1. Technical Field
This invention is related to the field of processor communication, and more particularly to the implementation of display port interfaces between processors.
2. Description of the Related Art
Display technology for computer systems continues to evolve. From the first Cathode Ray tubes (CRTs), new display technologies have emerged including Liquid Crystal Display (LCD), Light Emitting Diode (LED), Eletroluminescent Display (ELD), Plasma Display Panel (PDP), Liquid Crystal on Silicon (LCoS), for example. Additionally, computer systems may employ multiple displays, projectors, televisions, and other suitable display devices.
To support the growing number of display technologies and the need to connect to multiple displays, interface technologies between processors and displays have developed into complex systems that may support platform-independent operation, networked operation, “plug and play” connections, and the like. Additionally, new interface technologies, such as, e.g., High-Definition Multimedia Interface (HDMI), Video Graphics Array (VGA), Digital Visual Interface (DVI), or Embedded Display Port (eDP), may need to support legacy display types. In some cases, newer interface technologies may exploit the support for legacy display types by transmitting secondary data during time intervals, which are not utilized by legacy devices.
Various embodiments of an apparatus implementing a display port interface are disclosed. Broadly speaking, an apparatus and a method are contemplated in which a source processor and sink processor are coupled through an interface. The source processor may select a frequency from a continuous range of frequencies. Data may then be transmitted by the source processor through the interface to the sink processor at the selected frequency. The sink processor may include a phase locking circuit which may generate a signal at the selected frequency dependent upon the transmitted data. The generated signal may be in phase with the transmitted data.
In one embodiment, the sink processor may be configured to recover a clock from the transmitted data. The recovered clock may be dependent upon the signal generated by the phase locking circuit.
In a further embodiment, the sink processor is configured sample the transmitted data. The sampling of the transmitted data may be dependent upon the recovered clock.
The following detailed description makes reference to the accompanying drawings, which are now briefly described.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the disclosure to the particular form illustrated, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims. The headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description. As used throughout this application, the word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words “include,” “including,” and “includes” mean including, but not limited to.
Various units, circuits, or other components may be described as “configured to” perform a task or tasks. In such contexts, “configured to” is a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the unit/circuit/component can be configured to perform the task even when the unit/circuit/component is not currently on. In general, the circuitry that forms the structure corresponding to “configured to” may include hardware circuits. Similarly, various units/circuits/components may be described as performing a task or tasks, for convenience in the description. Such descriptions should be interpreted as including the phrase “configured to.” Reciting a unit/circuit/component that is configured to perform one or more tasks is expressly intended not to invoke 35 U.S.C. §112, paragraph six interpretation for that unit/circuit/component. More generally, the recitation of any element is expressly intended not to invoke 35 U.S.C. §112, paragraph six interpretation for that element unless the language “means for” or “step for” is specifically recited.
A computer system may include one or more functional blocks, such as, e.g., processors, memories, etc., coupled to a display. A dedicated processor or display controller may be coupled directly to the display and may control the flow of graphics data to the display from other processors within the computer system. Multiple displays with respective display controllers may be employed in some computer systems.
Specialized interfaces may be employed between processors and display controllers within a computer system. The interfaces may support multiple display types, and multiple numbers of display controllers and processors. Moreover, the interfaces may have modes of operation, which may allow for reduced power operation of the interface, and transmission of initialization or operation parameters from a processor to a display controller.
Computer System Overview
A block diagram of a computer system is illustrated in
Processors 101 and 102 may, in various embodiments, be representative of general-purpose processors that perform computational operations. For example, processors 101 and 102 may be central processing units (CPU) such as a microprocessor, microcontrollers, application-specific integrated circuits (ASICs), or field-programmable gate arrays (FPGAs). In some embodiments, processors 101 and 102 may implement any suitable instruction set architecture (ISA), such as, e.g., the ARM™, PowerPC™, or x28 ISAs, or a combination thereof.
