This disclosure relates generally to the field of dielectric materials, used for insulating electrical conductors. The disclosed dielectric is particularly suitable for RF transmission lines, such as lines used for conducting RF signals for antennas.
Common methods of conducting electromagnetic energy between locations are to use a circuit board with microstrip printed technology or using a metallic wave-guide. The advantage of a circuit board over a waveguide is that it can be produced in higher volumes and is flat. The disadvantage is the loss which is proportional to the distance the high frequency electronic signal travels. The advantage of a metallic wave-guide is that it operates with lower losses, but the disadvantage is that it is neither as thin as a circuit board nor as cost effective.
Some circuit board substrates are designed to have low propagation losses. The typical low loss substrate is a mixture of Teflon and glass. However, these Circuit Boards are more expensive because of the process of pressing the Teflon and glass flat, which requires tremendous pressure.
One problem with many low loss materials like Polytetrafluoroethylene, (commonly called Teflon®), is that the thermal expansion and contraction rates for these materials is very different than that for the conductive metals, which they would otherwise be bonded to. For example, if a copper line is formed on Teflon, the Teflon will expand with temperature at a different rate than the copper, and therefore de-laminate the copper. The current art for dealing with this expansion problem is to load the Teflon material with glass to reduce its coefficient of thermal expansion, along with substantial other processes.
Another problem with many low loss materials like Teflon is that they have low surface energy, making it difficult to bond to a conductive circuit. In many instances, glues, or other adhesives are used and these materials have negative RF propagation factors.
A further disadvantage of Teflon is its high cost. In many modern applications the entire transmission circuitry needs to be of very low cost, which makes Teflon prohibitive.
Rohacell® is a polymethacrylimide (PMI) based structural foam, marketed by Evonik Rohm GmbH, of Darmstadt, Germany. Rohacell has a relatively low dielectric constant, εr, of about 1.046 to 1.093, depending on the particular formulation. Foam, such as Rohacell, has been used as dielectric in RF systems, as exemplified in U.S. Publication 2015/0276459, titled: Foam Filled Dielectric Rod Antenna.
Accordingly, a need exists in the art for improved transmission vehicles for electromagnetic energy, which can be used, e.g., in antennas used for wireless communication.
The following summary of the disclosure is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.
Disclosed embodiments provide a flat and low cost dielectric material. In disclosed examples the embodiments are applied to an antenna, but it could be applied to other devices which require high frequency electronic transmission, such as microwaves, radars, LIDAR, etc.
In the disclosed embodiments electrical conductors are separated by a dielectric material. The disclosed dielectric material may be used a replacement to Teflon® for any application that currently uses Teflon. While Teflon possesses high performance characteristics, it is of relatively high cost. The disclosed embodiments can provide comparable performance as Teflon, but at a much lower cost.
In general aspects, the dielectric plate is made of a sandwich of at least two plates, one having high dielectric constant, such as glass, and another having dielectric constant as close as possible to that of air. A good example for glass is Vycor® glass, while a good example for material having dielectric constant close to air is foam, such as structural foam, e.g., Rohacell®. The foam should have dielectric constant of from 1.0 to 1.1
Disclosed embodiments include antenna array having multiple radiating elements over a variable dielectric constant (VDC) material. The ability to change the VDC provides control of the parameters of the antenna, including steering, using software. The dielectric layers separating the various elements of the antenna are implemented using sandwich of glass and foam plates. The ratio of the thickness of glass to that of the foam is calculated such that the dielectric constant experienced by the field amounts to a desired total dielectric constant. Specifically, the total dielectric constant can be increased by increasing the relative thickness of glass compared with foam, or reduced by decreasing the relative thickness of glass relative to the thickness of the foam.
Other embodiments provide non-radiating electrical devices having conductive lines separated by dielectric sandwich of glass plate and foam plate.
Disclosed embodiments provide transmission conduit for RF signal, comprising: a dielectric plate; a conductive circuit positioned on one surface of the dielectric plate; a conductive ground positioned on opposite surface of the dielectric plate; wherein the dielectric plate comprises a sandwich of at least one high-dielectric constant layer and one foam plate. The high-dielectric constant layer is formed to have a dielectric constant of 3.8-4.4. The high-dielectric constant layer may be formed of glass, PET, etc. The foam is formed to have a dielectric constant of 1.0 to 1.1. The dielectric plate may be a foam plate sandwiched between a top polyethylene terephthalate (PET) layer, a bottom PET layer. The conductive circuit can comprise at least one radiating patch or an electrical circuitry defining a hybrid coupler.
