Low-pressure mercury vapor discharge lamp with improved auxiliary amalgam

Information

  • Patent Grant
  • 6707246
  • Patent Number
    6,707,246
  • Date Filed
    Thursday, August 17, 2000
    24 years ago
  • Date Issued
    Tuesday, March 16, 2004
    20 years ago
Abstract
A low-pressure mercury vapor discharge lamp is provided with a discharge vessel (10). The discharge vessel comprises tubular end portions (11; 11′), which each have a longitudinal axis (12; 12′). The discharge vessel (10) encloses a discharge space (18) containing a filling of mercury and an inert gas in a gastight manner. Electrodes (20; 20′) are arranged in the discharge space (18). An auxiliary amalgam is provided on a carrier (25; 25′) in the proximity of the electrodes (20; 20′). According to the invention, a part of the carrier (25; 25′) is arranged in a plane transverse to the longitudinal axis (12; 12′). Preferably, a stem (21; 21′) in the tubular end portion (11; 11′) carries, apart from the electrode (20; 20′), a support in the form of a wire (23; 23′) or an extended exhaust tube, which support carries the carrier (25; 25′). In an alternative embodiment, the carrier is clamped directly onto the stem. Preferably, the carrier (25; 25′) is electrically insulated with respect to the electrode. Preferably, a distance d between the carrier (25; 25′) and the electrode (20; 20′) lies in the range 1≦d≦3 mm. According to the invention, the discharge lamp has a relatively short run-up time.
Description




BACKGROUND OF THE INVENTION




The invention relates to a low-pressure mercury vapor discharge lamp comprising a discharge vessel, which discharge vessel encloses a discharge space containing a filling of mercury and an inert gas in a gastight manner, and said discharge vessel (


10


) comprising tubular end portions, which each have a longitudinal axis, electrodes being arranged in the discharge space for generating and maintaining a discharge in the discharge space, and at least an auxiliary amalgam being provided on a carrier in the discharge vessel in the proximity of at least one of the electrodes.




In mercury vapor discharge lamps, mercury constitutes the primary component for (efficiently) generating ultraviolet (UV) light. An inner surface of the discharge vessel may be coated with a luminescent layer comprising a luminescent material (for example a fluorescent powder) for the conversion of UV to other wavelengths, for example to UV-B and UV-A for tanning purposes (sunbed lamps) or to visible radiation for general lighting purposes. As a result, such discharge lamps are also referred to as fluorescent lamps. The discharge vessel of low pressure mercury vapor discharge lamps generally is tubular in shape with a circular cross-section and comprises both elongated and compact embodiments. In general, the tubular discharge vessel of so-called compact fluorescent lamps comprises a collection of relatively short straight parts having a relatively small diameter, which straight parts are connected to each other, on the one hand, by means of bridge parts and/or, on the other hand, by means of curved parts. Compact fluorescent lamps are generally provided with an (integrated) lamp cap.




In the description and the claims of the current invention, the designation “nominal operation” is used to indicate operating conditions where the mercury vapor pressure is such that the radiant efficacy of the lamp is at least 80% of that during optimum operation, i.e. operating conditions where the mercury vapor pressure is optimal. Furthermore, in the description and the claims, the “initial radiant efficacy” is defined as the radiant efficacy of the discharge lamp 1 second after switching on the discharge lamp, and the “run-up time” is defined as the time required by the discharge lamp to reach a radiant efficacy of 80% of that during optimum operation.




A low-pressure mercury vapor discharge lamp as mentioned in the opening paragraph is known from U.S. Pat. No. 5,204,584. Said known low-pressure mercury vapor discharge lamp comprises a suitable combination of a main amalgam and an auxiliary amalgam, the latter being provided on one of the current supply conductors which extend from the electrodes through a so-called stem in the tubular end portion and, subsequently, issue from the discharge vessel to the exterior. In this known lamp the main amalgam is dosed so that it controls the mercury vapor pressure discharge space except for the starting period.

FIG. 5

shows this known lamp, having a main amalgam


131


and auxiliary amalgams


133


and


135


.




In general, a low-pressure mercury vapor discharge lamp containing an auxiliary amalgam with sufficient mercury has a relatively short run-up time. Upon switching on the lamp, the auxiliary amalgam is heated by the electrode, so that the auxiliary amalgam relatively rapidly delivers a substantial part of the mercury it contains. It is desirable that, prior to switching on the lamp, said lamp has been out of operation for a sufficiently long time to enable the auxiliary amalgam to absorb sufficient mercury. If the lamp has been out of operation for a relatively short period of time, the run-up time reduction is only small and, in addition, the initial radiant efficacy is (even) lower than that of a lamp comprising only a main amalgam because the auxiliary amalgam sets the mercury vapor pressure in the discharge space at a relatively lower value. In addition, relatively long lamps exhibit the drawback that relatively much time goes by before the mercury delivered by the auxiliary amalgam has spread throughout the discharge vessel, so that after switching on such lamps there is a relatively bright zone near the auxiliary amalgam and a relatively dark zone at some distance from the auxiliary amalgam, which zones last a few minutes.




