The present invention provides thin film coatings for substrates. More particularly, the invention provides low-maintenance coatings for glass and other substrates. The invention also provides methods for producing low-maintenance products.
Low-maintenance coatings, for example photocatalytic coatings, are well known. A great deal of research has been done in attempting to develop low-maintenance coatings that exhibit good properties, such as self-cleaning properties and hydrophilicity.
Most conventional low-maintenance coatings include a layer of titanium dioxide (i.e., TiO2). While many of these coatings are advantageous, there is much room for improvement. For example, it would be desirable to provide thin low-maintenance coatings that have low visible reflection and good color neutrality, and yet can achieve good photoactivity levels, hydrophilicity, and/or activation ability. It would be particularly desirable to provide coatings that achieve these properties while at the same time being durable, stable, and resistant to haze formation (e.g., during tempering and other heat treatments).
In certain embodiments, the invention provides a substrate having a major surface on which there is a low-maintenance coating. The low-maintenance coating includes a functional film comprising both titanium oxide and tungsten oxide. In the present embodiments, the substrate is glass in an annealed state, and the functional film has a thickness of less than 150 Å yet the low-maintenance coating has an acetone decomposition rate of greater than 1.4×10−10 moles/(liter)(second).
Some embodiments of the invention provide a substrate having a major surface on which there is a low-maintenance coating. The low-maintenance coating includes a functional film comprising both titanium oxide and tungsten oxide. In the present embodiments, the substrate is glass in a tempered state, and the functional film has a thickness of less than 150 Å yet the low-maintenance coating has an acetone decomposition rate of greater than 1.8×10−10 moles/(liter)(second).
In some embodiments, the invention provides a substrate having a major surface on which there is a low-maintenance coating that includes a base film and a functional film. The functional film comprises both titanium oxide and tungsten oxide. In the present embodiments, the base film is a high-rate sputtered film deposited using at least one target in an atmosphere into which both inert gas and oxidizing gas are flowed. Preferably, the inflow rate for the inert gas divided by the inflow rate for the oxidizing gas is between 0.4 and 2.5. The functional film in these embodiments preferably is a high-rate sputtered film deposited from at least one target having a sputterable material comprising both titanium oxide and tungsten oxide.
Certain embodiments provide a substrate having a major surface on which there is a low-maintenance coating. In the present embodiments, the low-maintenance coating has only a single photocatalytic layer, and this layer comprises both titanium oxide and tungsten oxide throughout an entire thickness of the layer. Further, in these embodiments, the substrate is glass in an annealed state, and the photocatalytic layer has a thickness of less than 150 Å yet the low-maintenance coating has an acetone decomposition rate of greater than 1.4×10−10 moles/(liter)(second). In some of these embodiments, the thickness of the photocatalytic layer is less than 100 Å and yet the acetone decomposition rate is greater than 2.1×10−10 moles/(liter)(second).
Some embodiments provide a substrate having a major surface on which there is a low-maintenance coating. In the present embodiments, the low-maintenance coating has only a single photocatalytic layer, and this layer comprises both titanium oxide and tungsten oxide throughout an entire thickness of the layer. Further, in these embodiments, the substrate is glass in a tempered state, and the photocatalytic layer has a thickness of less than 150 Å yet the low-maintenance coating has an acetone decomposition rate of greater than 1.8×10−10 moles/(liter)(second). In some of these embodiments, the thickness of the photocatalytic layer is less than 100 Å and yet the acetone decomposition rate is greater than 6.75×10−10 moles/(liter)(second).
Certain embodiments provide a method of depositing of a low-maintenance coating on a major surface of a substrate. The low-maintenance coating here includes a base film and a functional film. In the present method, the base film is deposited using a high-rate sputtering technique wherein at least one target is sputtered in an atmosphere into which both inert gas and reactive gas are flowed, and wherein an inflow rate for the inert gas divided by an inflow rate for the reactive gas is between 0.4 and 9. In the present method, the functional film is deposited by a high-rate sputtering technique that uses at least one target having a sputterable material comprising both titanium oxide and tungsten oxide. In some embodiments of this nature, the high-rate sputtering technique for depositing the base film involves a plurality of targets each carrying a sputterable material consisting essentially of: 1) one or more metals, or 2) one or more semi-metals, or 3) at least one metal and at least one semi-metal, while the high-rate sputtering technique for depositing the functional film involves a plurality of oxide targets each carrying the sputterable material comprising both titanium oxide and tungsten oxide. For example, the sputterable target material used in depositing the functional film may include silicon, and the sputterable target material used in depositing the functional film may include: i) tungsten in oxide form, ii) TiO, and iii) TiO2. In the present method, the inert gas can advantageously be argon while the reactive gas is oxygen or nitrogen, and the inflow rate for the argon gas divided by the inflow rate for the oxygen or nitrogen gas can optionally be between 0.35 and 9.
Certain embodiments of the invention provide a sputtering technique for depositing a low-maintenance coating over a major surface of a substrate. The present sputtering technique includes sputter depositing a base film over the major surface and sputter depositing a functional film over the base film. The functional film comprises both titanium oxide and tungsten oxide. In the present embodiments, the sputter deposition is performed such that the low-maintenance coating, as deposited, has an average surface roughness of between about 0.35 nm and 3.0 nm. Also, in the present embodiments, the substrate is glass in an annealed state, and the functional film has a thickness of less than 150 Å yet the low-maintenance coating has an acetone decomposition rate of greater than 1.4×10−10 moles/(liter)(second).
Further, some embodiments provide a sputtering technique for depositing a low-maintenance coating over a major surface of a substrate. In the present embodiments, the sputtering technique includes depositing a thickness of film comprising titania, wherein at least part of that thickness includes tungsten oxide and is deposited by sputtering one or more targets having a sputterable material comprising both titania and tungsten oxide, wherein the sputterable material includes: i) tungsten in oxide form, ii) TiO, and iii) TiO2. In some cases, substantially all the tungsten in the sputterable material is in oxide form. The depositing can be accomplished by sputtering the targets in an atmosphere comprising argon and oxygen. If desired, the depositing can also be accomplished by sputtering the targets in an atmosphere comprising argon, oxygen, and nitrogen. In some cases, the sputterable material is characterized by a metal-only W/Ti weight ratio of between about 0.01 and 0.34, such as between about 0.01 and about 0.2, this ratio being the total weight of the tungsten in the sputterable material divided by the total weight of the titanium in the sputterable material. The thickness of the film comprising titania preferably is less than 250 Å.
A sputtering target is also provided in accordance with certain embodiments. The target can have a sputterable material comprising both titania and tungsten oxide, wherein the sputterable material includes: i) tungsten in oxide form, ii) TiO, and iii) TiO2. In some cases, substantially all the tungsten in the sputterable material is in oxide form. In some embodiments, the sputterable material consists essentially of: i) tungsten in oxide form, ii) TiO, and iii) TiO2. The sputterable material can optionally have a metal-only W/Ti weight ratio of between about 0.01 and 0.34, such as between about 0.01 and about 0.2, this ratio being the total weight of the tungsten in the sputterable material divided by the total weight of the titanium in the sputterable material. The target can optionally be a cylindrical rotary target, with the sputterable material carried on an exterior wall of an elongated backing tube, and the elongated backing tube having a length of at least 24 inches. In some of the present embodiments, the target is adapted to rotate about a central axis to which the exterior wall of the backing tube is substantially parallel.
The following detailed description is to be read with reference to the drawings, in which like elements in different drawings have like reference numbers. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Skilled artisans will recognize that the given examples have many alternatives that fall within the scope of the invention.
Many embodiments of the invention involve a coated substrate. A wide variety of substrate types are suitable for use in the invention. In some embodiments, the substrate 10 is a sheet-like substrate having generally opposed first 12 and second 14 major surfaces. For example, the substrate can be a sheet of transparent material (i.e., a transparent sheet). The substrate, however, is not required to be a sheet, nor is it required to be transparent.
The substrate can optionally be a component of any of a variety of building materials. Examples of anticipated applications include embodiments wherein the substrate is a sash (e.g., a window sash or a door sash), a siding panel (e.g., an aluminum siding panel), a tent panel, a tarpaulin (e.g., a fluorocarbon polymer tarpaulin), a plastic film (e.g., a fluorocarbon plastic film), a roofing shingle, a window blind (such as a metal, plastic, or paper window blind), a paper screen (e.g., a shoji), a railing, a baluster, or an escutcheon. In one embodiment, the substrate is a ceramic tile, such as a wall, ceiling, or floor tile. In another embodiment, the substrate is a glass block. A variety of suitable glass blocks can be obtained commercially from Saint-Gobain Oberland (Koblenz, Germany). In still other embodiments, the substrate is a polyester film, a polyethylene film, a terephthalate film, etc. Suitable films of this nature can be obtained commercially from Nippon Soda Co., Ltd. (Tokyo, Japan). In further embodiments, the substrate is a fence or wall, such as a noise-reduction fence or wall. The substrate can alternatively be part of a photovoltaic device (e.g., it can be a cover for a photovoltaic device).
For many applications, the substrate will comprise a transparent (or at least translucent) material, such as glass or clear plastic. For example, the substrate is a glass sheet (e.g., a window pane) in certain embodiments. A variety of known glass types can be used, and soda-lime glass will commonly be preferred. In certain preferred embodiments, the substrate is part of a window, skylight, door, shower door, or other glazing. In some cases, the substrate is part of an automobile windshield, an automobile side window, an exterior or interior rear-view mirror, a bumper, a hubcap, a windshield wiper, or an automobile hood panel, side panel, trunk panel, or roof panel. In other embodiments, the substrate is a piece of aquarium glass, a plastic aquarium window, or a piece of greenhouse glass. In a further embodiment, the substrate is a refrigerator panel, such as part of a refrigerator door or window. In another embodiment, the substrate is part of an electrochromic device.