Memory block 103 may include any suitable type of memory such as a Dynamic Random Access Memory (DRAM), a Static Random Access Memory (SRAM), a Read-only Memory (ROM), Electrically Erasable Programmable Read-only Memory (EEPROM), a FLASH Memory, or a Ferroelectric Random Access Memory (FeRAM), for example. It is noted that in the embodiment of a computer system illustrated in
Analog/mixed-signal block 105 may include a variety of circuits including, for example, a crystal oscillator, a phase-locked loop (PLL), an analog-to-digital converter (ADC), and a digital-to-analog converter (DAC) (all not shown). In other embodiments, analog/mixed-signal block 105 may be configured to perform power management tasks with the inclusion of on-chip power supplies and voltage regulators. Analog/mixed-signal block 105 may also include, in some embodiments, radio frequency (RF) circuits that may be configured for operation with cellular telephone networks.
I/O block 106 may be configured to coordinate data transfer between processor 101 and one or more peripheral devices. Such peripheral devices may include, without limitation, storage devices (e.g., magnetic or optical media-based storage devices including hard drives, tape drives, CD drives, DVD drives, etc.), audio processing subsystems, or any other suitable type of peripheral devices. In some embodiments, I/O block 106 may be configured to implement a version of Universal Serial Bus (USB) protocol or IEEE 1394 (Firewire®) protocol.
I/O block 106 may also be configured to coordinate data transfer between processor 101 and one or more devices (e.g., other computer systems or system-on-chips) coupled to processor 101 via a network. In one embodiment, I/O block 106 may be configured to perform the data processing necessary to implement an Ethernet (IEEE 802.3) networking standard such as Gigabit Ethernet or 10-Gigabit Ethernet, for example, although it is contemplated that any suitable networking standard may be implemented. In some embodiments, I/O block 106 may be configured to implement multiple discrete network interface ports.
Display element 104 may include any suitable type of display such as a Liquid Crystal Display (LCD), Light Emitting Diode (LED), Eletroluminescent Display (ELD), Cathode Ray Tube (CRT), Plasma Display Panel (PDP), Liquid Crystal on Silicon (LCoS), for example. Although a single display element is shown in the embodiment of a computer system illustrated in
Turning to
Video processor 203 includes display port source physical layer (PHY) 204 and timing generator 212, and display controller 209 includes display port sink PHY 208 and timing generator 213. Timing generators 212 and 213 may, in some embodiments, include PLLs or other suitable phase locking circuitry, and oscillator circuits suitable for providing a timing reference for transmitted and received data. In various embodiments, display port source PHY and display port sink PHY may implement any suitable display interface standard such as, High-Definition Multimedia Interface (HDMI), Video Graphics Array (VGA), Digital Visual Interface (DVI), or Embedded Display Port (eDP), for example.
Video processor 203 and display controller 209 may be implemented as dedicated processing devices. In various other embodiments, video processor 203 and display controller 209 may be implements as general purpose processors that are configured to executed program instructions stored in memory, such as memory block 103 of computer system 100 as illustrated in
Display port 211 includes main link 255, auxiliary link 206, and hot plug detect (HPD) link 207. As described below in more detail with reference to
In some embodiments, main link 205 may include a data bus, consisting of multiple signal lines, that is configured to employ a clock data recovery (CDR) methodology. For example, data may be sent from source PHY 204 to sink PHY 208 without an accompanying clock signal. Sink PHY 208 may generate a clock signal based on an approximate frequency reference. The generated clock may then be phase aligned to transitions in the transmitted data using a phase-locked loop (PLL) or any other suitable phase detection circuitry.
In order to correct for drift in frequency of the PLL's oscillator, the transmitted data must contain a sufficient number of transitions to align the generated clock. The transmitted data may be encoded to ensure sufficient transitions. In some embodiments, the transmitted data may be encoded using 8B/10B, Manchester, or any other suitable type of encoding method. Although CDR was described above in the context of main link 205, in various embodiments, all or part of the CDR method may be employed on auxiliary link 206 as well.
