stored in the memory cell prior to performance of the logical operation) is still stored in the memory cell after performance of the logical operation. In some embodiments, the result of the logical operation may be stored in a sense amplifier coupled to the memory cell.


At block 675, a word line may be enabled to write the data value sensed by the sense amplifier to a row of the memory array associated with the word line. In some embodiments, the word line that is enabled to write the data value sensed by the sense amplifier to the memory array may be a write row word line. In some embodiments, the word line may be enabled to write the data value sensed by the sense amplifier to a row of the memory array while at least digit line (e.g., a row line) is enabled. This may allow for data to be written and read concurrently.


Finally, at block 676, the digit lines may be precharged to a first voltage again in anticipation of performing another logical operation.


Operations to perform a logical NOR operation in accordance with the disclosure can be summarized as follows:


Enable Precharge1 to precharge one or more read digit lines (e.g., digit lines 305-2 illustrated in FIG. 3) to Vcc (e.g., to a high voltage)


Enable Precharge2 to prechanrge sense amplifier (e.g., digit lines 317-1 and 317-2 illustrated in FIG. 3) to Vcc (e.g., to a high voltage)


Disable Precharge1


Disable Precharge2


Enable one or more read row lines


Fire sense amplifier (e.g., toggle RNL illustrated in FIG. 3 from a low voltage to a high voltage)


Sense amplifier (e.g., sense amplifier 306 illustrated in FIG. 3) senses a low voltage (e.g., a logic value of “0”) if one or more cells on a read digit line contains a high voltage (e.g., a logic value of “1”)


Sense amplifier senses a high voltage (e.g., a logic value of “1”) if all cells on a read digit line contain a low voltage (e.g., a logic value of “0”)


Disable read row lines


Enable one or more write row lines to write the value sensed by the sense amplifier to that row


Disable write row lines


Disable sense amplifier (e.g., toggle RNL illustrated in FIG. 3 from a high voltage to a low voltage)


Enable Precharge1 to precharge one or more read digit lines to Vcc in preparation for a subsequent read and/or logical operation


Enable Precharge2 to precharge sense amplifier to Vcc in preparation for a subsequent read and/or logical operation


As described above in more detail, the read is non-destructive so the memory cells contain their original data. Accordingly, in some embodiments, only the sense amplifier contains the result of the NOR operation.


Operations to write the data value sensed by the sense amplifier to the memory array can be summarized as follows:


Enable one or more write row lines to write the value sensed by the sense amplifier


Enable write true transistor (e.g., WRITE TRUE transistor 313-1 illustrated in FIG. 3) to write the data value stored in the sense amplifier to a memory cell array


Enable write comp transistor (e.g., WRITE COMP transistor 313-2 illustrated in FIG. 3) to write the complement of the data value stored in the sense amplifier to a memory cell of the array