A drawback of the known low-pressure mercury vapor discharge lamp resides in that the run-up time is relatively long in spite of the application of an auxiliary amalgam.




SUMMARY OF THE INVENTION




It is an object of the invention to provide a lamp of the type described in the opening paragraph which, when regularly used, has a relatively short run-up time. To achieve this, the low-pressure mercury vapor discharge lamp is characterized in accordance with the invention in that a part of the carrier is arranged in a plane transverse to the longitudinal axis.




As a result of the fact that said part of the carrier is arranged in a plane transverse to the longitudinal axis, the auxiliary amalgam is better irradiated by the heat generated in the electrode when the low-pressure mercury vapor discharge lamp is started. As a result, relatively more mercury is loosened relatively more rapidly from the auxiliary amalgam upon starting the discharge lamp. By virtue of the measure in accordance with the invention, the run-up time of the low-pressure mercury vapor discharge lamp is relatively short. In low-pressure mercury vapor discharge lamps, the electrode is generally arranged transversely to the longitudinal axis.




In the known discharge lamp, the auxiliary amalgam is provided on one of the current supply conductors, which extend from the electrodes through a so-called stem in the tubular end portion and, subsequently, issue from the discharge vessel to the exterior. As a result, the auxiliary amalgam is arranged so as to be parallel to the longitudinal axis, thus rendering the auxiliary amalgam relatively insensitive to radiant heat emitted by the electrodes upon starting the low-pressure mercury vapor discharge lamp.




Relative to the known discharge lamp, the auxiliary amalgam in the low-pressure mercury vapor discharge lamp in accordance with the invention is provided so as to be rotated through 90° as it were, so that the major part of the carrier is positioned so as to extend parallel to the electrode. Without being obliged to give any theoretical explanation, the inventors hold the opinion that the reduction of the run-up time is caused by the fact that a part of the mercury, which is loosened from the auxiliary amalgam on the carrier, travels more toward the interior of the discharge vessel of the low-pressure mercury vapor discharge lamp. As a result, in a short period of time after starting the discharge lamp, the back diffusion of mercury to the cold locations at the side of the electrodes facing away from the discharge space takes longer than in the known lamp. By virtue thereof, more mercury is available at locations in the discharge space which heat up relatively rapidly, thereby giving rise to an improved run-up behavior.




An embodiment of the low-pressure mercury vapor discharge lamp is characterized in accordance with the invention in that a stem in the tubular end portion carries the electrode, and in that the stem comprises a supporting body on which the carrier is provided. As will be explained in greater detail hereinbelow, the supporting body is formed by an extended exhaust tube or by a supporting wire provided in the stem. In an alternative modification, the carrier is provided directly on the stem. In the known discharge lamp, the auxiliary amalgam is provided on one of the current supply conductors, which extend from the electrodes through a so-called stem in the tubular end portion and, subsequently, issue from the discharge vessel to the exterior. Particularly in so-called cold-start low-pressure mercury vapor discharge lamps, this causes material to be sputtered off the auxiliary amalgam and deposited on the tubular end portions of the discharge vessel. Without being obliged to give any theoretical explanation, the inventors hold the opinion that the above problem is caused by the cold ignition of the discharge lamp, whereby, shortly after starting the lamp, the discharge acts on the (still) cold emitter and on the auxiliary amalgam, resulting in a discharge on the emitter and on the auxiliary amalgam. The discharge on the auxiliary amalgam causes the amalgam to be sputtered off the carrier and gives rise to blackening of the tubular end portions and a poor run-up behavior. Sputtering as well as blackening are undesirable phenomena. Furthermore, the service life of the lamp is reduced if any amalgam originating from the auxiliary amalgam lands on the electrode. The effect is enhanced by the relatively high cathode drop which is characteristic of cold-ignition low-pressure mercury vapor discharge lamps.




In a preferred embodiment of the low-pressure mercury vapor discharge lamp in accordance with the invention, the carrier is arranged at a side of the electrode facing away from the discharge space. In this embodiment, the carrier is situated between the stem and the electrode. By virtue thereof, a simple construction is obtained having a relatively short supporting wire supporting the carrier.




