Loudspeaker unit with multiple drive units

Information

  • Patent Grant
  • 10893367
  • Patent Number
    10,893,367
  • Date Filed
    Thursday, September 21, 2017
    6 years ago
  • Date Issued
    Tuesday, January 12, 2021
    3 years ago
  • Inventors
  • Original Assignees
    • Mayht Holding B.V.
  • Examiners
    • Goins; Davetta W
    • Ganmavo; Kuassi A
    Agents
    • N.V. Nederlands Octrooibureau
    • Shultz; Catherine A.
    • Stegmann; Tamara C.
Abstract
Loudspeaker unit with a membrane (2) and a plurality of drive units (5) driving the membrane (2). Each of the plurality of drive units (5) has n voice coils (3) and at least n+1 magnets (4), n being an integer larger than or equal to 1. The magnets (4) have an axial magnetization and are stacked in axial direction with similar pole parts of adjacent ones of the at least n+1 magnets facing each other. The at least n+1 magnets (4) are separated in the stack over a magnet separation distance (dm), the magnet separation distance (dm) being substantially equal to a width (ws) in the stack direction of the at least n voice coils (3).
Description
FIELD OF THE INVENTION

The present invention relates to a loudspeaker unit having a membrane and a plurality of drive units driving the membrane.


BACKGROUND ART

International patent publication WO2013/047792 discloses a speaker with a light and thin design, wherein multiple drive units are connected in parallel to a diaphragm. The drive units are each provided with multiple coil members positioned in parallel close to each other and connected to a frame of the speaker, and with multiple magnetic members with magnets attached to the diaphragm. In this disclosure, a coil member may comprise multiple series connected windings.


US patent publication US2006/222200 discloses an electrodynamic loudspeaker having a magnetic circuit and a vibrator. The vibrator comprises a single coil bobbin with two voice coils wound around and fixed to a portion of the coil bobbin. The two voice coils face opposite poles of a magnet. A magnetic member is furthermore fixed to the coil bobbin at a position spaced apart from the voice coils.


SUMMARY OF THE INVENTION

The present invention seeks to provide an improved loudspeaker unit having an improved performance in efficiency and power.


According to the present invention, a loudspeaker unit as defined above is provided, wherein each of the plurality of drive units comprises n voice coils and at least n+1 magnets, n being an integer larger than or equal to 1, wherein the at least n+1 magnets are magnets with an axial magnetization which are stacked in axial direction with similar pole parts of adjacent ones of the at least n+1 magnets facing each other, and the at least n+1 magnets are separated in the stack over a magnet separation distance, the magnet separation distance being substantially equal to a width in the stack direction of the n voice coils.


The present invention structure and mutual element orientation allow to provide a more efficient and cost effective loudspeaker unit.





SHORT DESCRIPTION OF DRAWINGS

The present invention will be discussed in more detail below, with reference to the attached drawings, in which



FIG. 1A shows a perspective view of an exemplary embodiment of the present invention loudspeaker unit;



FIG. 1B shows a side view of the top part of the loudspeaker unit 1 of FIG. 1A;



FIG. 1C shows the associated side view of the bottom part of the loudspeaker unit 1 of FIG. 1A;



FIG. 2A shows a side view of a further embodiment of the present invention loudspeaker unit; and



FIG. 2B shows a cross sectional view of the loudspeaker unit of FIG. 2A along the line IIB-IIB.





DESCRIPTION OF EMBODIMENTS

The present invention provides for an improved loudspeaker unit having a simple structural and electronic design, and hence have advantages over prior art loudspeakers in both technical sense and in cost efficiency. Prior art electrodynamic loudspeakers use magnets and a magnetic circuit of pole pieces, a back plate and a top plate, which channel the magnetic field into a magnetic gap. In the magnetic gap a voice coil is positioned which is mechanically coupled to a conus producing the sound waves. Other principles are used in loudspeakers of the electrostatic type and planar loudspeakers. For electrodynamic type of loudspeakers, the inductance increases when increasing the power capacity of the loudspeaker, the sensitivity is relatively limited and the structure requires a large format in view of the maximum sound level that can be produced. The electrostatic and planar type of loudspeakers have a disadvantage of a limited dynamic range and a bad low frequency response.