It is noted that “low” or “low logic level” refers to a voltage at or near ground and that “high” or “high logic level” refers to a voltage sufficiently large to turn on an re-channel MOSFET and turn off a p-channel MOSFET. In other embodiments, different technology may results in different voltage levels for “low” and “high.”
It is noted that the computer system illustrated in
Turning to
Phase frequency detector 301 may be configured to compare reference input 306 and the output of frequency divider 308, and to generate one or more error signals proportional to the phase difference between the compared signals. In some embodiments, phase frequency detector 301 may be implemented by summing the output of two analog multipliers, such as, double balance diode mixer or a four-quadrant multiplier (Gilbert Cell), for example. Phase frequency detector 301 may, in some embodiments, implemented using exclusive-OR logic gates, flip-flops, or any other suitable combination of digital logic gates.
Charge pump 302 may be configured to charge and discharge a capacitor dependent upon the output of phase frequency detector 301. In some embodiments, phase frequency detector 301 provides two output signals, commonly referred to as “up” and “down,” which may signal charge pump to source current to the capacitor, or sink current from the capacitor, respectively. In such cases, the voltage across the capacitor is proportional to the phase difference between reference input 306 and the output of frequency divider 305. Charge pump 302 may, in various embodiments, employ p-channel MOSFETs to source current to the capacitor, and n-channel MOSFETs to sink current from the capacitor. In other embodiments, a resistor may be added in series with the capacitor to improve stability of the circuit.
Low pass filter 303 (also referred to as a “loop filter”) may be configured to remove high-frequency noise on the output of charge pump 302. In some embodiments, the cutoff frequency of the low pass filter may be selected to determine the capture range of PLL 300. Low pass filter 303 may, in some embodiments, be implemented as a passive filter consisting of resistors and capacitors. In other embodiments, low pass filter 303 may be implemented as an active filter employing an amplifier, such as, e.g., an operational amplifier (commonly referred to as an “op-amp”) and a feedback path, which may include both resistors and capacitors.
Voltage-controlled oscillator 304 may be configured to output a frequency dependent upon the filtered output of charge pump 302, and may be implemented as either a harmonic oscillator, or a relaxation oscillator, or any other suitable oscillator circuit topology. In some embodiments, a varying current may charge or discharge a capacitor thereby adjusting the frequency of VCO 304. The varying current may be dependent upon the output of charge pump 302, which may be used to adjust current sources with VCO 304. In other embodiments, the output of charge pump 302 may be employed to adjust the gain of amplifier stages, which are coupled together in a ring.
Frequency divider 305 may be configured to divide frequency output 307 by a predetermined value. The resultant divided frequency may then be input to phase frequency detector 301, thereby allowing for a frequency on frequency output 307 that is different than reference input 306. In some embodiments, frequency divider 305 may include one or more flip-flops configured to divide their input frequency by a factor of two. Frequency mixers or multipliers may, in other embodiments, be included in frequency divider 305.
During operations, a pre-determined frequency is applied to reference input 306. In some embodiments, a crystal oscillator, an RC oscillator, an LC oscillator, or any suitable circuit for generating a frequency reference may be employed to generate the pre-determined frequency. Phase frequency detector 301 then compares the input frequency to the output of frequency divider 305. Initially, the input frequency and the output of frequency divider 305 may differ in frequency and phase. In some embodiments, the pre-determined frequency must be within a range of frequencies in order for PLL 300 to operate. This range may be referred to as a “capture range” and may be a function of the bandwidth of the low pass filter 303 as well as the capabilities of VCO 304.
When the pre-determined frequency is higher than the frequency of the output of frequency divider 305, phase frequency detector may signal to charge pump 302 to add charge to a capacitor included within the charge pump. When the pre-determined frequency is lower than the frequency of the output of frequency divider 305, phase frequency detector 301 may signal to charge pump 302 to remove charge from the capacitor. In other embodiments, the signal to charge pump 302 to add or subtract charge from the capacitor, may operate in a reverse fashion from the description above, i.e., when the pre-determined frequency is lower than the frequency of the output of frequency divider 305, phase frequency detector 301 may signal to charge pump 302 to add charge to the capacitor, and vice versa.