In an alternative, favorable embodiment of the low-pressure mercury vapor discharge lamp in accordance with the invention, the carrier is electrically insulated with respect to the electrode. As the carrier with the auxiliary amalgam is electrically insulated from the current supply conductor connected to the electrode, said auxiliary amalgam is at the same potential as its surroundings and will not attract ions present in the discharge. As a result, the run-up behavior of the discharge lamp is improved and blackening of the tubular end portions of the low-pressure mercury vapor discharge lamp is substantially precluded. The auxiliary amalgam on the carrier is heated by the discharge in a manner comparable to that in induction lamps.




These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-sectional view of a first embodiment of the low-pressure mercury vapor discharge lamp in accordance with the invention;





FIG. 2

is a perspective view of a detail of the discharge lamp shown in

FIG. 1

,




FIG.


3


and

FIG. 4

are perspective views of a corresponding detail of, respectively, a second and a third embodiment of the low-pressure mercury-vapor discharge lamp in accordance with the invention, and





FIG. 5

is a cross-sectional view of a known lamp having a main amalgam and auxiliary amalgams.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The Figures are purely diagrammatic and not draw to scale. Particularly for clarity, some dimensions are exaggerated strongly. In the Figures, like reference numerals refer to like parts whenever possible.





FIG. 1

shows a first embodiment of a low-pressure mercury vapor discharge lamp in accordance with the invention, which is provided with a (glass) discharge vessel


10


having tubular end portions


11


;


11


′. The discharge vessel


10


encloses, in a gastight manner, a discharge space


18


containing an ionizable filling comprising less than 3 mg mercury and an inert gas, for example a 75/25 mixture of argon and neon. In the embodiment shown, the discharge vessel


10


comprises two tube portions


13


;


13


′ each having a tubular end portion


11


;


11


′ with a longitudinal axis


12


;


12


′. The end portions


11


;


11


′ are jointly fixed in a lamp cap


50


, which is shown very diagrammatically. In an alternative embodiment, a so-called integrated lamp cap is employed wherein a copper-iron ballast or an electronic gear control is situated, and which lamp cap is further provided with, for example, so-called E14 or E27 connection means. At tube ends


14


;


14


′ situated opposite to the lamp cap


50


, the tube portions


13


;


13


′ are in communication with each other via a channel


15


. The discharge vessel may alternatively be embodied so as to be a single elongated or (multiple-) bent tube, for example a tube bent in the form of a hook. The discharge vessel


10


is provided, at a side facing the discharge space


18


, with a luminescent layer


16


. In each end portion


11


;


11


′, an electrode


20


;


20


′ is arranged on a so-called stem


21


,


21


′ in the discharge space


18


. The electrode


20


;


20


′ is preferably arranged transversely to the longitudinal axis. In an alternative embodiment of the low-pressure mercury vapor discharge lamp, the electrode is axially mounted in the end portion. In addition, in a further alternative embodiment of the low-pressure mercury vapor discharge lamp, an external electrode may be provided at an end portion of the discharge vessel to bring about a capacitive coupling with a lamp power supply. Current supply conductors


30


A,


30


B;


30


A′,


30


B′ extend from the electrodes


20


,


20


′ through the stem


21


;


21


′ in the end portion


11


;


11


′ and issue from the discharge vessel


10


to the exterior. At least one stem


21


;


21


′ carries an auxiliary amalgam (not shown in

FIG. 1

) which is provided on a carrier


25


;


25


′, which carrier


25


;


25


′ is provided in the stem


21


;


21


′ by means of a supporting wire


23


;


23


′. In the embodiment shown, both stems


21


;


21


′ carry an auxiliary amalgam. In accordance with the invention, (a part of) the carrier


25


;


25


′ is arranged in a plane transverse to the longitudinal axis


12


;


12


′.





FIG. 2

is a perspective view of a detail of the discharge lamp shown in FIG.


1


. The auxiliary amalgam


27


, in this example lead-tin-mercury, is provided on a part


25


A of the carrier


25


. This part


25


A of the carrier


25


is arranged, in accordance with the invention, in a plane transverse to the longitudinal axis


12


. In the example shown in

FIG. 2

, the carrier


25


comprises a further part


25


B which is arranged in a plane parallel to the longitudinal axis


12


. The supporting wire


23


is attached to this further part


25


B, which supporting wire is anchored in the stem


21


. In the example shown in

FIG. 2

, the supporting wire


23


in the stem


21


is symmetrically placed with respect to the current supply conductors


30


A,


30


B. In an alternative embodiment, the supporting wire is asymmetrically arranged with respect to the current supply conductors (FIG.