Disable write row lines


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of one or more embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the one or more embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of one or more embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, some features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A method, comprising: performing a K-input logical operation by: charging, to a first voltage, a read digit line coupled to K three transistor (3t) memory cells associated with a memory device, wherein each one of the K 3T memory cells stores a data value corresponding to a respective one of the K-inputs;activating read word lines corresponding to the K memory cells;while at least one of the read word lines corresponding to the K memory cells is activated, enabling a sense amplifier coupled to the read digit line, wherein subsequent to enabling the sense amplifier, a result of the K-input logical operation resides in the sense amplifier, and wherein a controller is configured to cause the sense amplifier to: sense a particular logic value responsive to one or more of the K memory cells storing a first data value;sense a different logic value responsive to all of the K memory cells storing a second data value that is different than the first data value; andwrite a result of the K-input logical operation or a complement of the result of the K-input logical operation to a number of memory cells coupled to a write digit line of the memory device based on enabling a first transistor coupled to the sense amplifier or enabling a second transistor coupled to the sense amplifier.
  • 2. The method of claim 1, wherein the method includes activating the read word lines corresponding to the memory cells simultaneously.
  • 3. The method of claim 1, wherein the K memory cells are nondestructive read memory cells such that the activating the read word lines and enabling the sense amplifier does not destroy the data values stored in the K memory cells.
  • 4. The method of claim 1, wherein the K-input logical operation is a K-input logical NOR operation.
  • 5. An apparatus, comprising: an array of three transistor (3T) memory cells; anda controller coupled to the array of 3T memory cells, the controller configured to cause: performance of a K-input logical operation by: charging, to a first voltage, a read digit line coupled to K memory cells, wherein each one of the K memory cells stores a data value corresponding to a respective one of the K-inputs;activating read word lines corresponding to the K memory cells;while at least one of the read word lines corresponding to the K memory cells is activated, enabling a sense amplifier coupled to the read digit line, wherein subsequent to enabling the sense amplifier, a result of the K-input logical operation resides in the sense amplifier, and wherein the controller is configured to cause the sense amplifier to: sense a particular logic value responsive to one or more of the K memory cells storing a first data value;sense a different logic value responsive to all of the K memory cells storing a second data value that is different than the first data value; andenable a first transistor coupled to the sense amplifier to write a result of the K-input logical operation to memory cells coupled to respective memory cells of a first write row line and enable a second transistor coupled to the sense amplifier to write a complement of the result of the K-input logical operation to respective memory cells of a second write row line.
  • 6. The apparatus of claim 5, wherein the controller is configured to cause the read word lines corresponding to the memory cells to be activated simultaneously.
  • 7. The apparatus of claim 5, wherein the K memory cells are three transistor (3T) dynamic random-access memory (3T DRAM) cells.
  • 8. The apparatus of claim 5, wherein the K memory cells are nondestructive read memory cells such that the activating the read word lines and enabling the sense amplifier does not destroy the data values stored in the K memory cells.
  • 9. The apparatus of claim 5, wherein the K-input logical operation is a K-input logical NOR operation.
  • 10. The apparatus of claim 5, wherein the controller is configured to cause the result of the K-input logical operation to be shifted from the sense amplifier to a different sense amplifier associated with the memory cells.
  • 11. The apparatus of claim 5, wherein the controller is configured to cause the complement of a result of the K-input logical operation to be transferred to a different one of the K memory cells.
  • 12. The apparatus of claim 5, wherein the sense amplifier is a sense amplifier among a plurality of sense amplifiers coupled to respective memory cells among the K memory cells.
  • 13. A system, comprising: a memory device comprising: an array of three transistor (3T) memory cells; anda controller coupled to the array of 3T memory cells, wherein the controller is configured to cause performance of a K-input logical operation by: charging, to a first voltage, a read digit line coupled to K memory cells, wherein each one of the K memory cells stores a data value corresponding to a respective one of the K-inputs;activating read word lines corresponding to the K memory cells;while at least one of the read word lines corresponding to the K memory cells is activated, enabling a sense amplifier coupled to the read digit line, wherein subsequent to enabling the sense amplifier, a result of the K-input logical operation resides in the sense amplifier, and wherein the controller is configured to cause the sense amplifier to: sense a particular logic value responsive to one or more of the K memory cells storing a first data value;sense a different logic value responsive to all of the K memory cells storing a second data value that is different than the first data value; andenable a first transistor coupled to the sense amplifier to write a result of the K-input logical operation to memory cells coupled to respective memory cells of a first write row line and enable a second transistor coupled to the sense amplifier to write a complement of the result of the K-input logical operation to respective memory cells of a second write row line.
  • 14. The system of claim 13, wherein the controller is configured to cause the read word lines corresponding to the memory cells to be activated simultaneously.
  • 15. The system of claim 13, wherein the controller is configured to cause the read word lines corresponding to the memory cells to be activated at different times.
  • 16. The system of claim 13, wherein the K-input logical operation is a K-input logical NOR operation.
  • 17. The system of claim 13, wherein the controller is configured to cause the complement of a result of the K-input logical operation to be transferred to a different one of the K memory cells.
  • 18. The system of claim 13, wherein the controller is configured to cause the result of the K-input logical operation to be shifted from the sense amplifier to a different sense amplifier associated with the memory cells.
  • 19. The system of claim 13, wherein the K memory cells are nondestructive read memory cells such that the activating the read word lines and enabling the sense amplifier does not destroy the data values stored in the K memory cells.
PRIORITY INFORMATION

