The disclosure is related to the field of phase-locked loop (PLL) frequency synthesizers, and more specifically to the design of frequency accuracy indicators used with PLL frequency synthesizers.
A PLL synthesizer (U.S. Pat. No. 7,701,299) that achieves fast tuning speed and low phase-noise was recently introduced. This synthesizer has an initial tuning mechanism that uses a conventional divider loop to lock a voltage-controlled oscillator (VCO) to a desired output frequency. Once initial lock is achieved, the divider loop is switched out of the circuit in favor of a low phase-noise mixer loop.
The mixer loop provides a low phase-noise feedback path in the PLL. It produces a rich spectrum of regularly spaced frequencies and the PLL can potentially lock to any one of them. Normally, when the synthesizer switches from the divider loop to the mixer loop, the PLL output frequency does not change. This stability is obtained in part because the frequencies in the mixer loop are integer multiples of the phase detector comparison signal frequency. The integer division ratio in the divider branch may therefore be chosen to exactly match a multiplication coefficient in the mixer branch.
It is possible, however, that unusual circumstances could lead the synthesizer PLL to lock to an incorrect frequency in the mixer loop. Temporary failures of the PLL loop low-pass filter or loss of bias, for example, might lead the synthesizer to lock to the wrong frequency.
As previously mentioned, unusual circumstances could lead a PLL synthesizer (that achieves fast tuning speed and low phase-noise) to still lock to an incorrect frequency in the mixer loop. Hence, it may be beneficial to construct a frequency accuracy indicator that may be incorporated in or used with a PLL synthesizer to confirm that the PLL synthesizer is locked to the correct frequency.
The frequency accuracy indicator described below compares frequencies generated in different parts of a dual-branch, low phase-noise PLL synthesizer. The indicator continuously monitors whether or not the PLL synthesizer is locked to the correct frequency. Additionally, the frequency accuracy indicator may be combined with a conventional phase lock indicator to provide a signal that indicates whether or not the PLL is phase locked and at the correct frequency.
The “correct” or intended frequency is defined by a reference frequency source and the division ratio, N, in the divider loop of a dual-branch, low phase-noise PLL synthesizer. Following is a review of the of U.S. Pat. No. 7,701,299 to better understand how a frequency accuracy indicator may be operated with(in) a dual-branch PLL frequency synthesizer.
Dual-Branch, Low Phase-Noise PLL Synthesizer
In the figure, an error signal generated by phase detector 110 is filtered by low-pass filter 115 and amplified by amplifier 120 before feeding voltage controlled oscillator (VCO) 125. A portion of the VCO output signal 135 is split off by power splitter 130 and returned to the phase detector after passing through either of two branches of a feedback loop selected by a switch.
Switch 160 selects either a conventional frequency divider loop or a frequency mixer system. A conventional loop comprising divider 140 is selected when switch 160 is in position “1” and is used for initial tuning. This loop includes components in the signal path between signals 163 and 162. A mixer system is selected when switch 160 is in position “2” and is used to achieve low phase-noise operation. This loop includes components in the signal path between signals 161 and 164.
In
Reference frequency FREF 105 is a high-stability, low phase-noise reference signal. FREF is divided by dividers D1 through Di to form phase detector comparison signal 168 (F0), which is one input to phase detector 110. The phase detector compares F0 with signal 166. Note that dividers 190, 191, 197 and 198, providing division ratios (D1 through Di), are not in the PLL feedback loop and are not in the signal path between signals 161 and 164. When switch 160 is in position “2” the VCO slews to a lock frequency given by:
f=F0(D1D2 . . . Di-1DiCi±D1D2 . . . Di-1Ci-1± . . . ±D1D2C2±D1C1±1).
Since all the division and multiplication coefficients are integers,
f=F0×N,
where N=(D1D2 . . . Di-1DiCi±D1D2 . . . Di-1Ci-1± . . . ±D1D2C2±D1C1±1) is an integer.
Possible frequencies output by the synthesizer of
N=(D1D2 . . . Di-1DiCi±D1D2 . . . Di-1Ci-1± . . . ±D1D2C2±D1C1±1).
This design minimizes the chance of false lock; i.e. locking the loop to an incorrect frequency.
In the design of
fMIX=±mfRF±nfLO,
which may be written as:
fMIXi=±mF0N±nF0D1D2 . . . Di-1D1C1
for mixer Mi. Assuming that all the coefficients are integers, the mixer products can be expressed as:
fMIXi=kF0
where k is an integer. Similarly, all harmonic and intermodulation products generated by the mixer branch are multiples of the phase detector comparison frequency F0. These products are easily rejected by a loop low-pass filter. The loop filter bandwidth is made small enough to reject undesired signals, typically ten times less than F0. The output of the PLL is therefore a desired frequency, f, within an effective band pass filter having a width narrower than F0. This design ensures that spurious mixer products fall outside the loop filter bandwidth and are therefore easily removed.
Given a desired output frequency f and frequency resolution or step size F0, the operation of the synthesizer proceeds as follows: Switch 160 is set to position “1” so that the initial-tuning divider branch is connected to, and the mixer branch is disconnected from, the phase detector. The divider ratio, N, of divider 140 is programmed to equal the ratio between the desired output frequency f and the step size F0. The phase detector generates an error signal that tunes the VCO output to f. The phase detector also generates a lock-detect signal that switches switch 160 to position “2”, thereby removing the divider branch from, and including the mixer branch in, the loop circuit. VCO output f is converted in the mixer branch to frequency F0, the same frequency that was generated earlier in the divider branch. The phase detector relocks the output signal f; however, this time there is no frequency division in the feedback loop and phase-noise is reduced. Loop low-pass filter 115 removes undesired mixer products thereby ensuring low spurious emissions.