In other embodiments, an antenna is provided, comprising: an insulating spacer; at least one radiating patch provided on top of the insulating spacer; at least one delay line provided below the insulating spacer; a variable dielectric constant (VDC) layer provided below the delay line; a dielectric plate; a ground plane provided below the dielectric plate; a bottom insulating plate provided below the ground plane; and, a feed line provided below the bottom insulating plate; wherein at least one of: the insulating spacer, the dielectric plate, and the bottom insulating plate, comprises at least one high-dielectric constant layer and one foam plate. The high-dielectric constant layer may comprise one of: Polytetrafluoroethylene, Polyethylene terephthalate (PET), glass fiber impregnated Polypropylene, or glass plate. The high-dielectric constant layer is formed to have a dielectric constant of 3.8-4.4. The foam is formed to have a dielectric constant of 1.0 to 1.1. The antenna may further comprise conductive electrodes abutting the VDC layer. At least one of: the insulating spacer, the dielectric plate, and the bottom insulating plate, may comprise a foam plate sandwiched between two glass plates or a foam plate sandwiched between two PET plates. The antenna may further comprise at least one conductive via connecting each one of the delay lines to a corresponding radiating patch. The ground plane can comprise at least one window, each aligned below a corresponding one of the radiating patches.
According to further embodiments, a method for fabricating an RF transmission conduit is provided, comprising: forming a conductive circuit over a top surface of an insulating plate, the insulating plate comprising one of glass plate or Polyethylene terephthalate (PET); attaching a ground plane to a bottom surface of a foam plate; adhering the insulating plate to the foam plate. Attaching a ground plane may comprises one of: forming the ground plane directly on the bottom surface of the foam plate; or forming the ground plane on a second insulating plate and adhering the second insulating plate to the bottom surface of the foam plate. The second insulating plate may be formed of one of glass plate or Polyethylene terephthalate (PET).
Other aspects and features of the invention would be apparent from the detailed description, which is made with reference to the following drawings. It should be appreciated that the detailed description and the drawings provides various non-limiting examples of various embodiments of the invention, which is defined by the appended claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.
Embodiments of the inventive dielectric sandwich will now be described with reference to the drawings. Different embodiments or their combinations may be used for different applications or to achieve different benefits. Depending on the outcome sought to be achieved, different features disclosed herein may be utilized partially or to their fullest, alone or in combination with other features, balancing advantages with requirements and constraints. Therefore, certain benefits will be highlighted with reference to different embodiments, but are not limited to the disclosed embodiments. That is, the features disclosed herein are not limited to the embodiment within which they are described, but may be “mixed and matched” with other features and incorporated in other embodiments.
The open-head arrows in
From the example of
Thus, the embodiment of
Thus, as can be understood, according to one aspect, a radiating device is provided, comprising: a dielectric plate; a conductive ground plane formed on bottom surface of the dielectric plate; and a radiating element formed on top surface of the dielectric plate; wherein the dielectric plate comprises a plate of glass and a plate of foam.
An example of a radiating device made using the innovative dielectric sandwich is shown in
The radiating patch is indicated as patch 410 and the delay line is indicated as conductive line 415. The radiating patch is formed on a top dielectric spacer 400 is generally in the form of a dielectric (insulating) plate or a dielectric sheet, but in this embodiment is made of a dielectric sandwich consisting of glass plate 402 and foam plate 404, e.g., Rohacell. The radiating patch 410 is formed on the top surface of the glass by, e.g., adhering a conductive film, sputtering, printing, etc. At the patch location, a via 425 is formed in the glass 402 and foam 404, and a conductor is passed through the via and is connected to the back surface of the patch 410. A delay line 415 is formed on the bottom surface of foam plate 404 (or on top surface of upper binder 442), and is connected physically and electrically to conductor in via 425. That is, there is a continuous DC electrical connection from the delay line 415 to radiating patch 410, through contact in via 425. As shown in
The delay in the delay line 415 is controlled by the variable dielectric constant (VDC) plate 440 having variable dielectric constant material 444. While any manner for constructing the VDC plate 440 may be suitable for use with the embodiments of the antenna, as a shorthand in the specific embodiments the VDC plate 440 is shown consisting of upper binder 442, (e.g., glass, PET, etc.) variable dielectric constant material 444 (e.g., twisted nematic liquid crystal layer), and bottom binder 446. In other embodiments one or both of the binder layers 442 and 444 may be omitted. Alternatively, adhesive such as epoxy or glass beads may be used instead of the binder layers 442 and/or 444. Also, as illustrated in
In some embodiments, e.g., when using twisted nematic liquid crystal layer, the VDC plate 440 also includes an alignment layer that may be deposited and/or glued onto the bottom of the upper binder 442. The alignment layer may be a thin layer of material, such as polyimide-based PVA, that is being rubbed or cured with UV radiation in order to align the molecules of the LC at the edges of confining substrates.
The effective dielectric constant of VDC plate 440 can be controlled by applying DC potential across the VDC plate 440. For that purpose, electrodes are formed and are connected to controllable voltage potential. There are various arrangements to form the electrodes, and several examples will be shown in the disclosed embodiments. In the arrangement shown in
Thus, by changing the output voltage of variable potential 441 and/or variable potential 439, one can change the dielectric constant of the VDC material in the vicinity of the electrodes 443 and 447, and thereby change the RF signal traveling over delay line 415.