This application is a Divisional of U.S. application Ser. No. 15/884,179, filed Jan. 30, 2018, which issues as U.S. Pat. No. 10,614,875 on Apr. 7, 2020, the contents of which are included herein by reference.

US Referenced Citations (373)
Number Name Date Kind
4380046 Fung Apr 1983 A
4435792 Bechtolsheim Mar 1984 A
4435793 Ochii Mar 1984 A
4727474 Batcher Feb 1988 A
4843264 Galbraith Jun 1989 A
4958378 Bell Sep 1990 A
4977542 Matsuda et al. Dec 1990 A
5023838 Herbert Jun 1991 A
5034636 Reis et al. Jul 1991 A
5201039 Sakamura Apr 1993 A
5210850 Kelly et al. May 1993 A
5253308 Johnson Oct 1993 A
5276643 Hoffman et al. Jan 1994 A
5289475 Slemmer Feb 1994 A
5325519 Long et al. Jun 1994 A
5367488 An Nov 1994 A
5379257 Matsumura et al. Jan 1995 A
5386379 Ail-Yahia et al. Jan 1995 A
5398213 Yeon et al. Mar 1995 A
5440482 Davis Aug 1995 A
5446690 Tanaka et al. Aug 1995 A
5473576 Matsui Dec 1995 A
5481500 Reohr et al. Jan 1996 A
5485373 Davis et al. Jan 1996 A
5496756 Sharma et al. Mar 1996 A
5506811 McLaury Apr 1996 A
5615404 Knoll et al. Mar 1997 A
5638128 Hoogenboom Jun 1997 A
5638317 Tran Jun 1997 A
5646903 Johnson Jul 1997 A
5654936 Cho Aug 1997 A
5678021 Pawate et al. Oct 1997 A
5724291 Matano Mar 1998 A
5724366 Furutani Mar 1998 A
5751987 Mahant-Shetti et al. May 1998 A
5787458 Miwa Jul 1998 A
5818784 Muranaka Oct 1998 A
5854636 Watanabe et al. Dec 1998 A
5867429 Chen et al. Feb 1999 A
5870504 Nemoto et al. Feb 1999 A
5909400 Bertin et al. Jun 1999 A
5915084 Wendell Jun 1999 A
5935263 Keeth et al. Aug 1999 A
5986942 Sugibayashi Nov 1999 A
5991209 Chow Nov 1999 A
5991785 Alidina et al. Nov 1999 A
6005799 Rao Dec 1999 A
6009020 Nagata Dec 1999 A
6092186 Betker et al. Jul 2000 A
6122211 Morgan et al. Sep 2000 A
6125071 Kohno et al. Sep 2000 A
6134164 Lattimore et al. Oct 2000 A
6147514 Shiratake Nov 2000 A
6151244 Fujino et al. Nov 2000 A
6157578 Brady Dec 2000 A
6163862 Adams et al. Dec 2000 A
6166942 Vo et al. Dec 2000 A
6172918 Hidaka Jan 2001 B1
6175514 Henderson Jan 2001 B1
6181698 Hariguchi Jan 2001 B1
6208544 Beadle et al. Mar 2001 B1
6226215 Yoon May 2001 B1
6301153 Takeuchi et al. Oct 2001 B1
6301164 Manning et al. Oct 2001 B1
6304477 Naji Oct 2001 B1
6389507 Sherman May 2002 B1
6418498 Martwick Jul 2002 B1
6466499 Blodgett Oct 2002 B1
6510098 Taylor Jan 2003 B1
6563754 Lien et al. May 2003 B1
6578058 Nygaard Jun 2003 B1
6661701 Dahl et al. Dec 2003 B2
6731542 Le et al. May 2004 B1
6754746 Leung et al. Jun 2004 B1
6768679 Le et al. Jul 2004 B1
6807614 Chung Oct 2004 B2
6809979 Tang Oct 2004 B1
6816422 Hamade et al. Nov 2004 B2
6819612 Achter Nov 2004 B1
6894549 Eliason May 2005 B2
6943579 Hazanchuk et al. Sep 2005 B1
6948056 Roth Sep 2005 B1