Substrates of various sizes can be used in the present invention. Commonly, large-area substrates are used. Certain embodiments involve a substrate 10 having a major dimension (e.g., a length or width) of at least about 0.5 meter, preferably at least about 1 meter, perhaps more preferably at least about 1.5 meters (e.g., between about 2 meters and about 4 meters), and in some cases at least about 3 meters. In some embodiments, the substrate is a jumbo glass sheet having a length and/or width that is between about 3 meters and about 10 meters, e.g., a glass sheet having a width of about 3.5 meters and a length of about 6.5 meters. Substrates having a length and/or width of greater than about 10 meters are also anticipated.
In some embodiments, the substrate 10 is a generally square or rectangular glass sheet. The substrate in these embodiments can have any of the dimensions described in the preceding paragraph and/or in the following paragraph. In one particular embodiment, the substrate is a generally rectangular glass sheet having a width of between about 3 meters and about 5 meters, such as about 3.5 meters, and a length of between about 6 meters and about 10 meters, such as about 6.5 meters.
Substrates of various thicknesses can be used in the present invention. In some embodiments, the substrate 10 (which can optionally be a glass sheet) has a thickness of about 1-5 mm. Certain embodiments involve a substrate 10 with a thickness of between about 2.3 mm and about 4.8 mm, and perhaps more preferably between about 2.5 mm and about 4.8 mm. In one particular embodiment, a sheet of glass (e.g., soda-lime glass) with a thickness of about 3 mm is used. In one group of embodiments, the thickness of the substrate is between about 4 mm and about 20 mm. Thicknesses in this range, for example, may be useful for aquarium tanks (in which case, the substrate can optionally be glass or acrylic). When the substrate is float glass, it will commonly have a thickness of between about 4 mm and about 19 mm. In another group of embodiments, the substrate is a thin sheet having a thickness of between about 0.35 mm and about 1.9 mm. Embodiments of this nature can optionally involve the substrate 10 being a sheet of display glass or the like.
The following system is used to determine the acetone decomposition slope. Reference is made to
The test is performed by closing the system and pumping for an hour to stabilize. Closed means there is no longer any dry air purging through the system, all valves are closed, and the pump is circulating air through the tubing, reactor dish, and sample cell. A background scan and three FT-IR scans are taken prior to injecting acetone into the closed system. One half micro liter of acetone is injected. Once the acetone is injected, FT-IR scans are taken every 5 minutes. The UV is turned on 2-3 hours after injecting the acetone. This allows the system to equilibrate prior to turning on the 1000 W Oriel Solar Simulator. The UV is on for 4-5 hours, during which time FT-IR scans are taken every 5 minutes.
The data resulting from each scan are plotted as a curve of absorbance versus wavenumbers (cm−1). The FT-IR peaks show the presence of acetone. The acetone peak from 1260-1160 cm−1 is used to calculate the acetone decomposition slope. In particular, the corrected peak area under the curve at 1260-1160 cm−1 is calculated using a macro set up within the FT-IR software and is plotted in Excel versus time in minutes to calculate the slope (thus, the reported slope is the change in this corrected peak area over time in minutes). The data points used are those from the linear portion of the data from the time UV is turned on until all the acetone is decomposed. The linear portion of the data is plotted versus time in minutes, and from this the slope is calculated, such plotting and slope calculation being performed with the Trendline option in Microsoft Excel 2000.
The following discussion of a few acetone peaks is useful to further illustrate the foregoing method. A first curve results from a scan done prior to the acetone being injected into the system, and therefore has no peak at 1260-1160 cm−1. Another curve results from a scan taken once the acetone has equilibrated and just before UV is turned on. Subsequent curves show the decline in the acetone peak, illustrating photodecomposition of the acetone and hence a reduction in the amount of acetone measured by the FT-IR. Thus, the slope is calculated by plotting the change in the area under the noted curve after the UV light is turned on and prior to all the acetone being decomposed.
Once an acetone decomposition slope has been determined, the slope can be converted to a rate using the following equation: acetone decomposition rate=(2.55×10−9)×(acetone decomposition slope). It is to be understood that this conversion factor is specific to the present system; it is not a universal conversion factor. The rate is in units of moles/(liter)(second). As examples, consider the following:
In certain embodiments, the low-maintenance coating has an acetone decomposition rate of greater than 1.4×10−10, preferably greater than 1.785×10−10, more preferably greater than 1.91×10−10, or even greater than 2×10−10, and perhaps optimally greater than 2.1×10−10. In some embodiments of this nature, the functional film has a thickness of less than 150 Å, or even less than 100 Å (such as about 50-80 Å), and yet the low-maintenance coating has an acetone decomposition rate above one or more of the noted levels. Some embodiments provide annealed glass bearing a low-maintenance coating with an acetone decomposition rate above one or more of these levels.
In some embodiments where the substrate is annealed glass, the low-maintenance coating has an average surface roughness Ra of between 0.35 nm and 3.0 nm, such as between 0.35 nm and 2.0 nm, and in some cases between 0.4 nm and 1.0 nm. The surface roughness, though, can be varied; it is by no means required to be within any of these ranges. Some embodiments, for example, may provide much higher surface roughness.
Glass in an annealed state can readily be scored and cut. Heat treatment above 350 degrees Fahrenheit will normally remove the anneal of soda-lime glass. As is well known, annealing is a process of slowly cooling glass to relieve internal stresses. The process is carried out in a temperature-controlled kiln, which is called a lehr. Glass that has not been annealed, or has lost its anneal, tends to crack or shatter when subjected to temperature change or mechanical shock. Annealing glass, and retaining the anneal, is desirable for the durability of the glass. If glass is not annealed, or loses its anneal, it will have substantial thermal stresses and its strength will be decreased considerably.
In the annealing process, glass is heated until its temperature reaches a stress-relief point (i.e., the annealing temperature, which is also referred to as the annealing point). At this point, the glass is sufficiently soft that the stresses in the glass relax, yet it is still too hard to deform. The glass is then heat-soaked until its temperature is even throughout. Then, the glass is cooled slowly at a predetermined rate until the temperature of the glass is below its strain point. Finally, the glass temperature can be dropped to room temperature. Glass in an annealed state can be cut, drilled, polished, etc.
Thus, some embodiments provide a low-maintenance coating that is on glass in an annealed state and can achieve acetone decomposition rates above one or more of the noted levels. Some prior art photocatalytic coatings only report photoactivity (or significant levels of photoactivity) after being calcined or otherwise heat treated at temperatures that would remove the anneal of glass. While such high temperature treatments may be advantageous for increasing the photoactivity of the coating, they may not be feasible when it is necessary to provide the coating on annealed glass (which can be readily scored and cut). Thus, the present embodiments provide a low-maintenance coating that can provide surprising levels of photoactivity without requiring the coating to be calcined or otherwise treated at temperatures that would remove the anneal of glass.
Similarly, some embodiments provide a low-maintenance coating made by maintaining the substrate during deposition at a temperature not exceeding 350 degrees Fahrenheit, not exceeding 300 degrees Fahrenheit, or not exceeding 250 degrees Fahrenheit.
In certain embodiments, the invention provides a substrate (optionally glass in an annealed state) bearing a low-maintenance coating that, if tempered, experiences an increase of its acetone decomposition rate. Preferably, the increase results in the acetone decomposition rate being greater than 1.8×10−10 moles/(liter)(second), more preferably greater than 2.5×10−10 moles/(liter)(second), and even more preferably greater than 4×10−10 moles/(liter)(second). Perhaps optimally, the increase results in the rate being greater than 5.1×10−10 moles/(liter)(second), greater than 6.3×10−10 moles/(liter)(second), or even greater than 6.75×10−10 moles/(liter)(second).
Additionally or alternatively, the low-maintenance coating may in some cases have the advantageous property that, if tempered, it experiences an increase of its acetone decomposition rate by more than a factor of 1.5, or by more than a factor of two, or even by more than a factor of three. The acetone decomposition rate of the first product tabulated above, for example, increased from 1.97×10−10 moles/(liter)(second) to 5.46×10−10 moles/(liter)(second) due to tempering, resulting in a post-temper decomposition rate that is more than 2.75 times its pre-temper rate. And the acetone decomposition rate of the second product tabulated above increased from 2.14×10−10 moles/(liter)(second) to 6.82×10−10 moles/(liter)(second) due to tempering, resulting in a post-temper decomposition rate that is more than three times its pre-temper rate. However, it is by no means required that the photoactivity of the present coatings increase if tempered; in some cases, there may be no substantial change in photoactivity due to tempering.
Tempered glass is much stronger than standard glass. Tempered glass breaks in a special way. It does not break into large dangerous shards. And if any part of the glass breaks, then the entire pane shatters. Tempered glass is manufactured by a process that involves intense heating and rapid cooling, making it harder than standard glass. Tempered glass may be characterized, for example, as having a surface compression of greater than about 10,000 psi.
In tempering, glass is commonly placed in a furnace maintained at about 680-705° C. (preferably controlled to 690-700° C.). The glass is typically held in the furnace for 100-120 seconds with constant movement to better ensure temperature uniformity of the product. This is intended to raise the glass temperature to about 640° C. The glass is then removed from the furnace and cooled rapidly in a stream of air for about 50 seconds such that the glass is cool enough for an operator to handle.
Thus, the invention also provides embodiments wherein the substrate bearing the low-maintenance coating is tempered glass. Here, the substrate is glass in a tempered state, and the low-maintenance coating preferably has an acetone decomposition rate of greater than 1.8×10−10 moles/(liter)(second), more preferably greater than 2.5×10−10 moles/(liter)(second), and even more preferably greater than 4×10−10 moles/(liter)(second). Perhaps optimally, the rate is greater than 5.1×10−10 moles/(liter)(second), greater than 6.3×10−10, or even greater than 6.75×10−10. In some embodiments of this nature, the functional film has a thickness of less than 150 Å, or even less than 100 Å (such as about 50-80 Å), yet the low-maintenance coating has an acetone decomposition rate above one or more of the noted levels.
