Yanaihara et al. Synthetic Study on Human C-Peptide . . . Hoppe-Seyler's Z. Physiol. Chem. vol. 362, pp. 775-797, Jun. 19, 1981.* |
Zhang, X. et al., “A non-mammalian in vivo model for cellular and molecular analysis of glucose-mediated thickening of basement membranes”, Diabetologia, vol. 33, pp. 704-707, (1990). |
Wilson, R. et al., “2.2 Mb of contiguous nucleotide sequence from Chromosome III of C. elegans”, Nature, vol. 368, pp. 32-38, (1994). |
Veber, D. et al. “The design of metabolically-stable peptide analogs”, Trends Neurosci., vol. 8, pp. 392-396, (1985). |
Stetefeld, J. et al., “Crystal Structure of Three Consecutive Laminin-type Epidermal Growth Factor-like (LE) Modules of Laminin γ 1 Chain Harboring the Nidogen Binding Site”, J. Mol. Biol., vol. 257, pp. 644-657. |
Smola, H. et al., “Dynamics of Basement Membrane Fromation by Keratinocyte-Fibroblast Interactions in Organotypic Skin Culture”, Experimental Cell Research, vol. 239, pp. 399-410, (1998). |
Nicosia, R. et al., “Growth of Microvessels in Serum-Free Matrix Culture of Rat Aorta”, Laboratory Investigation, vol. 63, No. 1, pp. 115-122, (1990). |
Pöschl, E. et al., “Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin γ 1 chain”, The EMBO Journal, vol. 15, No. 19, pp. 5154-5159 (1996). |
Pöschl, E. et al., “Two non-contiguous regions contribute to nidogen binding to a single EGF-like motif of the laminin γ 1 chain”, The EMBO Journal, vol. 13, No. 16, pp. 3741-3747, (1994). |
Pikkarainen, T. et al., “Human Laminim B2 Chain”, The Journal of Biological Chemistry, vol. 263, No. 14, pp. 6751-6758 (1988). |
O'Reilly, M. et al., “Treatment of Murine Hemangioendotheliomas With the Angiogenesis Inhibitor AGM-1470”, Journal of Pediatric Surgery, vol. 30, No. 2, pp. 325-330, (1995). |
Nehls, V. et al., “A Novel, Microcarrier-Based in Vitro Assay for Rapid and Reliable Quantification of Three-Dimensional Cell Migration and Angiogenesis”, Microvascular Research, vol. 50, pp. 311-322, (1995). |
Milner-White, E.J., “Predicting the biologically active conformations of short polypeptides”, Trends Pharmacol. Sci., vol. 10, pp. 70-74, (1989). |
Mayer, U. et al., “A single EGF-like motif of laminin is responsible for high affinity nidogen binding”, The EMBO Journal vol. 12, pp. 1879-1885, (1993). |
Mann, K. et al., “Characterization of proteolytic fragments of the laminin-nidogen complex and their activity in ligand-binding assays”, Eur. J. Biochem, vol. 178, pp. 71-80, (1988). |
Lebl, M. et al., “Screening of Completely Random One-Bead One-Peptide Libraries for Activities in Solution”, A Companion to Methods in Enzymology, vol. 6, pp. 381-387, (1994). |
Lam, K. et al., “A new type of synthetic peptide library for identifying ligand-binding activity”, Nature, vol. 354, pp. 82-84, (1991). |
Krchñák, V. et al., “Noninvasive Continuous Monitoring of Solid-Phase Peptide Synthesis by Acid-Base Indicator”, Collection Czechoslovak Chem. Commun., vol. 53, pp. 2542-2548, (1988). |
Ko{haeck over (c)}i{haeck over (s)}, P. et al., “Symmetrical Structure Allowing the Selective Multiple Release of a Defined Quantity of Peptide from a Single Bead of Polymeric Support”, Tetrahedron Letters, vol. 34, No. 45, pp. 7251-7252, (1993). |
Kadoya, Y. et al., “Importance of nidogen binding to laminin γ 1 for branching epithelial morphogenesis of the submandibular gland”, Development 124, pp. 683-691, (1997). |
Kaiser, E. et al., “Color Test for Detection of Free Terminal Amino Groups in the Solid-Phase Synthesis of Peptides”, Anal. Biochem., vol. 34, pp. 595-598 (1969). |
Jain, R. et al., “Quantitative angiogenesis assays: Progress and problems”, Nature Medicine, vol. 3, No. 11, pp. 1203-1208, (1997). |
Hruby, V.J., “Peptide chemistry: Designing peptides pseudopeptides and peptidomimetics for biological receptors”, Petides, Proc. 13th American Petide Symposium, ESCOM, pp. 3-17, (1994). |
Grobstein, C., “Trans-Filter Induction of Tubules in Mouse Metanephrogenic Mesenchyme”, Experimental Cell Research, vol. 10, pp. 424-440, (1956). |
Grobstein, C., “Epithelio-Mesenchymal Specificity in the Morphogenesis of Mouse Sub-Mandibular Rudiments in Vitro”, J. Exp. Zool, vol. 124, pp. 383-413, (1953). |
Gerl, M. et al., “Localization of a major nidogen-binding site to domain III of laminin B2 chain”, Eur. J. Biochem, vol. 202, pp. 167-174, (1991). |
Furka, A. et al., “General method for rapid synthesis of multicomponent peptide mixtures”, Int. J. Peptide Protein, Res., vol. 37, pp. 487-493, (1991). |
Engel, J., “EGF-like domains in extracellular matrix proteins: localized signals for growth differentiation?”, FEBS Letters, vol. 251, No. 1, 2, pp. 1-7, (1989). |
Ekblom, P. et al., “Role of mesenchymal nidogen for epithelial morphogenesis in vitro”, Development, vol. 120, pp. 2003-2014, (1994). |
Chi, H. et al., “Primary Structure of the Drosophila Laminin B2 Chain and comparison with Human, Mouse, and Drosophila Laminin B1 and B2 Chains”, The Journal of Biological Chemistry, vol. 264, No. 3, pp. 1543-1550, (1989). |
Burgeson, R. et al., “A New Nomenclature for the Laminins”, Matrix Biology, vol. 14, pp. 209-211, (1994). |
Baumgartner, R. et al., “Structure of the Nidogen Binding LE Module of the Lamin γ 1 Chain in Solution”, J. Mol. Biol., vol. 257, pp. 658-668, (1996). |
Fox, J. et al., “Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV”, The EMBO Journal, vol. 10, No. 11, pp. 3137-3146, (1991). |
Adams, J. et al., “Regulation of development and differentiation by the extracellular matrix”, Development 117, pp. 1183-1198, (1993). |