6950771 Fan et al. Sep 2005 B1
6950898 Merritt et al. Sep 2005 B2
6956770 Khalid et al. Oct 2005 B2
6961272 Schreck Nov 2005 B2
6965648 Smith et al. Nov 2005 B1
6985394 Kim Jan 2006 B2
6987693 Cernea et al. Jan 2006 B2
7020017 Chen et al. Mar 2006 B2
7028170 Saulsbury Apr 2006 B2
7045834 Tran et al. May 2006 B2
7054178 Shiah et al. May 2006 B1
7061817 Raad et al. Jun 2006 B2
7079407 Dimitrelis Jul 2006 B1
7173857 Kato et al. Feb 2007 B2
7187585 Li et al. Mar 2007 B2
7196928 Chen Mar 2007 B2
7260565 Lee et al. Aug 2007 B2
7260672 Gamey Aug 2007 B2
7372715 Han May 2008 B2
7400532 Aritome Jul 2008 B2
7406494 Magee Jul 2008 B2
7447720 Beaumont Nov 2008 B2
7454451 Beaumont Nov 2008 B2
7457181 Lee et al. Nov 2008 B2
7535769 Cernea May 2009 B2
7546438 Chung Jun 2009 B2
7562198 Noda et al. Jul 2009 B2
7574466 Beaumont Aug 2009 B2
7602647 Li et al. Oct 2009 B2
7663928 Tsai et al. Feb 2010 B2
7685365 Rajwar et al. Mar 2010 B2
7692466 Ahmadi Apr 2010 B2
7752417 Manczak et al. Jul 2010 B2
7791962 Noda et al. Sep 2010 B2
7796453 Riho et al. Sep 2010 B2
7805587 Van Dyke et al. Sep 2010 B1
7808854 Takase Oct 2010 B2
7827372 Bink et al. Nov 2010 B2
7869273 Lee et al. Jan 2011 B2
7898864 Dong Mar 2011 B2
7924628 Danon et al. Apr 2011 B2
7937535 Ozer et al. May 2011 B2
7957206 Bauser Jun 2011 B2
7979667 Allen et al. Jul 2011 B2
7996749 Ding et al. Aug 2011 B2
8042082 Solomon Oct 2011 B2
8045391 Mokhlesi Oct 2011 B2
8059438 Chang et al. Nov 2011 B2
8095825 Hirotsu et al. Jan 2012 B2
8117462 Snapp et al. Feb 2012 B2
8164942 Gebara et al. Apr 2012 B2
8208328 Hong Jun 2012 B2
8213248 Moon et al. Jul 2012 B2
8223568 Seo Jul 2012 B2
8238173 Akerib Aug 2012 B2
8274841 Shimano et al. Sep 2012 B2
8279683 Klein Oct 2012 B2
8310884 Iwai et al. Nov 2012 B2
8332367 Bhattacherjee et al. Dec 2012 B2
8339824 Cooke Dec 2012 B2
8339883 Yu et al. Dec 2012 B2
8347154 Bahali et al. Jan 2013 B2
8351292 Matano Jan 2013 B2
8356144 Hessel et al. Jan 2013 B2
8379433 Houston et al. Feb 2013 B2
8417921 Gonion et al. Apr 2013 B2
8462532 Argyres Jun 2013 B1
8484276 Carlson et al. Jul 2013 B2
8495438 Roine Jul 2013 B2
8503250 Demone Aug 2013 B2
8526239 Kim Sep 2013 B2
8533245 Cheung Sep 2013 B1
8555037 Gonion Oct 2013 B2
8599613 Abiko et al. Dec 2013 B2
8605015 Guttag et al. Dec 2013 B2
8625376 Jung et al. Jan 2014 B2
8644101 Jun et al. Feb 2014 B2
8650232 Stortz et al. Feb 2014 B2
8873272 Lee Oct 2014 B2
8964496 Manning Feb 2015 B2
8971124 Manning Mar 2015 B1
9015390 Klein Apr 2015 B2
9047193 Lin et al. Jun 2015 B2
9165023 Moskovich et al. Oct 2015 B2
9659605 Zawodny et al. May 2017 B1
9659610 Hush May 2017 B1
9672895 Antonyan Jun 2017 B2
9697876 Tiwari et al. Jul 2017 B1