In accordance with the present invention embodiments, a more powerful and efficient loudspeaker unit is provided without having a too high inductance, i.e. power can be increased without a (significant) increase in inductance. Furthermore, the sensitivity is increased, and due to the absence of a closed magnetic circuit, the dimensions of the loudspeaker unit can be relatively small. As multiple drive units are employed, the support to the sound producing membrane is more evenly distributed, which will have a positive influence on the longevity and required rigidity of the membrane (membrane resonance will be less pronounced without needing to increase the moving mass of the membrane in an inefficient manner). This will result in an increased longevity and efficiency of the membrane and thus the entire loudspeaker unit.



FIG. 1A shows a perspective view of an exemplary embodiment of the present invention loudspeaker unit 1, wherein a (flat) membrane 2 with associated voice coil 3 of a drive unit 5 is shown separated from the rest of the loudspeaker unit 1 for clarity. FIG. 1B shows a side view of the top part of the loudspeaker unit 1 of FIG. 1A, and FIG. 1C shows the associated side view of the bottom part of the loudspeaker unit 1 of FIG. 1A. It is noted that the membrane 2 may have a different shape than the flat membrane 2 embodiment shown in FIG. 1A-1C.


The present invention embodiments of the loudspeaker unit 1 have a membrane 2 and a plurality of drive units (indicated by arrows 5 in FIG. 1C) driving the membrane 2. Each of the plurality of drive units 5 comprises at least one voice coil 3 and at least two magnets 4 in an embodiment, or in a more generic sense, n voice coils (3) and at least n+1 magnets (4), n being an integer larger than or equal to 1. The at least two (n+1, n≥1) magnets 4 are magnets 4 with an axial magnetization which are stacked in axial direction with similar pole parts (N/S) of adjacent ones of the at least two magnets 4 facing each other (i.e. with oriented with opposite polarity). The at least two magnets 4 are separated in the stack over a magnet separation distance dm, the magnet separation distance dm being substantially equal to a width ws in the stack direction of the at least one (n, n≥1) voice coil 3. As this configuration does not require any top plate, bottom plate, pole piece, or other magnetic field guidance elements, the construction can be straightforward, simple and economical. Furthermore, the structural positioning of the voice coil 3 in between the two magnets 4 allows for a double excursion possibility, greatly increasing performance of the loudspeaker unit 1.


As shown in the side view of FIG. 1B, the at least one voice coil 3 is mechanically fixed to the membrane 2, i.e. the membrane 2 will have the same movement as the at least one voice coil 3. As the voice coil 3 can be designed to be lighter than magnet 4, as a result of which the dynamic response of the loudspeaker unit 1 can be better.


In an exemplary embodiment, the at least one voice coil 3 is attached to a cylinder shaped support element 6, e.g. provided as a coil wound on an outside surface of the cylinder shaped support element 6. The cylinder shaped support element 6 is moveable with respect to the at least two magnets 4, e.g. by selecting a proper inner diameter thereof.


As shown most clearly in the perspective view of FIG. 1A, the plurality of drive units 5 (of which the magnets 4 are clearly visible) are positioned in a parallel configuration. The drive units 5 may be uniformly distributed (over the surface area of the membrane 2), e.g. in a grid or circular pattern. In further alternative embodiments, the drive units 5 may be grouped, or provided in a non-uniform distribution. This may allow specific acoustic characteristics to be provided by the present loudspeaker unit 1.