Changing the output voltage of variable potential 441 and/or variable potential 439 can be done using a controller, Ctl, running software that causes the controller to output the appropriate control signal to set the appropriate output voltage of variable potential 441 and/or variable potential 439. Similarly, a conventional controller can be used to provide the control and common signals to control the characteristics of the antenna. Thus, the antenna's performance and characteristics can be controlled using software—hence software controlled antenna.
At this point it should be clarified that in the subject description the use of the term ground refers to both the generally acceptable ground potential, i.e., earth potential, and also to a common or reference potential, which may be a set potential or a floating potential. For example, conventional LCD display controllers output two signals per pixel, one of which is referred to as the ground or common signal. Similarly, while in the drawings the symbol for ground is used, it is used as shorthand to signify either an earth or a common potential, interchangeably. Thus, whenever the term ground is used herein, the term common or reference potential, which may be set or floating potential, is included therein.
In transmission mode the RF signal is applied to the feed patch 460 via connector 465 (e.g., a coaxial cable connector). As shown in
Thus, as can be understood, according to one aspect, a radiating device is provided, comprising: a dielectric plate; a radiating element formed on top surface of the dielectric plate; a dielectric back-plate; a conductive ground plane formed on bottom surface of the dielectric back-plate; a variable dielectric constant material sandwiched between the dielectric plate and the dielectric back-plate; and wherein at least one of the dielectric plate and dielectric back-plate comprises a plate of glass and a plate of foam.
As illustrated so far, the embodiments disclosed herein can be used for radiating elements, such as antennas and antenna arrays. However, according to aspects of the invention, electronic devices or components can also be provided, which have variable electrical characteristics or operation based on potential applied to a variable-dielectric constant sector associated with the device and incorporate the low-cost dielectric sandwich. According to aspects of the invention, the electronic devices or component may include bends, power splitters, filters, ports, phase shifters, frequency shifters, attenuators, couplers, capacitors, inductors, diplexers, hybrids of beam forming networks, and may also include radiating elements in addition to the electronic devices. Notably, several devices can be formed on the same dielectric sandwich, just like was done in the prior art using Rogers® or PCP.
According to disclosed aspects, the electronic devices disclosed in Applicant's U.S. Patent Application Ser. No. can be modified using the sandwich dielectric plate, to thereby provide the same performance, at a much lower cost.
For example, VDC 503 is provided under the line of input port 1. By applying voltage potential to the electrodes of VDC 503, the phase of the input signal can be controlled. Consequently, the phase at both output ports 2 and 3 would be varied together based on the phase change caused by the voltage potential at VDC 503. This means that the phase at output 2 can be different from the phase of the input signal at input port 1. On the other hand, the phase at output 2 can be changed independently by voltage potential at VDC 507. Consequently, the phase at output port 3 would remain 90° from the input at input port 1, but the phase at output port 2 would be different from zero, depending on the voltage potential applied to VDC 507. Additionally, a voltage potential can be applied to the electrodes of VDC 527 to vary the phase at output port 3 independent of the output at port 2. Thus, the output at port 2 can remain at the same phase as the input at port 1, but the output at port 3 can be modified from 90° with respect to the input at port 1. The same effect can be applied to the input of input port 4 by applying voltage potential to VDC's 523, 507 and 527. Moreover, normally an input signal at port 1 would be split at equal energies between output ports 2 and 3. However, by controlling the voltage potential at VDCs 508, 528, 515A and 515B, the amount of energy delivered to each output port can be changed, thus the amplitude of the output at each port can be controlled.
The cross-section structure of the device shown in
Thus, as can be understood, according to one aspect, an electronic device is provided, comprising: a back-plate; a dielectric plate; a variable dielectric constant material sandwiched between the back-plate and the dielectric plate; electrodes configured for applying electrical potential to the variable dielectric constant material; and a conductive line formed on top of the dielectric plate; wherein at least one of the dielectric plate and the back-plate comprises a plate of glass and a plate of foam.
In the example of
As with all RF antennas, reception and transmission are symmetrical, such that a description of one equally applies to the other. In this description it may be easier to explain transmission, but reception would be the same, just in the opposite direction.
It should be understood that processes and techniques described herein are not inherently related to any particular apparatus and may be implemented by any suitable combination of components. Further, various types of general purpose devices may be used in accordance with the teachings described herein. The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Those skilled in the art will appreciate that many different combinations will be suitable for practicing the present invention.
Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Various aspects and/or components of the described embodiments may be used singly or in any combination. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6335699 | Honma | Jan 2002 | B1 |
20090278744 | Kirino et al. | Nov 2009 | A1 |
20100060535 | Tiezzi | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
2000-236207 | Aug 2000 | JP |
2000-315902 | Nov 2000 | JP |
2003-017912 | Jan 2003 | JP |
2004-023228 | Jan 2004 | JP |
Entry |
---|
Dolfi, D., et al., “Liquid Crystal Microwave Phase Shifter,” Electronics Letters, vol. 29, No. 10, May 13, 1993. |
Number | Date | Country | |
---|---|---|---|
20190341693 A1 | Nov 2019 | US |