10008502 Endo Jun 2018 B2
10388364 Ishizu et al. Aug 2019 B2
20010007112 Porterfield Jul 2001 A1
20010008492 Higashiho Jul 2001 A1
20010010057 Yamada Jul 2001 A1
20010028584 Nakayama et al. Oct 2001 A1
20010043089 Forbes et al. Nov 2001 A1
20020051397 Watanabe May 2002 A1
20020059355 Peleg et al. May 2002 A1
20030167426 Slobodnik Sep 2003 A1
20030222879 Lin et al. Dec 2003 A1
20040073592 Kim et al. Apr 2004 A1
20040073773 Demjanenko Apr 2004 A1
20040085840 Vali et al. May 2004 A1
20040095826 Perner May 2004 A1
20040154002 Ball et al. Aug 2004 A1
20040205289 Srinivasan Oct 2004 A1
20040240251 Nozawa et al. Dec 2004 A1
20050015557 Wang et al. Jan 2005 A1
20050029551 Atwood Feb 2005 A1
20050078514 Scheuerlein et al. Apr 2005 A1
20050097417 Agrawal et al. May 2005 A1
20050152199 Park Jul 2005 A1
20050169040 Peng Aug 2005 A1
20050226079 Zhu Oct 2005 A1
20050237786 Atwood et al. Oct 2005 A1
20060047937 Selvaggi et al. Mar 2006 A1
20060069849 Rudelic Mar 2006 A1
20060146623 Mizuno et al. Jul 2006 A1
20060149804 Luick et al. Jul 2006 A1
20060181917 Kang et al. Aug 2006 A1
20060215432 Wickeraad et al. Sep 2006 A1
20060225072 Lari et al. Oct 2006 A1
20060291282 Liu et al. Dec 2006 A1
20070081380 Atwood Apr 2007 A1
20070103986 Chen May 2007 A1
20070171747 Hunter et al. Jul 2007 A1
20070180006 Gyoten et al. Aug 2007 A1
20070180184 Sakashita et al. Aug 2007 A1
20070195602 Fong et al. Aug 2007 A1
20070285131 Sohn Dec 2007 A1
20070285979 Turner Dec 2007 A1
20070291532 Tsuji Dec 2007 A1
20080025073 Arsovski Jan 2008 A1
20080037333 Kim et al. Feb 2008 A1
20080043540 Boemler Feb 2008 A1
20080052711 Forin et al. Feb 2008 A1
20080137388 Krishnan et al. Jun 2008 A1
20080165601 Matick et al. Jul 2008 A1
20080178053 Gorman et al. Jul 2008 A1
20080215937 Dreibelbis et al. Sep 2008 A1
20090067218 Graber Mar 2009 A1
20090154238 Lee Jun 2009 A1
20090154273 Borot et al. Jun 2009 A1
20090254697 Akerib Oct 2009 A1
20090141537 Arsovski Dec 2009 A1
20100054022 Beck Mar 2010 A1
20100067296 Li Mar 2010 A1
20100091582 Vali et al. Apr 2010 A1
20100172190 Lavi et al. Jul 2010 A1
20100210076 Gruber et al. Aug 2010 A1
20100226183 Kim Sep 2010 A1
20100302837 Zhang Dec 2010 A1
20100308858 Noda et al. Dec 2010 A1
20100332895 Billing et al. Dec 2010 A1
20110013442 Akerib Jan 2011 A1
20110026323 Luk et al. Feb 2011 A1
20110051523 Manabe et al. Mar 2011 A1
20110063919 Chandrasekhar et al. Mar 2011 A1
20110093662 Walker et al. Apr 2011 A1
20110103151 Kim et al. May 2011 A1
20110119467 Cadambi et al. May 2011 A1
20110122695 Li et al. May 2011 A1
20110140741 Zerbe et al. Jun 2011 A1
20110219260 Nobunaga et al. Sep 2011 A1
20110267883 Lee Nov 2011 A1
20110317496 Bunce et al. Dec 2011 A1