In some embodiments where the substrate is tempered glass, the low-maintenance coating has an average surface roughness Ra of between 0.35 nm and 5.0 nm, such as between 1.0 nm and 4.5 nm, e.g., between 2.0 nm and 4.0 nm. Again, the surface roughness is not required to be within any of these ranges. For example, some embodiments may involve greater roughness.
The coating 80 includes a functional film 50 comprising both titanium oxide and tungsten oxide. In certain embodiments, some, substantially all, or all of the tungsten in the functional film 50 is in oxide form. In some cases, the functional film 50 consists essentially of titanium oxide and tungsten oxide. Preferably, the functional film contains more titanium oxide than tungsten oxide. In some embodiments, the functional film 50 has between about 1-20 weight percent tungsten, such as about 1-10 weight percent tungsten, and perhaps optimally about 1-6 weight percent tungsten (such percentages being determined on the basis of the weight of the tungsten in the film relative to the total weight of all components of the film, e.g., which in some cases will consist of the combined weight of titanium, oxygen, and tungsten in the film).
The functional film 50 can generally be a homogenous film, a substantially homogenous film, a graded film, or some other type of non-homogenous film. In one group of embodiments, the functional film 50 is a homogenous or substantially homogenous film comprising both titanium oxide (e.g., TiO2) and tungsten oxide. The film 50, for example, can be a substantially homogenous film of a mixed oxide comprising both titanium oxide and tungsten oxide (as opposed to a film of TiO2 with islands of WO on the surface of the TiO2). In some embodiments, the film is substantially uniform in that it does not comprise pre-formed particles (e.g., of TiO2) dispersed in a binder (e.g., of WO).
In some preferred embodiments, the functional film 50 defines an exposed, outermost face of the low-maintenance coating 80. In alternate embodiments, at least one film (such as a thin hydrophilic film, or another photocatalytic film) may be positioned over the functional film. Embodiments of this nature are exemplified in
Adding tungsten oxide to a film comprising titanium oxide can increase photoactivity and hydrophilicity. However, a thick film of titanium oxide and tungsten oxide may be limited in terms of haze resistance, durability, and/or stability. Surprisingly, the inventors have discovered that incorporating tungsten oxide into a titanium oxide film of small thickness and/or providing the tungsten load at special percentages can provide good photoactivity and hydrophilicity while at the same time achieving good haze resistance, durability, and stability. The inventors have also found that these properties can be improved by adjusting the surface roughness of the coating (such as by depositing a base layer using a special high rate process), by adjusting the thickness of the base layer, or both.
The functional film 50 can include TiO2, TiO, or both. Other forms of titanium oxide may also be present. In certain embodiments, the film 50 includes titanium oxide, tungsten oxide, and at least one additional material, such as a material selected from the group consisting of nitrogen, tantalum, copper, silica, palladium, tin, niobium, and molybdenum. Other “additional materials” can also be used. The additional material can be a dopant, which may be present in an amount up to about ten weight percent, such as about five weight percent or less, e.g., about 2-3 weight percent or less. Larger concentrations may be preferred in other cases. The additional material, when provided, can be present throughout the functional film 50 or only in a certain portion of the film 50.
In one group of embodiments, the functional film 50 includes nitrogen, e.g., it can comprise an oxynitride. When provided, the nitrogen may be present in an amount of 10 weight percent or less, more preferably 5 weight percent or less.
The thickness of the functional film 50 generally is less than 500 Å, preferably less than 300 Å, more preferably less than 250 Å, such as less than 200 Å, less than 150 Å, or even less than 100 Å. In some embodiments, the thickness is 30-90 Å, preferably 40-85 Å, and perhaps optimally 50-80 Å. The inventors have found these thickness ranges to be particularly advantageous in minimizing, or even eliminating, the color that can occur with thicker films. In other embodiments, though, thicker films may be used for applications where more color is desirable, or at least acceptable, or where another coating or pane neutralizes the color adequately.
The inventors have discovered that when the thickness of the functional film is less than about 100 Å (more preferably less than 90 Å), the coating 80 can achieve an exceptional degree of haze resistance. For example, the haze of a glass pane carrying the present low-maintenance coating 80 can be less than 0.40 after tempering, or even less than 0.30, such as between about 0.2 and about 0.27. Haze can be measured using a BYK Gardner Haze-Gard Plus device. The specimen surface is illuminated perpendicularly, and the transmitted light is measured photoelectrically, using an integrating sphere (0°/diffuse geometry).
The inventors have also discovered that if the thickness of the film comprising titanium oxide and tungsten oxide is greater than about 40 Å (more preferably greater than about 50 Å), then there is a surprising boost in photoactivity, hydrophilicity, or both when the coated substrate is tempered. When the thickness is substantially smaller, tempering does not appear to provide such a boost. Thicknesses of about 40 Å or greater, perhaps optimally 50 Å or greater (e.g., about 50 Å-80 Å, such as about 70 Å) are therefore preferred in this regard. The mechanism behind this surprising boost in properties has not been explained definitively. It is surmised, however, that when the coated substrate is heat treated, this causes a decrease in density of defect states of the film allowing the photoexcited electrons in the conduction band of the titania to have a longer lifetime resulting in an increase in quantum efficiency. The improved quantum efficiency results in more electron-hole pairs to generate hydroxyl radicals (OH•) and superoxide ions (O2−) to decompose and mineralize organic compounds by participating in a series of oxidation reactions. This results in a favorable change in photoactivity, hydrophilicity, or both. Surprisingly, the boost seems not to occur unless the noted minimum thickness threshold is exceeded. The inventors, though, do not wish to be bound by this explanation.
In certain embodiments, the functional film 50 has a tungsten load characterized by a metal-only atomic ratio of between about 0.001 and 0.4, such as between about 0.01 and about 0.34. This ratio is the number of tungsten atoms in the film 50 divided by the number of titanium atoms in the film.
With reference to
The base film 15 can generally be a homogenous film, a substantially homogenous film, a graded film, or some other non-homogenous film. When provided, the base film 15 may be deposited directly onto the substrate, with the functional film 50 being deposited directly onto the base film 15. This, however, is by no means required. When provided, the base film 15 can optionally have a thickness of less than about 300 Å. In certain embodiments, the base film 15 has a thickness of less than 275 Å or even less than 250 Å. The base film 15, for example, can have a thickness of between 175 Å and 225 Å, such as about 200 Å-225 Å. The noted thickness ranges, however, are merely exemplary; it may be desirable to provide much greater thicknesses, e.g., to provide more of a barrier to sodium ion diffusion.
In certain embodiments, the base film 15 comprises or consists essentially of silica and alumina. The entire thickness of the base film, for example, can optionally comprise a mixed oxide of silica and alumina. Such a mixed oxide film can be formed by sputtering an alloy target that includes silicon and aluminum, for example about 50% silicon and about 50% aluminum, or about 25% silicon and about 75% aluminum, about 75% silicon and about 25% aluminum, or about 85% silicon and about 15% aluminum. Such alloy targets can be sputtered in an oxidizing atmosphere. A mixed film of this nature can also be formed by co-sputtering two targets, wherein one target is a silicon target and the other target is an aluminum target. Co-sputtering can be performed in an oxidizing atmosphere. In other embodiments, the base film 15 comprises or consists essentially of alumina. Alumina is believed to be a good barrier to sodium ion diffusion. And it may help improve performance of the coated substrate in certain testing (e.g., 100% relative humidity testing).
In still other embodiments, the base film 15 comprises or consists essentially of silicon nitride. One embodiment provides a substrate on which there is a low-maintenance coating comprising the following films in sequence: substrate/film comprising silicon nitride/film comprising both titanium oxide and tungsten oxide. In this embodiment, there can optionally be one or more additional films under, between, and/or over the noted films. Alternatively, the film comprising silicon nitride can be contiguous to the substrate, and the film comprising titanium oxide/tungsten oxide can be contiguous to the film comprising silicon nitride. If desired, these two films can have a combined thickness of less than 350 Å. In the present embodiment, the films comprising, respectively, silicon nitride and titanium oxide/tungsten oxide can have any of the properties and characteristics described herein for the functional film 50 and the base film 15, respectively.
In some preferred embodiments, the low-maintenance coating is provided with an average surface roughness Ra of between 0.35 nm and 5.0 nm, such as between 0.35 nm and 4.0 nm, and in some cases between 0.4 nm and 3.0 nm. Conventional DC reactive sputtering may provide a surface roughness of about 0.3 nm for a coating consisting of a first layer comprising silica at about 75 Å and an overlying TiO2 layer at about 25-45 Å. In the present embodiments, special techniques can be used to provide the coating with an average surface roughness in the specified ranges. The base film, for example, can be sputter deposited using a special high rate process (e.g., using a large amount of argon). When a high rate process is used, the base film tends to develop a surface roughness within the noted ranges (other appropriate deposition methods, other starting materials, and/or post-deposition treatments could also be used to provide the noted surface roughness levels, and such other means are within the scope of the present embodiments). When the functional film 50 is then deposited over this controlled-roughness base film, the resulting low-maintenance coating can have an advantageous level of surface roughness. Additionally or alternatively, the functional film 50 can be sputter deposited using a high rate process (e.g., using an oxide target, a large amount argon, or both). It is surmised that the resulting level of surface roughness contributes to the coating's ability to achieve good photoactivity while being provided at such a small thickness.
In the present controlled-surface-roughness embodiments, the coating still is relatively smooth compared to films produced by many other conventional methods that yield high surface roughness. In this regard, the present films are designed to have a level of surface roughness that inhibits dirt particles from becoming trapped in the roughness of the coating. When dirt particles get trapped in the roughness of a coating, it can be difficult to rinse away the trapped particles. The photoactivity of the coating does not break down inorganics/minerals, so they may stay trapped in the coating. In contrast, the present low-maintenance coating can be designed to be smooth enough that many dirt particles are simply too big to get trapped in the roughness of the coating, thereby allowing those particles to be readily rinsed away.