The voltage across the capacitor included within the charge pump may then be filter through low pass filter 303. High frequency components of the voltage level across the capacitor may be the result of power supply noise, switching noise within charge pump 302, and the like. Low pass filter 303 may provide a low impedance to ground for the aforementioned high frequency components, thereby preventing them from entering VCO 304.
VCO 304 may then generate an output signal at a frequency corresponding to the voltage output from low pass filter 303. The output of VCO 304 may be buffered and used a clock or timing reference within a functional block such as video processor 203 or display controller 209 as illustrated in
It is noted that PLL 300 as illustrated in
Display Port Operation
Example waveforms depicting the operation of a display port are illustrated in
At time t0, source PHY 204 transmits wake-up command 410 on auxiliary link 206 to sink PHY 208. Wake-up command 410 may include an indication that the frequency on main link 205 has changed and that clock recovery and lock may need to be performed. It is noted that in various embodiments, wake-up command 410 may be encoded using 8B/10B, Manchester-II, or any other suitable encoding method. Source PHY 204 also transmits operation parameter CR 406 on main link 205. In some embodiments, operation parameter CR 406 may contain a number of clock recovery symbols to be used in sink PHY 208 to recover a clock from transmitted data.
Once operation parameter CR 406 has been transmitted, source PHY 204 transmits operation parameter symbol lock 407 at time t1. In some embodiments, symbol lock 407 may include the number of training pattern symbols required for sink PHY 208 to achieve symbol lock. The training pattern symbols may include TPS2 or TPS3 as defined in the Embedded DisplayPort (eDP) specification.
With the conclusion of the transmission of symbol lock 407, source PHY 204 then transmits at time t2, operation parameter BS & Idle 408. In some embodiments, BS & Idle 308 may include a number of lines before display 210 goes active. The lines sent to display 210 may include a blanking start framing symbol, or any other suitable framing symbol that may be sent to display 210 during an inactive period.
At time t3, source PHY 204 begins transmission of pixel packets 409. The transmission of pixel packets may continue until another blanking period is initiated. The pixel packets may include packets relating to number of pixels in a horizontal line, the total number of lines in a video frame, horizontal and vertical synchronization widths, in addition to actual video data.
The waveforms and operation illustrated in
Waveforms depicting the wake-up operation of a display port are illustrated in
At time t0, source PHY 204 may issue wake-up command 511 via auxiliary link 206. Wake-up command 511 may, in some embodiments, instruct sink PHY 208 to end a sleep or reduced power mode and enable receivers coupled to main link 205. In various embodiments, wake-up command 511 may be encoded using 8B/10B, Manchester-II, or any other suitable encoding method. Source PHY 204 may also transmits initialization parameter CR 506 on main link 205. In some embodiments, operation parameter CR 506 may contain a number of clock recovery symbols to be used in sink PHY 208 to recover a clock from transmitted data.
Once operation parameter CR 506 has been transmitted, source PHY 204 transmits initialization parameter symbol lock 507 at time t1. In some embodiments, symbol lock 507 may include the number of training pattern symbols required for sink PHY 208 to achieve symbol lock. The training pattern symbols may include TPS2 or TPS3 as defined in the Embedded DisplayPort (eDP) specification, or any other suitable training pattern.
With the conclusion of the transmission of symbol lock 507, source PHY 204 then transmits at time t2, initialization parameter BS & Idle 508. In some embodiments, BS & Idle 508 may include a number of lines before display 210 goes active. The lines sent to display 210 may include a blanking start framing symbol, or any other suitable framing symbol that may be sent to display 210 during an inactive period.