20120005397 Lim et al. Jan 2012 A1
20120017039 Margetts Jan 2012 A1
20120023281 Kawasaki et al. Jan 2012 A1
20120120705 Mitsubori et al. May 2012 A1
20120134216 Singh May 2012 A1
20120134225 Chow May 2012 A1
20120134226 Chow May 2012 A1
20120140540 Agam Jun 2012 A1
20120170348 Clinton Jul 2012 A1
20120182798 Hosono et al. Jul 2012 A1
20120195146 Jun et al. Aug 2012 A1
20120198310 Tran et al. Aug 2012 A1
20120246380 Akerib Sep 2012 A1
20120265964 Murata et al. Oct 2012 A1
20120281486 Rao et al. Nov 2012 A1
20120303627 Keeton et al. Nov 2012 A1
20130003467 Klein Jan 2013 A1
20130061006 Hein Mar 2013 A1
20130107623 Kavalipurapu et al. May 2013 A1
20130117541 Choquette et al. May 2013 A1
20130124783 Yoon et al. May 2013 A1
20130132702 Patel et al. May 2013 A1
20130138646 Sirer et al. May 2013 A1
20130163362 Kim Jun 2013 A1
20130173888 Hansen et al. Jul 2013 A1
20130205114 Badam et al. Aug 2013 A1
20130219112 Okin et al. Aug 2013 A1
20130227361 Bowers et al. Aug 2013 A1
20130283122 Anholt et al. Oct 2013 A1
20130286705 Grover et al. Oct 2013 A1
20130308364 Smith Nov 2013 A1
20130326154 Haswell Dec 2013 A1
20130332707 Gueron et al. Dec 2013 A1
20140119099 Clark May 2014 A1
20140133251 Takahashi May 2014 A1
20140185395 Seo Jul 2014 A1
20140215185 Danielsen Jul 2014 A1
20140250279 Manning Sep 2014 A1
20140344934 Jorgensen Nov 2014 A1
20140362649 Hsiao Dec 2014 A1
20140374747 Kurokawa Dec 2014 A1
20150016197 Hsiao Jan 2015 A1
20150029798 Manning Jan 2015 A1
20150042380 Manning Feb 2015 A1
20150063052 Manning Mar 2015 A1
20150078108 Cowles et al. Mar 2015 A1
20150120987 Wheeler Apr 2015 A1
20150134713 Wheeler May 2015 A1
20150270015 Murphy et al. Sep 2015 A1
20150279466 Manning Oct 2015 A1
20150324290 Leidel Nov 2015 A1
20150325272 Murphy Nov 2015 A1
20150356009 Wheeler et al. Dec 2015 A1
20150356022 Leidel et al. Dec 2015 A1
20150357007 Manning et al. Dec 2015 A1
20150357008 Manning et al. Dec 2015 A1
20150357019 Wheeler et al. Dec 2015 A1
20150357020 Manning Dec 2015 A1
20150357021 Hush Dec 2015 A1
20150357022 Hush Dec 2015 A1
20150357023 Hush Dec 2015 A1
20150357024 Hush et al. Dec 2015 A1
20150357047 Tiwari Dec 2015 A1
20160062672 Wheeler Mar 2016 A1
20160062673 Tiwari Mar 2016 A1
20160062692 Finkbeiner et al. Mar 2016 A1
20160062733 Tiwari Mar 2016 A1
20160063284 Tiwari Mar 2016 A1
20160064045 La Fratta Mar 2016 A1
20160064047 Tiwari Mar 2016 A1
20160098208 Willcock Apr 2016 A1
20160098209 Leidel et al. Apr 2016 A1
20160110135 Wheeler et al. Apr 2016 A1
20160125919 Hush May 2016 A1
20160154596 Willcock et al. Jun 2016 A1
20160155482 La Fratta Jun 2016 A1
20160188250 Wheeler Jun 2016 A1
20160196142 Wheeler Jul 2016 A1