One group of embodiments provides the low-maintenance coating 50 with a base film 15 that is a high-rate sputtered film, which (as an example) can be deposited from at least one target in an atmosphere into which both inert gas and reactive gas are flowed. Preferably, the ratio of the inflow rate for the inert gas (e.g., Ar) divided by the inflow rate for the reactive gas (e.g., O2) is between 0.4 and 9, such as between 0.4 and 6, commonly between 0.4 and 2.5, and in some cases between 0.5 and 2. In some embodiments, the reactive gas consists essentially of oxygen, nitrogen, or both. Some embodiments provide the base film as a film comprising SiO2 or Si3N4. In certain embodiments, the high-rate sputtering technique for depositing the base film involves a plurality of targets each carrying a sputterable material consisting essentially of: 1) one or more metals, or 2) one or more semi-metals, or 3) at least one metal and at least one semi-metal. As one example, the high-rate base film can comprise silica sputtered from targets consisting of about 85% silicon and about 15% aluminum in an atmosphere into which argon is flowed at about 40-85% with the remainder being oxygen.
Additionally or alternatively, the functional film 50 can be a high-rate sputtered film, which (as an example) can be deposited from at least one target having a sputterable material comprising both titanium oxide and tungsten oxide. In connection with the atmosphere used to sputter deposit the functional film 50, the ratio of the inflow rate for the inert gas (e.g., Ar) divided by the inflow rate for the reactive gas (e.g., O2) preferably is between 0.4 and 9, such as between 0.4 and 6. The functional film 50 can, for example, be sputtered from oxide targets in an atmosphere into which argon is flowed at about 85% with the remainder being oxygen. In some embodiments, the oxide targets have a sputterable material comprising: i) tungsten in oxide form, ii) TiO, and iii) TiO2. In some cases, the oxide target comprises a sputterable material consisting essentially of titanium oxide and tungsten oxide, where the titanium is present at about 59-74 weight %, the tungsten is present at about 1.4-3.8 weight %, and the oxygen is present at about 23.3-38.6 weight %. The specific composition, of course, will vary depending upon the requirements for a particular product.
In the present embodiments (where the coating includes a high-rate base layer, a high-rate functional film, or both), the coating can have a surface roughness within one or more of the ranges noted herein. Of course, different applications may call for different levels of surface roughness, so these ranges are not required. Similarly, the coating in the present embodiments can have the small thickness and high acetone decomposition levels specified herein. However, this is not strictly required either, since different products may call for different thicknesses, different photoactivity levels, etc.
When the coating consists essentially of sputtered film, it can have a high degree of thickness uniformity. In such embodiments, the physical thickness of the coating preferably varies by less than 40 Å, and more preferably by less than 20 Å, across the area of the coating. That is, the maximum local thickness of the coating preferably is not more than 40 Å greater (e.g., not more than 20 Å greater) than the minimum local thickness of the coating, taking into account the thickness of the coating at all regions. The thickness uniformity of such a sputtered coating can provide particularly uniform properties (color, visible reflection, lack of haze, etc.).
Some embodiments provide the low-maintenance coating with a base film 15 and a functional film 50 having a combined thickness of less than about 350 Å, or even less than 300 Å.
Certain embodiments provide the low-maintenance coating with only a single photocatalytic layer (e.g., only one layer including titanium oxide). And yet the coating 80 in these embodiments preferably achieves the acetone deposition rates described herein (e.g., even when the thickness of the sole photocatalytic layer is less than 150 Å, or less than 100 Å). Preferably, the layer 50 in these embodiments contains both titanium oxide and tungsten oxide throughout the entire thickness of the layer 50. More generally, the single photocatalytic layer of the present embodiments can have the properties and characteristics (thickness, tungsten load, surface roughness, product-by-process distinction, etc.) of any embodiment described herein. Further, in the present embodiments, the coating preferably includes the optional base layer 15. As with the photocatalytic layer, the base layer (when provided in the present embodiments) can have the properties and characteristics (thickness, surface roughness, product-by-process distinction, etc.) of any embodiment described herein. In the present embodiments, the coating can be very thin (hence having little or no color) and yet can achieve surprisingly high photoactivity rates. The inventors have discovered that this good photoactivity can be achieved even when the coating is so thin that it presents essentially no visible defects if the coating is scratched or otherwise damaged. Thus, even if the coating is damaged, the damage can be invisible or at least inconspicuous.
In some embodiments, the coating consists essentially of two layers: a base film 15 and a functional film 50. In other embodiments, between the substrate and a base film 15 there is provided at least one other film, e.g., an optional innermost layer can comprise silica or silicon nitride, and the base film 15 can comprise alumina, titania, tungsten oxide, or zirconia. Many other variants are possible and will be apparent to skilled artisans given the present teaching as a guide.
Additionally or alternatively, the low-maintenance coating 80 can optionally include at least one additional film 20 between the functional film 50 and a base film 15.
Table 1 below shows an embodiment where the low-maintenance coating 80 has a total thickness of about 270 Å. It is to be appreciated, however, that the coating 80 can have much larger thicknesses, depending on the requirements of the intended application. Smaller thicknesses are also anticipated.
Following are several exemplary embodiments.
In
Following are a few exemplary embodiments.
One group of embodiments provides a substrate with a major surface on which the following films are coated in sequence, moving outwardly from the major surface: (1) a first functional film comprising a material selected from the group consisting of zinc aluminum oxide, indium tin oxide, and fluorine-containing tin oxide; and (2) a second functional film comprising both titanium oxide and tungsten oxide. In some of these embodiments, a thickness ratio defined as the thickness of the second functional film divided by the thickness of the first functional film is between about 0.004 and about 0.08, and perhaps more preferably between about 0.004 and about 0.025. In one example, the second functional film has a thickness of about 70 Å and the first functional film (e.g., transparent conductive oxide layer) has a thickness of about 3,000 Å, such that the noted thickness ratio is about 0.023. In another example, the second functional film has a thickness of about 70 Å and the first functional film has a thickness of about 2,000 Å, such that the noted thickness ratio is about 0.035. In still another example, the second functional film 50 has a thickness of about 70 Å and the first functional film has a thickness of about 5,000 Å, such that the noted thickness ratio is about 0.014. In yet another example, the second functional film 50 has a thickness of about 50 Å and the first functional film has a thickness of about 3,000 Å, such that the noted thickness ratio is about 0.016. In some of the present embodiments, the noted thickness ratio is within one or more of the specified ranges in combination with the second functional film being less than 200 angstroms thick, e.g., less than 100 angstroms thick, and/or the first functional film is less than 5,500 angstroms thick, or even less than 3,500 angstroms thick.
In some cases, the low-maintenance coating 80 is provided on one major surface of the substrate and another functional coating 70 is provided on an opposite major surface of the same substrate.
One particular product includes the following sequence: film comprising both titanium oxide and tungsten oxide/substrate/film comprising silicon/film comprising zinc aluminum oxide. As just one example, the film comprising silicon can include silicon oxide (e.g., SiO2). The zinc aluminum oxide can optionally have a thickness of less than 8,000 Å, less than 7,000 Å, or even less than 6,500 Å, such as about 6,000 Å. The film comprising both titanium oxide and tungsten oxide can optionally have a thickness of less than 200 Å, such as less than 100 Å. The substrate can be glass, such as soda-lime glass. The noted sequence can include other films in addition to those shown. As just one example, the article can include the following sequence: film comprising both titanium oxide and tungsten oxide/film comprising silicon oxide/substrate/film comprising silicon oxide/film comprising zinc aluminum oxide. Additional films, layers, substrates, contacts, etc. can also be provided.
With reference to
In the embodiment of
The invention also provides methods for producing low-maintenance products. In these methods, each film of the coating 80 can generally be deposited by a variety of well known coating techniques. Suitable coating techniques include, but are not limited to, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition, pyrolytic deposition, sol-gel deposition and sputtering. In preferred embodiments, the films are deposited by sputtering.
Some embodiments involve depositing the low-maintenance coating so as to have an average surface roughness Ra, as deposited, of between 0.35 nm and 3.0 nm, such as between 0.35 nm and 3.0 nm, and in some cases between 0.35 nm and 1.5 nm. Different applications, however, may require different levels of photoactivity, different levels of surface roughness, etc., so the noted roughness ranges are not required in all embodiments.
Sputtering chambers and related equipment are commercially available from a variety of sources (such as Applied Materials or Leybold). Useful magnetron sputtering techniques and equipment are described in U.S. Pat. No. 4,166,018, issued to Chapin, the salient teachings of which are incorporated herein by reference. In
In
In certain embodiments, the substrate 10 is subjected to one or more heat treatments. The substrate, for example, can optionally be heat treated before and/or after the low-maintenance coating has been deposited. The substrate can also be heat treated during deposition of the low-maintenance coating. For example, the substrate can optionally be heated in one or more chambers in which at least some of the film comprising titania is deposited. In some embodiments, the low-maintenance coating 80 includes a base film 15 and the substrate is heat treated before, after, or during deposition of the base film 15. It is to be appreciated, though, that the coating is not required to undergo any heating before, during, or after deposition.
In some embodiments, heat treatment occurs in a heating chamber that is part of a coater. Reference is made to
The heating device 370, 380 can include any apparatus known in the art for heating glass substrates or the like. The device 370, 380, for example, can be a resistance heater. In certain embodiments, the heating device includes ceramic heaters, such as radiant quartz heaters. One suitable heater is a High Intensity Quartz Faced Radiant Heater sold commercially by Chromalox, Inc., a corporation having its headquarters in Pittsburgh, Pa., USA. In other embodiments, flash lamps are used for heating. Ceramic infrared heaters are available from a variety of commercial suppliers, such as National Plastic Heater Sensor & Control Inc. (Scarborough, Ontario, Canada).