As described above, during the period prior to time t0, display controller 209 and display 210 may be performing self-refresh. While performing self-refresh, the timing reference of display controller 209 may loose synchronization with the timing reference of video processor 203. When self-refresh mode is exited, visual artifacts (commonly referred to as “display tearing” or “screen tearing”) may be visible on display 210 due to the difference between the two aforementioned timing references. In some embodiments, synchronization signals may be sent between video processor 203 and display controller 209 to reduce differences between the timing references of the two components.
At time t4, source PHY 204 may transmit synchronization signal 509. In some embodiments, synchronization signal 509 may a vertical synchronization signal that may be used to synchronize a PLL or other timing reference circuit in display controller 209 to the timing reference within graphics processor 203. During vertical synchronization, display controller 209 may not send new graphics data to display 210 until the active refresh of display 210 is complete.
Once the transmission of synchronization signal 509 is complete, source PHY 204 may transmit sleep command 510. In some embodiments, sleep command 510 may signal to sink PHY 208 to power-down input receivers associated with main link 205 to conserve power. Display 210 may remain in PSR or may also enter a reduced power mode. Once sink PHY 208 has entered a reduced power state, the logical state of main link 205 may be a logical “don't care.”
The waveforms and operation illustrated in
Turning to
Prior to the beginning of the transmission of the command at time t0, the link may be pre-charged. In various embodiments, the link may be pre-charged to the power supply voltage, to a ground level, or to any suitable pre-charge voltage level. At time t0, the transmission of PREAMBLE 602 begins. In the illustrated embodiment, PREAMBLE 602 consists of eight consecutive logical-0 values (low logic levels), although in other embodiments, any suitable combination of logical-1 values and logical-0 values may be employed.
Once the transmission of the preamble is complete at time t1, the transmission of WAKE_F_CHANGE 603 begins. In command 600, WAKE_F_CHANGE 603 includes a sequence of a logical-0 value followed by two logical-1 values, and a concluding logical-0 value. In various embodiments, different combinations of logical-0 values and logical-1 values may be employed to implement the WAKE_F_CHANGE command. The WAKE_F_CHANGE may, in some embodiments, indicate that the frequency on a primary link such as, e.g., main link 205 as illustrated in
At time t2, the transmission of WAKE_F_CHANGE 603 concludes, and the transmission of STOP 604 begins. STOP 604 includes a sequence of two logical-1 values followed by two logical-0 values, although other combinations of logical values may be employed in different embodiments. Once the transmission of STOP 604 concludes at time t3, the transmission of command 600 is complete.
It is noted that the command illustrated in
Referring to
Once the negotiation is complete, the components may exchange one or more parameters (block 703). The exchanged parameters may include settings that govern the operation of the components, such as a data rate setting, or transceiver settings, for example. The operation of the components is then adjusted based upon the exchanged parameters (block 704). In various embodiments, the components may adjust their respective transceivers to adopt the data rate received during the exchange of parameters. Power consumption mode settings may also be adjusted in response to exchanged parameters.
In some embodiments, the data rate setting (or the transmission frequency of data) may be selected from a pre-determined set of frequencies. The selection may be dependent upon physical characteristics of the interface and the negotiation process. In other embodiments, a source component may select the transmission frequency from a continuous range of selectable frequencies, and other sink components may adjust the sampling of transmitted data dependent upon the transmission frequency. The continuous range of selectable frequency is determined by at least, the frequency range of timing generator circuits in the source component, and the capture range of a PLL or other suitable phase locking circuit in a sink component.
The method illustrated in
A flowchart illustrating a method of operating a display port such as, e.g., display port 211 as illustrated in
The operation of a primary link may then be terminated in block 803. In various embodiments, the termination may include the cessation of a portion of the primary link's operational capabilities. All of the operational capabilities of the primary link may be ceased in other embodiments.