The magnets 4 of the drive units 5 are e.g. implemented as neodymium magnets which provide a high magnetic field in view of the volume of the magnet 4. In further embodiments, the at least two magnets 4 are cylinder shaped magnets], which provides a good interaction with the associated voice coil 3. In more general terms, the at least two magnets 4 are axial magnets, with a cylindrical, elliptical, square, rectangular, or polygonal cross section (wherein the shape of the at least one voice coil 3 is then selected congruent with the shape of the at least two magnets 4).


As best seen in the side view of FIG. 1C, the at least two magnets 4 are fixed at the magnet separation distance dm by a spacer 7. As the present invention embodiments do not need a specifically magnetic circuit, the spacer 7 may be of a non-magnetic material, e.g. a plastic material, which will allow a cost effective assembly and manufacturing of the loudspeaker unit 1. In an even further embodiment, the spacer 7 may be a virtual spacer, using the magnetic force of adjacent magnets 4 with the same pole (N/S) facing each other. Small structural elements may then be positioned in the loudspeaker unit to keep the at least two magnets 4 of each drive unit 5 in position.


Also shown in FIG. 1C is the embodiment implementation wherein the at least two magnets 4 are fixedly attached to a loudspeaker base frame 8. The loudspeaker base frame 8 may also be of a non-magnetic material such as plastic, but for structural reasons it could also be manufactured from a metal (even magnetic) material.


To further enhance the structural rigidity of the loudspeaker unit 1, further structural elements 9-11 can be provided, comprising a first ring element 9 and a top ring element 10. Vertical posts 11 may be provided for mechanically interconnecting the first ring element 9 and top ring element 10 to the loudspeaker base frame 8. The top ring element 10 may be provided to support a static ring part of the membrane 2.



FIG. 2A shows a side view of a further embodiment of the present invention loudspeaker unit 1 and FIG. 2B shows a cross sectional view of the loudspeaker unit 1 along the line IIB-IIB in FIG. 2A. In this embodiment, more voice coils 3 and consequently more magnets 4 for each drive unit 5 is provided, in particular three voice coils 3 and four magnets 4 in each of the four drive units 5. The further elements constituting this embodiment are similar to the elements described with reference to the embodiment of FIG. 1A-1C, and indicated using the same reference numerals.


In generic wording, this group of embodiments can be described in that the at least one voice coil 3 comprises n voice coils 3 and n+1 magnets 4, n being an integer larger than 2. In the embodiment of FIGS. 2A and 2B, n=3. The n voice coils 3 are positioned in an axial direction over a coil separation distance ds, the coil separation distance ds being substantially equal to a width wm in the stack direction of the magnet 4. The dimensions (ds, dm, ws, wm) as used in this description are clearly indicated in the side view and cross sectional view of FIGS. 2A and 2B.


In a further embodiment adjacent ones of the n voice coils 3 have an opposite winding direction. It will be clear that in cooperation with the polarity orientation of the magnets 4 in the stack of each drive unit 5 (i.e. with facing magnetic poles N/S), this will allow to amplify movement of the membrane 2, and as a result in improved performance of the loudspeaker unit 1.


For all the embodiments described with reference to the figures above, even further embodiments may be envisaged. The at least one voice coil 3 of each of the plurality of drive units 5 are electrically connected to each other in a parallel circuit connection in one further embodiment. This ensures a proper and similar operation of all parallel positioned drive units 5. As an alternative, the at least one voice coil 3 of each of the plurality of drive units 5 are electrically connected to each other in a combined parallel and series circuit connection. This embodiment would allow to modify the loudspeaker unit 1 characteristics for specific needs or specifications.


The present invention has been described above with reference to a number of exemplary embodiments as shown in the drawings. Modifications and alternative implementations of some parts or elements are possible, and are included in the scope of protection as defined in the appended claims.