20160196856 Tiwari et al. Jul 2016 A1
20160225422 Tiwari et al. Aug 2016 A1
20160266873 Tiwari et al. Sep 2016 A1
20160266899 Tiwari Sep 2016 A1
20160267951 Tiwari Sep 2016 A1
20160292080 Leidel et al. Oct 2016 A1
20160306584 Zawodny et al. Oct 2016 A1
20160306614 Leidel et al. Oct 2016 A1
20160350230 Murphy Dec 2016 A1
20160365129 Willcock Dec 2016 A1
20160371033 La Fratta et al. Dec 2016 A1
20170052906 Lea Feb 2017 A1
20170178701 Willcock et al. Jun 2017 A1
20170192844 Lea et al. Jul 2017 A1
20170228192 Willcock et al. Aug 2017 A1
20170235515 Lea et al. Aug 2017 A1
20170236564 Zawodny et al. Aug 2017 A1
20170242902 Crawford et al. Aug 2017 A1
20170243623 Kirsch et al. Aug 2017 A1
20170262369 Murphy Sep 2017 A1
20170263306 Murphy Sep 2017 A1
20170269865 Willcock et al. Sep 2017 A1
20170269903 Tiwari Sep 2017 A1
20170277433 Willcock Sep 2017 A1
20170277440 Willcock Sep 2017 A1
20170277581 Lea et al. Sep 2017 A1
20170277637 Willcock et al. Sep 2017 A1
20170278559 Hush Sep 2017 A1
20170278584 Rosti Sep 2017 A1
20170285988 Dobelstein Oct 2017 A1
20170293434 Tiwari Oct 2017 A1
20170301379 Hush Oct 2017 A1
20170309314 Zawodny et al. Oct 2017 A1
20170323674 Kang Nov 2017 A1
20170336989 Zawodny et al. Nov 2017 A1
20170337126 Zawodny et al. Nov 2017 A1
20170337953 Zawodny et al. Nov 2017 A1
20170352391 Hush Dec 2017 A1
20170371539 Mai et al. Dec 2017 A1
20180012636 Alzheimer et al. Jan 2018 A1
20180024769 Howe et al. Jan 2018 A1
20180024926 Penney et al. Jan 2018 A1
20180025757 Chan et al. Jan 2018 A1
20180025759 Penney et al. Jan 2018 A1
20180025768 Hush Jan 2018 A1
20180075892 Nakatsuka et al. Mar 2018 A1
20180122456 Li May 2018 A1
20180144779 Willcock et al. May 2018 A1
Foreign Referenced Citations (16)
Number Date Country
102141905 Aug 2011 CN
107767907 Mar 2018 CN
0214718 Mar 1987 EP
2026209 Feb 2009 EP
H0831168 Feb 1996 JP
H1117025 Jan 1999 JP
2009259193 Mar 2015 JP
10-0211482 Aug 1998 KR
10-2010-0134235 Dec 2010 KR
10-2013-0049421 May 2013 KR
20150071732 Jun 2015 KR
2001065359 Sep 2001 WO
2010079451 Jul 2010 WO
2013062596 May 2013 WO
2013081588 Jun 2013 WO
2013095592 Jun 2013 WO
Non-Patent Literature Citations (20)
Entry
Dybdahl, et al., “Destructive-Read in Embedded DRAM, Impact on Power Consumption,” Apr. 2006, (10 pgs.), vol. 2, Issue 2, Journal of Embedded Computing-Issues in embedded single-chip multicore architectures.
Kogge, et al., “Processing in Memory: Chips to Petaflops,” May 23, 1997, (8 pgs.), retrieved from: http://www.cs.ucf.edu/courses/cda5106/summer02/papers/kogge97PIM.pdf.
Draper, et al., “The Architecture of the DIVA Processing-in-Memory Chip,” Jun. 22-26, 2002, (12 pgs.), ICS '02, retrieved from: http://www.isi.edu/˜draper/papers/ics02.pdf.