In block 804, the display port source transmits a signal to the display port sink to resume operation. In some embodiments, the signal to resume operation may be sent using an auxiliary link of the display port. The signal to resume operation may include multiple parts such as, e.g., command 600 as illustrated in
Once any additional command or operational parameters have been transmitted, normal operation of the display port may resume with the transmission of data (block 806). The method then concludes in block 807. Although the various operations depicted in the method illustrated in
Turning to
Once the signal to resume operation has been transmitted, the display port source then sends a parameter to govern clock recovery of a new clock frequency (block 903). The parameter may include, in some embodiments, a number of clock recovery symbols necessary to perform clock data recovery.
The display port source may then send a number of symbols required for training of the link (block 904). In some embodiments, the symbols used for training may be specialized training symbols such as TPS2 or TPS3 as defined in the Embedded DisplayPort (eDP) specification. In other embodiments, any suitable training symbol pattern may be employed.
An idle parameter may then be sent from display port source (block 905). In some embodiments, the idle parameter may include a number of lines before resumption of active operation of a display coupled to the display port sink. The number of lines may, in various embodiments, refer to a number of framing symbols such as, e.g., the blanking start (BS) framing symbol as defined in the Embedded DisplayPort (eDP) specification.
With the completion of the transmission of the idle parameter, the display port source may then transmit pixel or graphics data to the display port sink (block 906). In some embodiments, the pixel or graphics data may include video data from one or more video sources such as, a Digital Versatile Disc (DVD), for example. The method then concludes (block 907). It is noted that the method illustrated in
A method for maintaining vertical synchronization on a display is illustrated in
Once the signal to resume operation has been transmitted, the processor may then send a parameter to govern clock recovery by the display controller of a new clock frequency (block 1003). The parameter may include, in some embodiments, a number of clock recovery symbols necessary to perform clock data recovery, and may be transmitted on a primary link of the display port interface. In other embodiments, the clock frequency may not change from a previous active period of the display port interface.
The processor may then send a number of symbols required for training of the link (block 1004). In some embodiments, the symbols used for training may be specialized training symbols such as TPS2 or TPS3 as defined in the Embedded DisplayPort (eDP) specification, and may be sent on the primary link of the display port interface. In other embodiments, any suitable training symbol pattern may be employed to train the display port interface.
An idle parameter may then be sent from processor (block 1005). In some embodiments, the idle parameter may include a number of lines before resumption of active operation of a display coupled to the display port sink. The number of lines may, in various embodiments, refer to a number of framing symbols such as, e.g., the blanking start (BS) framing symbol as defined in the Embedded DisplayPort (eDP) specification. In some embodiments, the idle parameter may be transmitted on the primary link of the display port interface.
With the completion of the transmission of the idle parameter, the processor may then send a synchronization signal to the display controller (block 1006). In some embodiments, the synchronization signal may be a vertical synchronization signal, and may be employed by the display controller to adjust the phase and/or frequency of a timing reference circuit such as a PLL, for example. The phase and/or frequency of the timing circuit may be adjusted to match the phase and/or frequency of a timing reference circuit within the processor such as, e.g., a PLL or crystal oscillator.
Once the synchronization signal has been transmitted, the processor may then send a sleep or shutdown signal (block 1007). In some embodiments, the sleep or shutdown signal may be sent on the primary link of the display port interface, and may signal the display controller to power-down receivers coupled to the primary link of the display port interface. The display controller and its associated display may remain in self-refresh mode after the receipt of the sleep or shutdown signal by the display controller. The method then concludes in block 1008.
It is noted that the operations depicted in the method illustrated in
Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
6678834 | Aihara et al. | Jan 2004 | B1 |
7482995 | Nakamura et al. | Jan 2009 | B2 |
7499080 | Hattori et al. | Mar 2009 | B2 |
7961829 | Shaanan | Jun 2011 | B2 |
8330761 | Lin et al. | Dec 2012 | B2 |
20070107020 | Tavares | May 2007 | A1 |
20100272102 | Kobayashi | Oct 2010 | A1 |
20110115986 | Takezaki | May 2011 | A1 |
20120068994 | Li et al. | Mar 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20140168234 A1 | Jun 2014 | US |