While
Heating can also be made to occur inside a deposition chamber by adjusting the deposition parameters to increase the temperature of the substrate. Methods of adjusting the deposition parameters are known to skilled artisans and need not be discussed in detail. In some cases, the deposition chamber is a sputtering chamber and helium or hydrogen is added to the sputtering atmosphere. In other cases, AC sputtering can be used, rather than DC sputtering, so as to increase the temperature of the substrate. Thus, the substrate can optionally be heated in at least one deposition chamber in which the functional film 50 is deposited, and the heating may be caused at least in part by the sputtering process itself.
In some embodiments, heat treatment takes place at an inter-stage section 400 of a coater (i.e., in a non-deposition section between neighboring deposition chambers). In some cases, the inter-stage section 400 comprises a tunnel.
If desired, the inter-stage section 400 can be fabricated of material that holds heat.
Some particularly advantageous methods involve depositing a low-emissivity coating on one major surface of a substrate and depositing a low-maintenance coating on an opposite major surface. In sputter-up/sputter-down embodiments of this nature, the low-emissivity coating can optionally be deposited before beginning the sputter deposition of the low-maintenance coating. This can be advantageous, since the heat associated with depositing the low-emissivity coating can provide the substrate with an elevated temperature upon beginning the sputter deposition of the low-maintenance coating. In connection with the coated glass reported in the examples below (which are also tabulated above), the low-maintenance coating was deposited by an upward sputtering process that was begun after a double-silver low-emissivity coating was deposited on the other side of the glass by a downward sputtering process. It is surmised that the heat associated with depositing the low-emissivity coating provides the glass with an elevated temperature when beginning to sputter deposit the low-maintenance coating, and the reported photoactivity levels are believed to be achieved at least in part due to this substrate heating.
Thus, certain embodiments provide a production method wherein a low-emissivity coating is sputter deposited onto one major surface of a substrate, and thereafter at least part of (optionally an entirety of) a low-maintenance coating is deposited onto the other major surface of the substrate. As noted above, the sputter deposition of the low-emissivity coating can heat the substrate, whereafter the deposition of the low-maintenance coating can be initiated while the substrate is still hot (i.e., before it has cooled to room temperature). This may improve the photoactivity, hydrophilicity, morphology, or other characteristics of the low-maintenance coating.
In certain embodiments, a base film 15 is deposited in coating chambers 200a and 200b. In these embodiments, coating chambers 200a and 200b can optionally be provided with targets carrying the same sputterable material (270a-270l, 280a-280l). In other embodiments, the base film 15 is deposited in coating chamber 200a and an intermediate film 20 is deposited in coating chamber 200b. In these embodiments, coating chamber 200a is provided with the same sputterable material (270a-270f, 280a-280f) for depositing a base film 15 and coating chamber 200b is provided with another sputterable material (270g-270l, 280g-280l) for depositing an intermediate film 20.
The sputterable material can optionally be a metal, semi-metal, compound of different metals, or a compound of at least one metal and at least one semi-metal. In such cases, an oxidizing atmosphere (optionally including some argon and/or nitrogen) may be used for sputtering. The targets can alternatively be ceramic (e.g., oxide), and an inert (or slightly oxidizing and/or slightly nitriding) atmosphere may be used. In embodiments where the base film 15 comprises silica, targets comprising silicon may be used. The targets comprising silicon may, for example, be silicon-aluminum targets. In embodiments where the base film 15 comprises alumina, targets comprising aluminum can be used. When the base film 15 is provided, it can alternatively comprise titanium dioxide, silicon nitride, tin oxide, zirconium oxide, another dielectric, or a semiconductor.
In embodiments where the base film 15 is a mixed oxide film, a co-sputtering method can optionally be used. For example, one target in a chamber can comprise one material while another target in the same chamber comprises another material. For example, if coating chamber 200a is used to deposit a base film 15, targets 270a, 270c, and 270e (or targets 280a, 280c, 280e) can comprise material A and targets 270b, 270d, and 270f (or targets 280b, 280d, and 280f) can comprise material B. Likewise, if both coating chambers 200a and 200b are used to deposit a base film 15, targets 270a, 270c, 270e, 270g, 270i, and 270k (or targets 280a, 280c, 280e, 280g, 280i, and 280k) can comprise material A and targets 270b, 270d, 270f, 270h, 270j, and 270l (or targets 280b, 280d, 280f, 280h, 280j, and 280l) can comprise material B.
If desired, the targets can be metal targets and an oxidizing atmosphere (optionally including argon and/or nitrogen) can be used. The targets can alternatively be ceramic, and an inert (or slightly oxidizing and/or slightly nitriding) atmosphere can be used. For example, in embodiments where the base film 15 is a mixed oxide film comprising silica and titania, material A can comprise silicon and material B can comprise titanium. Any intermediate film(s) 20 having a mixed oxide film can be deposited in the same manner.
With continued reference to
In the exemplary embodiments of
As noted above, if the substrate is annealed glass (and is to retain the anneal), it is preferred not to heat the glass to temperatures that will adversely affect the annealed state of the glass. For example, maximum glass temperatures below 350° F. are preferred, and temperatures below 300° F. (or even below 250° F.) may be more preferred. In some embodiments, the substrate is heated (e.g., during deposition) to a maximum temperature of between 140° F. and 350° F., such as between about 170° F. and about 210° F. It is to be appreciated that the substrate is not required to be heated prior to or during deposition. Instead, the coated substrate may be heat treated after deposition. Or, the coated substrate may simply be produced without heat treatment.
One group of embodiments provides a sputtering target having a sputterable material comprising both titanium and tungsten. For example, the sputterable material can optionally include titanium in the form of metal titanium, titanium monoxide, titanium dioxide and/or titanium trioxide, while the tungsten is in the form of metal tungsten, tungsten oxide, tungsten dioxide, and/or tungsten trioxide. In some cases, the sputterable material comprises both titanium and tungsten in a variety of the above forms.
In certain embodiments, the sputterable material consists essentially of titanium metal and tungsten metal. An alloy target comprising both titanium and tungsten could be used. Or, one could use a metal titanium target provided with strips (or the like) of metal tungsten. When metal targets are sputtered, an oxidizing atmosphere (optionally with a slight amount of nitrogen) can be used.
In other embodiments, the sputterable material comprises both titanium oxide and tungsten oxide. In these cases, an inert atmosphere or a slightly oxidizing atmosphere (optionally including a small amount of nitrogen) can be used during sputtering. In certain embodiments, the sputterable material comprises titanium monoxide, titanium dioxide, and tungsten oxide. In these cases, a slightly oxidizing atmosphere (optionally including a small amount of nitrogen) can be used during sputtering. Or, the targets could be sputtered in an inert atmosphere, e.g., if the resulting film is not required to be fully oxidized (or if it will be further oxidized, such as during a subsequent heat treatment in air). In certain cases, the sputterable material is characterized by a metal-only W/Ti weight ratio of between about 0.01 and 0.34, such as between about 0.01 and about 0.2, this ratio being the total weight of the tungsten atoms in the sputterable material divided by the total weight of the titanium atoms in the sputterable material.
A target with sputterable material comprising both titanium and tungsten can be prepared using a number of different methods. In some embodiments, a target is prepared by plasma spraying titanium oxide together with tungsten metal onto a target base in an atmosphere that is oxygen deficient and does not contain oxygen-containing compounds. During the plasma spraying process, the action of the plasma on the titanium oxide causes the titanium oxide to lose some oxygen atoms from their lattices. These oxygen atoms are believed to combine with the metal tungsten to form tungsten oxide, as tungsten has a high electrochemical potential. The titanium oxide sprayed onto the backing tube may thus comprise titanium monoxide, titanium dioxide, and tungsten oxide. The sputterable target may, as just one example, be a cylindrical rotary target having a backing tube with a length of at least 24 inches. In such cases, the sputterable material is carried on an exterior wall of the backing tube. Such a cylindrical target is also adapted to rotate about a central axis to which the exterior wall of the backing tube is substantially parallel. Alternatively, hot isostatic pressing may be used to form a target. Other target forming methods can also be used.
When the functional film 50 is deposited by sputtering one or more targets comprising both tungsten oxide and substoichiometric TiOx, the sputtering is preferably carried out using argon, a mixture of argon and oxygen, a mixture of nitrogen and argon, a mixture of nitrogen and oxygen, or a mixture of oxygen, nitrogen, and argon. If the plasma gas does not contain oxygen, e.g., if pure argon is used, then the coating will not be fully oxidized when deposited. In contrast, if the plasma gas contains oxygen, then the reduced form(s) of titanium oxide may be converted during the sputtering process into the transparent form, which is stoichiometric or substantially stoichiometric. The film's degree of transparency will depend upon the amount of oxygen contained in the plasma gas and/or whether any subsequent heat treatment is performed in air. An exemplary gas mixture to form transparent film is 70-90% by volume argon and 30-10% by volume of oxygen. In some cases, the gas mixture can include as little as 1-3% by volume oxygen, with the remainder being argon.
In embodiments where the film 50 comprises both titanium oxide and tungsten oxide, a co-sputtering method can optionally be used. For example, one target can comprise titanium metal while an adjacent target comprises tungsten metal. As another option, each target can carry a sputterable metallic material that is a compound (e.g., an alloy) comprising both titanium metal and tungsten metal.
As noted above, the substrate in some embodiments is glass. It is often desirable or necessary to use tempered glass for certain applications, as is well known. In such cases, after the substrate has been coated with the low-maintenance coating 80, the coated substrate can be tempered. In certain embodiments, the coated substrate is positioned in a tempering furnace for at least 60 seconds, during which time the furnace is set at a temperature of at least 650° C. In some cases, this brings the coated substrate to a temperature of at least about 640° C. Then, the substrate is rapidly cooled down. Preferably, once the substrate reaches room temperature, it exhibits a haze of less than 0.4 (more preferably less than 0.2, or even less than 0.15) after heat treatment. Skilled artisans will be familiar with a variety of tempering methods that can be used to produce commercially acceptable tempered glass.
