The present invention pertains to the air-conditioning of living or office premises and essentially relates to a very low power-consumption air-conditioning device.
The air-conditioning systems currently available on the market are based on the refrigeration generated by the compression cycles of a refrigerant gas. The calories required for a good operation of the cooling apparatus (also called air-conditioning device) are supplied from the room to be air-conditioned and in which the temperature decreases accordingly.
It is clear that the air-conditioning technology as we know it today has a very high power consumption. Experts have calculated that if only 30% of the French households were to be equipped with air-conditioning systems in their housings, France should build 10 additional nuclear power plants just to meet this power demand.
Furthermore, it is a well-known fact that the refrigerant gases used for air-conditioning are harmful for the ozone layer. As all air-conditioning apparatuses, including the most sophisticated ones, eventually release a portion of the gas they contain, they contribute to the destruction of the ozone layer that protects the Earth from ultraviolet radiation.
One objective of the invention is to provide an air-conditioning system that has a very low power consumption as compared with current air-conditioning systems.
Another objective of the invention is to provide an air-conditioning system that do not release destructive gases into the ozone layer.
Accordingly, the invention relates to an air-conditioning system for the air-conditioning of one or more rooms or closed passenger compartments, that comprises a water inlet, a processing module for receiving the water from the water inlet and successively comprising a particle filter for trapping particles having a size higher than about 4.5 μm, an anti-colloid filter for trapping colloid substances having a size higher than about 1.2 μm, an ultra-filtration filter for trapping micro-organisms having a size higher than 0.1 μm, and an UVC lamp for destroying micro-organisms having a size lower than 0.1 μm, as well as an air-conditioning apparatus for receiving the water filtered by the processing module. The air-conditioning apparatus includes an electrovalve, a high-pressure pump, at least one misting rail and a fan for a misting operation in a room during the operation of the pump, and a control housing for opening the electrovalve and for switching on the pump and the fan for predetermined operation time intervals separated by predetermined temporisation periods.
The purposes, objects and characteristics of the invention will be better understood from the following description and by reference to the drawings in which:
Referring to
The processing module 10 successively includes a particle filter 20 for trapping particles having a size higher than about 4.5 μm, an anti-colloid filter 22 for trapping colloid substances having a size higher than about 1.2 μm, an ultra-filtration filter 24 for trapping micro-organisms having a size higher than 0.1 μm, and an UVC lamp for destroying micro-organisms having a size lower than 0.1 μm. It should be noted that the filters 20, 22, 24 are respectively provided with pressure gauges 28, 30, 32 for monitoring filter clogging. Each air-conditioning apparatus shown in
It should be noted that the pump 40 does not use all the water from the water inlet 36 and that, in order to prevent the unused excess water from flowing out of the pump due to the pressure, a bypass duct 39 with a check valve 41 thereon is preferably used for connecting the inlet and the outlet of the pump.
A control housing 46 provided on the air-conditioning apparatus is electrically connected to the electrovalve 38, the pump 40, and the fan 44. When operated, the control housing controls the opening of the electrovalve 38 and the activation of the pump 40 and the fan 44.
The control housing 46 is also used for activating a misting temporisation automaton so that the activation of the control takes place during a predetermined operation time interval followed by a predetermined temporisation interval, e.g. a 2-second operation duration followed by a 20-second temporisation.
According to the preferred embodiment, the control housing is operated through an infrared radiation remote control. Besides the control for operating the control housing, the remote control further comprises a TEMP key for varying the ratio between the operation time interval and the temporisation interval. It is thus possible to select among three modes, i.e. Min, Medium, Max, the Medium mode being automatically selected when the user depresses the ON key.
It should be noted that the remote control may further includes other control keys such as a key for varying the speed of the fan between two positions.
According to a preferred embodiment, a thermostat 50 and a humidity sensor 52 are provided in the room where the air-conditioning apparatus is used. The thermostat 50 and/or the humidity sensor 52 are integrated into the control housing or are connected to the control housing via a wired connection or an infrared link. The thermostat 50 is manually adjusted by the user at a desired temperature (e.g. 22° C.) and deactivates the control housing when the room temperature becomes equal to or lower than said temperature.
Similarly, the humidity sensor 52 is manually adjusted by the user in order to have a predetermined humidity content in the room. When the humidity content of the room becomes higher than or equal to said value, a deactivation signal is sent to the control housing 46.
The air-conditioning system described above can be used for the air-conditioning of a 40 m2 surface by an air-conditioning apparatus while taking into account a temperature decrease of between 6° C. and 12° C. The power savings are substantial since a traditional air-conditioning device having a 1 kW power is required for a 25 m2 room, while the power required for system of the invention is only 0.07 kW, i.e. a power consumption lower by 93%.
According to a variation of the invention shown in
The air-conditioning system of the invention can also be used in the passenger compartment of a vehicle such as an automobile vehicle or an aircraft. In this case, the processing module may be omitted and the water source supplying water to the water inlet 36 is a water tank attached to the vehicle.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2005/002575 | 10/18/2005 | WO | 00 | 4/18/2008 |