Claims
  • 1. A loudspeaker unit having a membrane and a plurality of drive units driving the membrane, wherein each of the plurality of drive units comprises n voice coils and at least n+1 magnets, n being an integer larger than or equal to 1,wherein the at least n+1 magnets are magnets with an axial magnetization which are stacked in axial direction with similar pole parts of adjacent ones of the at least n+1 magnets facing each other, and the at least n+1 magnets are separated in the stack over a magnet separation distance (dm), the magnet separation distance (dm) being equal to a width (ws) of a voice coil of the n voice coils in the axial direction, andwherein the at least n+1 magnets are fixed at the magnet separation distance (dm) by a spacer, the spacer being of a non-magnetic material.
  • 2. The loudspeaker unit according to claim 1, wherein the n voice coils are mechanically fixed to the membrane.
  • 3. The loudspeaker unit according to claim 1, wherein the n voice coils are attached to a cylinder shaped support element (6).
  • 4. The loudspeaker unit according to claim 1, wherein the plurality of drive units are positioned in a parallel configuration.
  • 5. The loudspeaker unit according to claim 1, wherein the n+1 magnets are neodymium magnets.
  • 6. The loudspeaker unit according to claim 1, wherein the n+1 magnets are cylinder shaped magnets.
  • 7. The loudspeaker unit according to claim 1, wherein the n+1 magnets are fixed at the magnet separation distance (dm) by a spacer.
  • 8. The loudspeaker unit according to claim 1, wherein the n+1 magnets are fixedly attached to a loudspeaker base frame.
  • 9. The loudspeaker unit according to claim 1, wherein each of the plurality of drive units comprises n voice coils and n+1 magnets, n being an integer larger than 2, wherein the n voice coils are positioned in an axial direction over a coil separation distance (ds), the coil separation distance (ds) being equal to a width (wm) in the stack direction of the magnet.
  • 10. The loudspeaker unit according to claim 9, wherein adjacent ones of the n voice coils have an opposite winding direction.
  • 11. The loudspeaker unit of claim 9, wherein each of the n+1 magnets has the same width (wm).
  • 12. The loudspeaker unit according to claim 1, wherein the n voice coils of each of the plurality of drive units are electrically connected to each other in a parallel circuit connection.
  • 13. The loudspeaker unit according to claim 1, wherein the n coils of each of the plurality of drive units are electrically connected to each other in a combined parallel and series circuit connection.
  • 14. The loudspeaker unit of claim 1, wherein the n+1 magnets are ring shaped magnets.
Priority Claims (1)
Number Date Country Kind
2017514 Sep 2016 NL national
PCT Information
Filing Document Filing Date Country Kind
PCT/NL2017/050627 9/21/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/056814 3/29/2018 WO A
US Referenced Citations (21)
Number Name Date Kind
4544805 Sawafuji Oct 1985 A
4792978 Marquiss Dec 1988 A
7480392 Shin Jan 2009 B2
8139814 Rottenberg Mar 2012 B2
8542862 Meguro Sep 2013 B2
9838795 Wang Dec 2017 B2
20040008101 Trandafir Jan 2004 A1
20050031153 Nguyen Feb 2005 A1
20050163338 Ohashi Jul 2005 A1
20050207601 Sagren Sep 2005 A1
20060188120 Fisher Aug 2006 A1
20060222200 Nagaoka Oct 2006 A1
20060256997 Sagren Nov 2006 A1
20070076915 Shin Apr 2007 A1
20090141926 Clair Jun 2009 A1
20130051604 Sakai Feb 2013 A1
20150110305 Noro Apr 2015 A1
20150271605 Zhang Sep 2015 A1
20160073201 Jiang Mar 2016 A1
20160127835 Jiang May 2016 A1
20160212545 Morgan Jul 2016 A1
Foreign Referenced Citations (4)
Number Date Country
19523682 Jan 1997 DE
H09322294 Dec 1997 JP
2010246087 Oct 2010 JP
0067523 Nov 2000 WO
Related Publications (1)
Number Date Country
20200037078 A1 Jan 2020 US