Some exemplary film stacks and deposition methods will now be described.
A soda-lime glass substrate was transported through a coat zone having two operating pairs of rotary silicon targets (each including about 15% aluminum). A gas mix comprising about 40-60% argon and the remainder oxygen was provided in each chamber, and the targets were sputtered to deposit a high-rate base film comprising silica on surface 12 of the substrate. The power on each pair of rotary targets was 60 Kw. The glass was conveyed at about 275 inches per minute. The base film had a thickness of about 200 Å.
Next, the substrate was transported through another coat zone, this one having three operating pairs of rotary ceramic targets (each with sputterable material consisting essentially of titanium oxide and tungsten oxide, where the titanium is present at about 59-74 weight %, the tungsten is present at about 1.4-3.8 weight %, and the oxygen is present at about 23.3-38.6 weight %). A gas mix of about 85% argon (and the remainder oxygen) was used, and the ceramic targets were sputtered to deposit the functional film. The power on each pair of rotary targets was 80 Kw. The functional film had a thickness of about 70 Å. The glass was conveyed at a speed of about 267 inches per minute.
The substrate was annealed glass. No post-deposition tempering or other heat treatment was performed. However, the low-maintenance coating was applied by upward sputtering after a double-silver low-emissivity coating was applied by downward sputtering (the low-emissivity coating was downwardly sputtered in a first part of the coater, and the low-maintenance coating was upwardly sputtered in a second part of the same coater). Thus, it is surmised that the glass retained heat from the deposition of the low-emissivity coating when the sputtering began for the low-maintenance coating.
The low-maintenance coating had an average surface roughness Ra of about 0.39 nm. The coating exhibited an acetone decomposition rate of about 2.14×10−10 moles/(liter)(second).
A low-maintenance coating was deposited on a glass substrate in the manner described above in Example #1. Once the coating was deposited, the glass was heat-treated in a furnace in a manner that simulates tempering in a commercial production setting. The furnace used is a HengLi RSK-2506 Fast Response Conveyor Furnace manufactured by HengLi Eletek Co., Ltd. (Hefei.Ah. China). The furnace is approximately 5.3 meters long with 6 zones for heating and cooling. The coated glass was conveyed in a single pass through the furnace at about 300 mm/second, taking about 19.4 minutes. The heat zone of the lab furnace was set at 690° F. The coated glass takes about 7.2 minutes to go through the approximately 2.2 meter long heat zone. The coated glass then exits the heat zone, and enters and passes through the approximately 1.8 meter cooling zone for about 6 minutes before exiting the furnace. It is estimated that the glass (which in this example was 3.1 mm soda-lime glass) reached a temperature of about 640° F.
The low-maintenance coating had an average surface roughness Ra of about 2.75 nm. The coating exhibited an acetone decomposition rate of about 6.82×10−10 moles/(liter)(second).
A soda-lime glass substrate was coated with a base film comprising silica at a thickness of about 200 Å in the manner described above in Example #1.
Next, the substrate was transported through another coat zone, this one having three operating pairs of rotary ceramic targets (with the same sputterable material described above in Example #1). A gas mix of about 85% argon (and the remainder oxygen) was used, and the ceramic targets were sputtered to deposit the functional film. The power on each pair of rotary targets was 80 Kw. The functional film had a thickness of about 55 Å. The glass was conveyed at a speed of about 340 inches per minute.
The substrate was annealed glass. However, this coating was applied by upward sputtering after a double-silver low-emissivity coating was applied by downward sputtering. Therefore, it is believed that the glass retained heat from the deposition of the low-emissivity coating when the sputtering began for the low-maintenance coating. No post-deposition tempering or other heat treatment was performed.
The low-maintenance coating had an average surface roughness Ra of about 0.44 nm. The coating exhibited an acetone decomposition rate of about 1.97×10−10 moles/(liter)(second).
A low-maintenance coating was deposited on a glass substrate in the manner described above in Example #3. The glass was then heat treated in the manner described above in Example #2.
The low-maintenance coating had an average surface roughness Ra of about 2.34 nm. The coating exhibited an acetone decomposition rate of about 5.46×10−10 moles/(liter)(second).
A coating having an outer film of titanium dioxide was prepared, and is illustrated in Table 6 (“Comparative Coating #6”).
Comparative Coating #6 exhibited an acetone decomposition rate of about 1.25×10−10 moles/(liter)(second).
While certain preferred embodiments of the invention have been described, it should be understood that various changes, adaptations and modifications can be made without departing from the spirit of the invention and the scope of the appended claims.
The present application claims priority to U.S. Application No. 60/972,527, filed Sep. 14, 2007; and U.S. Application No. 61/039,760, filed Mar. 26, 2008.
Number | Name | Date | Kind |
---|---|---|---|
4166018 | Chapin | Aug 1979 | A |
4556599 | Sato | Dec 1985 | A |
4663234 | Bouton | May 1987 | A |
4692428 | Murrell | Sep 1987 | A |
4838935 | Dunlop | Jun 1989 | A |
4854670 | Mellor | Aug 1989 | A |
4883574 | dos Santos Pereina Ribeiro | Nov 1989 | A |
4902580 | Gillery | Feb 1990 | A |
4931315 | Mellor | Jun 1990 | A |
4940636 | Brock | Jul 1990 | A |
4954465 | Kawashima | Sep 1990 | A |
4963240 | Fukasawa | Oct 1990 | A |
4995893 | Jenkins | Feb 1991 | A |
4997576 | Heller | Mar 1991 | A |
5006248 | Anderson | Apr 1991 | A |
5035784 | Anderson | Jul 1991 | A |
5047131 | Wolfe | Sep 1991 | A |
5073451 | Iida | Dec 1991 | A |
5104539 | Anderson | Apr 1992 | A |
5110637 | Ando | May 1992 | A |
5160534 | Hiraki | Nov 1992 | A |
5168003 | Proscia | Dec 1992 | A |
5176897 | Lester | Jan 1993 | A |
5179468 | Gasloli | Jan 1993 | A |
5234487 | Wickersham | Aug 1993 | A |
5298048 | Lingle | Mar 1994 | A |
5298338 | Hiraki | Mar 1994 | A |
5306569 | Hiraki | Apr 1994 | A |
5318830 | Takamatsu | Jun 1994 | A |
5356718 | Athey | Oct 1994 | A |
5397050 | Mueller | Mar 1995 | A |
5417827 | Finley | May 1995 | A |
5470527 | Yamanobe | Nov 1995 | A |
5496621 | Makita | Mar 1996 | A |
5512152 | Schicht | Apr 1996 | A |
5513039 | Lu | Apr 1996 | A |
5514485 | Ando | May 1996 | A |
5525406 | Goodman | Jun 1996 | A |
5527755 | Wenski | Jun 1996 | A |
5552180 | Finley | Sep 1996 | A |
5569362 | Lerbet | Oct 1996 | A |
5595813 | Ogawa | Jan 1997 | A |
5635287 | Balian | Jun 1997 | A |
5679978 | Kawahara | Oct 1997 | A |
5686372 | Langford | Nov 1997 | A |
5715103 | Amano | Feb 1998 | A |
5744215 | Neuman | Apr 1998 | A |
5780149 | McCurdy | Jul 1998 | A |
5780380 | Endoh | Jul 1998 | A |
5811191 | Neuman | Sep 1998 | A |
5812405 | Meredith, Jr. | Sep 1998 | A |