Adibi, et al., “Processing-in-Memory Technology for Knowledge Discovery Algorithms,” Jun. 25, 2006, (10 pgs.), Proceeding of the Second International Workshop on Data Management on New Hardware, retrieved from: http://www.cs.cmu.edu/˜damon2006/pdf/adibi06inmemory.pdf.
U.S. Appl. No. 13/449,082, entitled, “Methods and Apparatus for Pattern Matching,” filed Apr. 17, 2012, (37 pgs.).
U.S. Appl. No. 13/743,686, entitled, “Weighted Search and Compare in a Memory Device,” filed Jan. 17, 2013, (25 pgs.).
U.S. Appl. No. 13/774,636, entitled, “Memory as a Programmable Logic Device,” filed Feb. 22, 2013, (30 pgs.).
U.S. Appl. No. 13/774,553, entitled, “Neural Network in a Memory Device,” filed Feb. 22, 2013, (63 pgs.).
U.S. Appl. No. 13/796,189, entitled, “Performing Complex Arithmetic Functions in a Memory Device,” filed Mar. 12, 2013, (23 pgs.).
International Search Report and Written Opinion for PCT Application No. PCT/US2013/043702, dated Sep. 26, 2013, (11 pgs.).
Pagiamtzis, et al., “Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey”, Mar. 2006, (16 pgs.), vol. 41, No. 3, IEEE Journal of Solid-State Circuits.
Pagiamtzis, Kostas, “Content-Addressable Memory Introduction”, Jun. 25, 2007, (6 pgs.), retrieved from: http://www.pagiamlzis.com/cam/camintro.
Debnath, Biplob, Bloomflash: Bloom Filter on Flash-Based Storage, 2011 31st Annual Conference on Distributed Computing Systems, Jun. 20-24, 2011, 10 pgs.
Derby, et al., “A High-Performance Embedded DSP Core with Novel SIMD Features”, Apr. 6-10, 2003, (4 pgs), vol. 2, pp. 301-304, 2003 IEEE International Conference on Accoustics, Speech, and Signal Processing.
“4.9.3 MINLOC and MAXLOC”, Jun. 12, 1995, (5pgs.), Message Passing Interface Forum 1.1, retrieved from http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node79.html.
Stojmenovic, “Multiplicative Circulant Networks Topological Properties and Communication Algorithms”, (25 pgs.), Discrete Applied Mathematics 77 (1997) 281-305.
Boyd et al., “On the General Applicability of Instruction-Set Randomization”, Jul.-Sep. 2010, (14 pgs.), vol. 7, Issue 3, IEEE Transactions on Dependable and Secure Computing.
Elliot, et al., “Computational RAM: Implementing Processors in Memory”, Jan.-Mar. 1999, (10 pgs.), vol. 16, Issue 1, IEEE Design and Test of Computers Magazine.
International Search Report and Written Opinion for related PCT Application No. PCT/US2019/013765, dated May 1, 2019, 16 pages.
Search Report from related European Application No. 19747682, dated Aug. 26, 2021, 10 pages.
Related Publications (1)
Number Date Country
20200234755 A1 Jul 2020 US
Divisions (1)
Number Date Country
Parent 15884179 Jan 2018 US
Child 16840874 US