Optional multiplier 165, having multiplication factor Cx, may be placed in the feedback path between signals 161 and 164. Just as frequency division in the loop feedback path of a PLL synthesizer increases phase-noise by 20 log N, frequency multiplication in the loop feedback path reduces phase-noise by 20 log C, where C is the multiplication factor. Therefore 20 log Cx lower phase-noise is obtained when multiplier 165 is included. Multiplication in the loop feedback path does lead to coarser frequency resolution; however, a desired frequency resolution may be achieved by including a sufficient number of mixers, Mi (170-178).
Four connection points, S0, S1, S2, and S3 are shown in
Frequency Accuracy Indicator
The frequency accuracy indicator described below is used to detect whether or not the PLL synthesizer described above is operating at the correct frequency defined by reference frequency FREF 105 (as modified by dividers D1 through Di to form phase detector comparison signal 168 (F0) and the division ratio, N, of the divider loop. The frequency accuracy indicator may also indicate that the synthesizer is not merely operating at the correct frequency, but also that the PLL is locked at that frequency.
Frequency accuracy indicator 205 detects whether or not its two mixer inputs are at the same frequency. Suppose that the two mixer input signals, S0 and S1, have frequencies f0 and f1, respectively. The output of mixer 210 will then contain sum and difference frequencies f0+f1 and f0−f1. Low pass filter 215 removes the sum frequency leaving difference frequency f0−f1. This difference frequency is filtered by high pass filter 220. The high pass filter determines the accuracy of the frequency accuracy indicator. For example, if the high pass filter passes frequencies above 10 Hz, then the frequency accuracy indicator indicates that the two mixer input signals have the same frequency as long as their actual frequencies differ by no more than 10 Hz.
Detector 225 rectifies the output of high pass filter 220. The detector provides a non-zero DC signal when an AC signal passes through the high pass filter and zero otherwise. Detector 225 may convert its output to a logic level; e.g. logical “1” when an AC signal is detected and logical “0” otherwise. Frequency accuracy detection is complete at this point, but a frequency accuracy indicator may include inverter 230 and AND gate 240 so that output signal 245 includes both “frequency correct” and “PLL locked” information.
Inverter 230 inverts the logic level provided by detector 225. When input frequencies f0 and f1 are the same within the frequency tolerance determined by high pass filter 220, the output of detector 225 is logical “0” and therefore the output of inverter 230 is logical “1”. AND gate 240 combines this information with a phase lock signal 235 (where logical “0” means not phase locked and logical “1” means phase locked) to produce frequency accuracy indicator signal 245. When signal 245 is logical “1”, the synthesizer to which frequency accuracy indicator 205 is connected is locked on the correct frequency.
The frequency accuracy indicator's two mixer inputs may be connected to the PLL synthesizer of
In
A frequency accuracy indicator has been described that monitors whether or not a dual-branch, low-noise PLL synthesizer is locked at a desired frequency. Locking to an incorrect frequency is extremely rare in normal operation; hence the frequency accuracy indicator may provide early warning of unusual circumstances or temporary failures in a synthesizer.
The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other embodiments without departing from the scope of the disclosure. Thus, the disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4105949 | Hardin | Aug 1978 | A |
4604583 | Aoyagi et al. | Aug 1986 | A |
5281863 | Bond et al. | Jan 1994 | A |
5508661 | Keane et al. | Apr 1996 | A |
5770977 | Uurtamo | Jun 1998 | A |
6188740 | Tomaru | Feb 2001 | B1 |
6282249 | Tomesen et al. | Aug 2001 | B1 |
6373344 | Mar | Apr 2002 | B1 |
6480006 | Buckley | Nov 2002 | B1 |
6765977 | Adams et al. | Jul 2004 | B1 |
6931243 | Goldman | Aug 2005 | B2 |
6992531 | Mar | Jan 2006 | B2 |
7012453 | Coleman et al. | Mar 2006 | B2 |
7023249 | Mulbrook | Apr 2006 | B1 |
7209936 | Sullivan | Apr 2007 | B2 |
7321268 | Chang et al. | Jan 2008 | B2 |
7369002 | Spijker et al. | May 2008 | B2 |
7386286 | Petrovic et al. | Jun 2008 | B2 |
7486147 | Khorram | Feb 2009 | B2 |
7570123 | Dent et al. | Aug 2009 | B2 |
7701299 | Chenakin | Apr 2010 | B2 |
20020196061 | Atyunin et al. | Dec 2002 | A1 |
20090146708 | Yun et al. | Jun 2009 | A1 |
20090309665 | Chenakin | Dec 2009 | A1 |
Entry |
---|
Gao et al. “A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N2,” IEEE Journal of Solid-State Circuits, vol. 44, No. 12, pp. 3253-3263, Dec. 1, 2009 (US). |
Chiu et al. “A Dynamic Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops,” IEEE Journal of Solid-State Circuits, vol. 45, No. 6, pp. 1137-1149, Jun. 1, 2010 (US). |
Chenakin, “A Compact Synthesizer Module Offers Instrument-Grade Performance and Functionality,” Microwave Journal, vol. 54, issue 2, pp. 34-38 (three pages), Feb. 1, 2011 (US). |