5827490 | Jones | Oct 1998 | A |
5830252 | Finley | Nov 1998 | A |
5854169 | Heller | Dec 1998 | A |
5854708 | Komatsu | Dec 1998 | A |
5863398 | Kardokus | Jan 1999 | A |
5869187 | Nakamura | Feb 1999 | A |
5871843 | Yoneda | Feb 1999 | A |
5873203 | Thiel | Feb 1999 | A |
5874701 | Watanabe | Feb 1999 | A |
5877391 | Kanno | Mar 1999 | A |
5896553 | Lo | Apr 1999 | A |
5897957 | Goodman | Apr 1999 | A |
5935716 | McCurdy | Aug 1999 | A |
5939188 | Moncur | Aug 1999 | A |
5939201 | Boire | Aug 1999 | A |
5948538 | Brochot | Sep 1999 | A |
5981426 | Langford | Nov 1999 | A |
5993734 | Snowman | Nov 1999 | A |
6013372 | Hayakawa | Jan 2000 | A |
6027766 | Greenberg | Feb 2000 | A |
6037289 | Chopin | Mar 2000 | A |
6040939 | Demiryont | Mar 2000 | A |
6054227 | Greenberg | Apr 2000 | A |
6068914 | Boire | May 2000 | A |
6071606 | Yamazaki | Jun 2000 | A |
6071623 | Sugawara | Jun 2000 | A |
6074981 | Tada | Jun 2000 | A |
6077482 | Kanno | Jun 2000 | A |
6077492 | Anpo | Jun 2000 | A |
6090489 | Hayakawa | Jul 2000 | A |
6103363 | Boire | Aug 2000 | A |
6120747 | Sugishima | Sep 2000 | A |
6139803 | Watanabe | Oct 2000 | A |
6139968 | Knapp | Oct 2000 | A |
6153067 | Maishev | Nov 2000 | A |
6154311 | Simmons, Jr. | Nov 2000 | A |
6156409 | Doushita | Dec 2000 | A |
6165256 | Hayakawa | Dec 2000 | A |
6179971 | Kittrell | Jan 2001 | B1 |
6179972 | Kittrell | Jan 2001 | B1 |
6193378 | Tonar | Feb 2001 | B1 |
6193856 | Kida | Feb 2001 | B1 |
6194346 | Tada | Feb 2001 | B1 |
6228480 | Kimura | May 2001 | B1 |
6228502 | Saitoh | May 2001 | B1 |
6238738 | McCurdy | May 2001 | B1 |
6242752 | Soma | Jun 2001 | B1 |
6248397 | Ye | Jun 2001 | B1 |
6274244 | Finley | Aug 2001 | B1 |
6299981 | Azzopardi | Oct 2001 | B1 |
6319326 | Koh | Nov 2001 | B1 |
6326079 | Philippe | Dec 2001 | B1 |
6329060 | Barkac | Dec 2001 | B1 |
6334938 | Kida | Jan 2002 | B2 |
6335479 | Yamada | Jan 2002 | B1 |
6336998 | Wang | Jan 2002 | B1 |
6337124 | Anderson | Jan 2002 | B1 |
6346174 | Finley | Feb 2002 | B1 |
6352755 | Finley | Mar 2002 | B1 |
6362121 | Chopin | Mar 2002 | B1 |
6365014 | Finley | Apr 2002 | B2 |
6368664 | Veerasamy | Apr 2002 | B1 |
6368668 | Kobayashi | Apr 2002 | B1 |
6379776 | Tada | Apr 2002 | B1 |
6387844 | Fujishima | May 2002 | B1 |
6413581 | Greenberg | Jul 2002 | B1 |
6414213 | Ohmori | Jul 2002 | B2 |
6425670 | Komatsu | Jul 2002 | B1 |
6436542 | Ogino | Aug 2002 | B1 |
6440278 | Kida | Aug 2002 | B1 |
6461686 | Vanderstraeten | Oct 2002 | B1 |
6464951 | Kittrell | Oct 2002 | B1 |
6465088 | Talpaert | Oct 2002 | B1 |
6468402 | Vanderstraeten | Oct 2002 | B1 |
6468403 | Shimizu | Oct 2002 | B1 |
6468428 | Nishii | Oct 2002 | B1 |
6511587 | Vanderstraeten | Jan 2003 | B2 |
6570709 | Katayama | May 2003 | B2 |
6576344 | Doushita | Jun 2003 | B1 |
6582839 | Yamamoto | Jun 2003 | B1 |
6596664 | Kittrell | Jul 2003 | B2 |
6635155 | Miyamura | Oct 2003 | B2 |
6673738 | Ueda | Jan 2004 | B2 |
6677063 | Finley | Jan 2004 | B2 |
6679978 | Johnson | Jan 2004 | B2 |
6680135 | Boire | Jan 2004 | B2 |
6716323 | Siddle | Apr 2004 | B1 |
6720066 | Talpaert | Apr 2004 | B2 |
6722159 | Greenberg | Apr 2004 | B2 |
6730630 | Okusako | May 2004 | B2 |
6733889 | Varanasi | May 2004 | B2 |
6743343 | Kida | Jun 2004 | B2 |
6743749 | Morikawa | Jun 2004 | B2 |
6761984 | Anzaki | Jul 2004 | B2 |
6770321 | Hukari | Aug 2004 | B2 |
6777030 | Veerasamy | Aug 2004 | B2 |
6781738 | Kikuchi | Aug 2004 | B2 |
6787199 | Anpo | Sep 2004 | B2 |
6789906 | Tonar | Sep 2004 | B2 |
6794065 | Morikawa | Sep 2004 | B1 |
6800182 | Mitsui | Oct 2004 | B2 |
6800354 | Baumann | Oct 2004 | B2 |
6804048 | MacQuart | Oct 2004 | B2 |
6811856 | Nun | Nov 2004 | B2 |
6818309 | Talpaert | Nov 2004 | B1 |
6829084 | Takaki | Dec 2004 | B2 |
6830785 | Hayakawa | Dec 2004 | B1 |
6833089 | Kawahara | Dec 2004 | B1 |
6835688 | Morikawa | Dec 2004 | B2 |
6840061 | Hurst | Jan 2005 | B1 |
6846556 | Boire | Jan 2005 | B2 |
6869644 | Buhay | Mar 2005 | B2 |
6870657 | Fitzmaurice | Mar 2005 | B1 |
6872441 | Baumann | Mar 2005 | B2 |
6875319 | Nadaud | Apr 2005 | B2 |
6878242 | Wang | Apr 2005 | B2 |
6878450 | Anpo | Apr 2005 | B2 |
6881701 | Jacobs | Apr 2005 | B2 |
6890656 | Iacovangelo | May 2005 | B2 |
6908698 | Yoshida | Jun 2005 | B2 |
6908881 | Sugihara | Jun 2005 | B1 |
6916542 | Buhay | Jul 2005 | B2 |
6929862 | Hurst | Aug 2005 | B2 |
6939611 | Fujishima | Sep 2005 | B2 |
6952299 | Fukazawa | Oct 2005 | B1 |
6954240 | Hamamoto | Oct 2005 | B2 |
6962759 | Buhay | Nov 2005 | B2 |
6964731 | Krisko | Nov 2005 | B1 |
6997570 | Nakaho | Feb 2006 | B2 |
7005188 | Anderson | Feb 2006 | B2 |
7005189 | Tachibana | Feb 2006 | B1 |
7011691 | Abe | Mar 2006 | B2 |
7022416 | Teranishi | Apr 2006 | B2 |
7049002 | Greenberg | May 2006 | B2 |
7052585 | Veerasamy | May 2006 | B2 |
7060643 | Sanbayashi | Jun 2006 | B2 |
7096692 | Greenberg | Aug 2006 | B2 |
7118936 | Kobayashi | Oct 2006 | B2 |
7138181 | McCurdy | Nov 2006 | B2 |
7157840 | Fujishima | Jan 2007 | B2 |
7175911 | Zhou | Feb 2007 | B2 |
7179527 | Sato | Feb 2007 | B2 |
7195821 | Tixhon | Mar 2007 | B2 |
7198699 | Thomsen | Apr 2007 | B2 |
7211513 | Remington, Jr. | May 2007 | B2 |
7211543 | Nakabayashi | May 2007 | B2 |
7223523 | Boykin | May 2007 | B2 |
7232615 | Buhay | Jun 2007 | B2 |
7255831 | Wei | Aug 2007 | B2 |
7261942 | Andrews | Aug 2007 | B2 |
7264741 | Hartig | Sep 2007 | B2 |
7294365 | Hayakawa | Nov 2007 | B2 |
7294404 | Krisko | Nov 2007 | B2 |
7300634 | Yaniv | Nov 2007 | B2 |
7309405 | Cho | Dec 2007 | B2 |
7309664 | Marzolin | Dec 2007 | B1 |
7311961 | Finley | Dec 2007 | B2 |
7320827 | Fujisawa | Jan 2008 | B2 |
7323249 | Athey | Jan 2008 | B2 |
7348054 | Jacquiod | Mar 2008 | B2 |
7354624 | Millero | Apr 2008 | B2 |
7361963 | Ikadai | Apr 2008 | B2 |
7387839 | Gueneau | Jun 2008 | B2 |
20010030808 | Komatsu | Oct 2001 | A1 |
20020012779 | Miyashita | Jan 2002 | A1 |
20020016250 | Hayakawa | Feb 2002 | A1 |
20020028361 | Boire | Mar 2002 | A1 |
20020071956 | Boire | Jun 2002 | A1 |
20020110638 | Boire | Aug 2002 | A1 |
20020119307 | Boire | Aug 2002 | A1 |
20020155299 | Harris | Oct 2002 | A1 |
20020172775 | Buhay | Nov 2002 | A1 |
20030038028 | Schultheis | Feb 2003 | A1 |
20030039843 | Johnson | Feb 2003 | A1 |
20030054177 | Jin | Mar 2003 | A1 |
20030096701 | Fujishima | May 2003 | A1 |
20030143437 | Ohtsu | Jul 2003 | A1 |
20030152780 | Baumann | Aug 2003 | A1 |
20030180547 | Buhay | Sep 2003 | A1 |
20030186089 | Kikuchi | Oct 2003 | A1 |
20030207028 | Boire | Nov 2003 | A1 |
20030215647 | Yoshida | Nov 2003 | A1 |
20030224620 | Kools | Dec 2003 | A1 |
20030235720 | Athey | Dec 2003 | A1 |
20040005466 | Arai | Jan 2004 | A1 |
20040009356 | Medwick | Jan 2004 | A1 |
20040043260 | Nadaud | Mar 2004 | A1 |
20040069623 | Vanderstraeten | Apr 2004 | A1 |
20040115362 | Hartig | Jun 2004 | A1 |
20040140198 | Cho | Jul 2004 | A1 |
20040149307 | Hartig | Aug 2004 | A1 |
20040179978 | Kobayashi | Sep 2004 | A1 |
20040180216 | Veerasamy | Sep 2004 | A1 |
20040180220 | Gueneau | Sep 2004 | A1 |
20040196580 | Nakaho | Oct 2004 | A1 |
20040202890 | Kutilek | Oct 2004 | A1 |
20040206024 | Graf | Oct 2004 | A1 |
20040214010 | Murata | Oct 2004 | A1 |
20040216487 | Boire | Nov 2004 | A1 |
20040219348 | Jacquiod | Nov 2004 | A1 |
20040241040 | Wei | Dec 2004 | A1 |
20040241490 | Finley | Dec 2004 | A1 |
20040247901 | Suzuki | Dec 2004 | A1 |
20040248725 | Hiraoka | Dec 2004 | A1 |
20040253382 | De Bosscher | Dec 2004 | A1 |
20040253471 | Thiel | Dec 2004 | A1 |
20050003672 | Kools | Jan 2005 | A1 |
20050016835 | Krisko | Jan 2005 | A1 |
20050019505 | Hamamoto | Jan 2005 | A1 |
20050019700 | Hayakawa | Jan 2005 | A1 |
20050020444 | Hiraoka | Jan 2005 | A1 |
20050025982 | Krisko | Feb 2005 | A1 |
20050031876 | Lu | Feb 2005 | A1 |
20050042375 | Minami | Feb 2005 | A1 |
20050044894 | Nelson | Mar 2005 | A1 |
20050051422 | Rietzel | Mar 2005 | A1 |
20050084688 | Garrec | Apr 2005 | A1 |
20050137084 | Krisko | Jun 2005 | A1 |
20050191505 | Akarsu | Sep 2005 | A1 |
20050191522 | Anzaki | Sep 2005 | A1 |
20050221098 | Azzopardi | Oct 2005 | A1 |
20050227008 | Okada | Oct 2005 | A1 |
20050233893 | Sakatani | Oct 2005 | A1 |
20050233899 | Anzaki | Oct 2005 | A1 |
20050238861 | Buhay | Oct 2005 | A1 |
20050245382 | Iwahashi | Nov 2005 | A1 |
20050245383 | Iwahashi | Nov 2005 | A1 |
20050247555 | Thiel | Nov 2005 | A1 |
20050248824 | Fukazawa | Nov 2005 | A1 |
20050252108 | Sanderson | Nov 2005 | A1 |
20050258030 | Finley | Nov 2005 | A1 |
20050266248 | Millero | Dec 2005 | A1 |
20050272590 | Iwahashi | Dec 2005 | A1 |
20060003545 | Veerasamy | Jan 2006 | A1 |
20060011945 | Spitzer-Keller | Jan 2006 | A1 |
20060014027 | Oudard | Jan 2006 | A1 |
20060014050 | Gueneau | Jan 2006 | A1 |
20060019104 | Hurst | Jan 2006 | A1 |
20060029813 | Kutilek | Feb 2006 | A1 |
20060031681 | Smith | Feb 2006 | A1 |
20060032739 | Ikeda | Feb 2006 | A1 |
20060051597 | Anzaki | Mar 2006 | A1 |
20060055513 | French | Mar 2006 | A1 |
20060057298 | Krisko | Mar 2006 | A1 |
20060057401 | Krisko et al. | Mar 2006 | A1 |
20060070869 | Krisko | Apr 2006 | A1 |
20060090996 | Yaniv | May 2006 | A1 |
20060102465 | Blondeel | May 2006 | A1 |
20060107599 | Luten | May 2006 | A1 |
20060110605 | Luten | May 2006 | A1 |
20060118406 | Delahoy | Jun 2006 | A1 |
20060121315 | Myli | Jun 2006 | A1 |
20060127604 | Ikadai | Jun 2006 | A1 |
20060134322 | Harris | Jun 2006 | A1 |
20060134436 | Maschwitz | Jun 2006 | A1 |
20060141290 | Sheel | Jun 2006 | A1 |
20060152832 | Aumercier | Jul 2006 | A1 |
20060159906 | Messere | Jul 2006 | A1 |
20060165996 | Veerasamy | Jul 2006 | A1 |
20060194066 | Ye | Aug 2006 | A1 |
20060196765 | Cheng | Sep 2006 | A1 |
20060201203 | Labrousse | Sep 2006 | A1 |
20060210783 | Seder | Sep 2006 | A1 |
20060210810 | Harris | Sep 2006 | A1 |
20060225999 | Fukawa | Oct 2006 | A1 |
20060228476 | McCurdy | Oct 2006 | A1 |
20060234064 | Baubet | Oct 2006 | A1 |
20060247125 | Choi | Nov 2006 | A1 |
20060263610 | Greenberg | Nov 2006 | A1 |
20060275612 | Baubet | Dec 2006 | A1 |
20070025000 | Lin | Feb 2007 | A1 |
20070029187 | Krasnov | Feb 2007 | A1 |
20070029527 | Mills | Feb 2007 | A1 |
20070030569 | Lu | Feb 2007 | A1 |
20070031593 | Krasnov | Feb 2007 | A1 |
20070031681 | Anzaki | Feb 2007 | A1 |
20070031682 | Krasnov | Feb 2007 | A1 |
20070042893 | Koike | Feb 2007 | A1 |
20070065670 | Varaprasad | Mar 2007 | A1 |
20070077406 | Jacobs | Apr 2007 | A1 |
20070087187 | Lu | Apr 2007 | A1 |
20070092734 | Durandeau | Apr 2007 | A1 |
20070108043 | Lu | May 2007 | A1 |
20070109543 | Hoffman | May 2007 | A1 |
20070111012 | Rimmer | May 2007 | A1 |
20070116966 | Mellott | May 2007 | A1 |
20070116967 | Medwick | May 2007 | A1 |
20070129248 | Labrousse | Jun 2007 | A1 |
20070134501 | McMaster | Jun 2007 | A1 |
20070137673 | Boykin | Jun 2007 | A1 |
20070148064 | Labrousse | Jun 2007 | A1 |
20070184291 | Harris | Aug 2007 | A1 |
20070196563 | Wuwen | Aug 2007 | A1 |
20070218264 | Gueneau | Sep 2007 | A1 |
20070218265 | Harris | Sep 2007 | A1 |
20070218311 | O'Shaughnessy | Sep 2007 | A1 |
20070224357 | Buhay | Sep 2007 | A1 |
20070231501 | Finley | Oct 2007 | A1 |
20070237968 | Kijima | Oct 2007 | A1 |
20070254163 | Veerasamy | Nov 2007 | A1 |
20070254164 | Veerasamy | Nov 2007 | A1 |
20070275252 | Krasnov | Nov 2007 | A1 |
20070275253 | Thiel | Nov 2007 | A1 |
20080011408 | Maschwitz | Jan 2008 | A1 |
20080014349 | Otani | Jan 2008 | A1 |
20080026161 | Frings | Jan 2008 | A1 |
20080115471 | Labrousse | May 2008 | A1 |
20080119352 | Kitaguchi | May 2008 | A1 |
20080124460 | Athey | May 2008 | A1 |
20080188370 | Vormberg | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
0285130 | Oct 1988 | EP |
0574119 | Apr 1993 | EP |
0345045 | Oct 1993 | EP |
0901991 | Mar 1999 | EP |
1066878 | Jan 2001 | EP |
1074525 | Feb 2001 | EP |
0816466 | May 2006 | EP |
1506143 | May 2006 | EP |
2738836 | Mar 1997 | FR |
2884147 | Oct 2006 | FR |
2000094569 | Apr 2000 | JP |
2006305527 | Nov 2006 | JP |
9707069 | Feb 1997 | WO |
9737801 | Oct 1997 | WO |
9806675 | Feb 1998 | WO |
9911896 | Mar 1999 | WO |
9944954 | Sep 1999 | WO |
0015571 | Feb 2000 | WO |
0027771 | May 2000 | WO |
0040402 | Jul 2000 | WO |
0075087 | Dec 2000 | WO |
0168786 | Sep 2001 | WO |
0240417 | May 2002 | WO |
0249980 | Jun 2002 | WO |
02085809 | Oct 2002 | WO |
03006393 | Jan 2003 | WO |
03009061 | Jan 2003 | WO |
03050056 | Jun 2003 | WO |
03062166 | Jul 2003 | WO |
03068500 | Aug 2003 | WO |
03072849 | Sep 2003 | WO |
03087002 | Oct 2003 | WO |
03087005 | Oct 2003 | WO |
03091471 | Nov 2003 | WO |
03093188 | Nov 2003 | WO |
03095385 | Nov 2003 | WO |
03097549 | Nov 2003 | WO |
2004013376 | Feb 2004 | WO |
2004034105 | Apr 2004 | WO |
2004061151 | Jul 2004 | WO |
2004085699 | Oct 2004 | WO |
2004085701 | Oct 2004 | WO |
2004086104 | Oct 2004 | WO |
2004087985 | Oct 2004 | WO |
2004089836 | Oct 2004 | WO |
2004089838 | Oct 2004 | WO |
2004089839 | Oct 2004 | WO |
2004092088 | Oct 2004 | WO |
2004097063 | Nov 2004 | WO |
2004108618 | Dec 2004 | WO |
2004108619 | Dec 2004 | WO |
2004108846 | Dec 2004 | WO |
2004113064 | Dec 2004 | WO |
2005000758 | Jan 2005 | WO |
2005000759 | Jan 2005 | WO |
2005005337 | Jan 2005 | WO |
2005007286 | Jan 2005 | WO |
2005009914 | Feb 2005 | WO |
2005012593 | Feb 2005 | WO |
2005023723 | Mar 2005 | WO |
2005040056 | May 2005 | WO |
2005102952 | Nov 2005 | WO |
2005110937 | Nov 2005 | WO |
2005111257 | Nov 2005 | WO |
2006004169 | Jan 2006 | WO |
2006007062 | Jan 2006 | WO |
2006019995 | Feb 2006 | WO |
2006020477 | Feb 2006 | WO |
2006028729 | Mar 2006 | WO |
2006055513 | May 2006 | WO |
WO2006054954 | May 2006 | WO |
2006057830 | Jun 2006 | WO |
2006062902 | Jun 2006 | WO |
2006064059 | Jun 2006 | WO |
2006064060 | Jun 2006 | WO |
2006066101 | Jun 2006 | WO |
2006077839 | Jul 2006 | WO |
2006089964 | Aug 2006 | WO |
2006101994 | Sep 2006 | WO |
2006108985 | Oct 2006 | WO |
2006117345 | Nov 2006 | WO |
2006134335 | Dec 2006 | WO |
2007016127 | Feb 2007 | WO |
2007018974 | Feb 2007 | WO |
2007018975 | Feb 2007 | WO |
2007045805 | Apr 2007 | WO |
2007080428 | Jul 2007 | WO |
2007093823 | Aug 2007 | WO |
2007096461 | Aug 2007 | WO |
WO2007092511 | Aug 2007 | WO |
2007121215 | Oct 2007 | WO |
2007110482 | Oct 2007 | WO |
2007121211 | Oct 2007 | WO |
WO2007127060 | Nov 2007 | WO |
WO2007130140 | Nov 2007 | WO |
2004092089 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090075069 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
61039760 | Mar 2008 | US | |
60972527 | Sep 2007 | US |