1


). The carrier


25


,


25


′ may be in the form of a plate and/or comprises, preferably, a network of mesh-woven wire on which the auxiliary amalgam is deposited. In an alternative embodiment, the carrier


25


;


25


′ of the auxiliary amalgam is made from a dense piece of strip material wherein small cuts are made, whereafter the strip is stretched so as to form an open structure. The parts


25


A and


25


B of the carrier are very diagrammatically shown, and both parts


25


A and


25


B may be covered with the auxiliary amalgam Preferably, only the part


25


A, which extends transversely to the longitudinal axis


12


and parallel to the electrode


20


, is provided with the auxiliary amalgam


27


. In the example shown in FIG.


1


and

FIG. 2

, the carrier


25


;


25


′ is arranged at a side of the electrode


20


;


20


′ facing away from the discharge space


18


. In this embodiment, the carrier is situated between the stem


21


;


21


′ and the electrode


20


;


20


′. In this manner, a simple construction is obtained having a relatively short supporting wire


23


;


23


′ which supports the carrier


25


;


25


′.




In an alternative embodiment, the carrier is arranged in the discharge space at a side of the electrode facing away from the stem in the tubular end portion of the discharge lamp. In this embodiment, the auxiliary amalgam is placed in the discharge in a similar manner as auxiliary amalgams in electrode less discharge lamps, which are also referred to as induction lamps.





FIG. 3

relates to a perspective view which corresponds to that shown in

FIG. 2

, and corresponding parts bear the same reference numerals. In

FIG. 3

, the supporting body is not formed by the supporting wire


23


,


23


′ provided in the stem


21


,


21


′, but by an exhaust tube


26


which extends at least partly in the discharge space


18


almost up to the electrodes


20


,


20


′. The carrier


25


,


25


′ with the amalgam is clamped on to the end of the exhaust tube


26


extending between the current-supply conductors


30


A,


30


B. In this case, the carrier


25


,


25


′ comprises four wing-shaped portions which are bent around the end portion of the extended exhaust tube


26


so as to be a tight fit thereon, thereby forming a portion


25


A which extends in a plane transverse to the longitudinal axis


12


and four portions


25


B which extend in a plane parallel thereto. As shown in

FIG. 4

, in an alternative embodiment the carrier


25


,


25


′ can be directly provided on the stem


21


,


21


′ so as to be a tight fit thereon, for example by means of pinching. This is achieved in the same manner as described with respect to the embodiment of

FIG. 3

by bending, in this case two, wing-shaped portions of the carrier


25


,


25


′ around the stem


21


,


21


′ so as to be a tight fit thereon, whereby, also in this case, a portion


25


A extending in a plane transverse to the longitudinal axis


12


and, in this case, two portions


25


B extending in a plane parallel to said axis are formed.




It will be clear to those of ordinary skill in the art that, to provide the quick release of mercy described above, the significant property of the arrangement is that the auxiliary amalgam extends in both orthogonal directions in the plane transverse to the longitudinal axis


12


, and be close to the electrode. Therefore at least a portion of the carrier on which the auxiliary amalgam exists is aligned, parallel to the longitudinal axis of the end portion, with the nearby electrode. As a result the auxiliary is effectively irradiated by the heat generated in the electrode when the lamp is started.




The particular advantage of the modifications as shown in

FIGS. 3 and 4

is that in both cases the carrier


25


,


25


′ can be provided so as to be a tight fit after the stem


21


,


21


′ has been brought to a desired cooling temperature in a controlled process using a heating arrangement wherein said stem is accommodated, said cooling operation being carried to preclude stresses in the glass due to (too) rapid cooling in the temperature range below 1000° C. This is advantageous, in particular, because the auxiliary amalgam


27


on the carrier


25


,


25


′ cannot withstand said high temperatures.




In

FIGS. 2

,


3


and


4


, the current supply conductors


30


A,


30


B comprise a first segment


31


A,


31


B of iron wire having a thickness of 0.6 mm, a second segment


32


A,


32


B of NiFeCuMn wire having a thickness of 0.35 mm, and a third segment


33


A,


33


B of CuSn wire having a thickness of 0.4 mm, which segments extend substantially, respectively, in the discharge vessel


10


, in a wall


22


of the stem


21


, and outside the discharge vessel


10


(see

FIGS. 2

,


3


and


4


wherein the second segments


32


A,


32


B are represented by means of dashed lines). At the end portion


11


′, the lamp is similarly constructed (not shown in

FIGS. 2

,


3


and


4


).




The electrode


20


;


20


′ is a winding of tungsten which is covered with an electron-emitting substance, in this case a mixture of barium oxide, calcium oxide and strontium oxide. The electrode


20


;


20


′ comprises a winding which is clamped at both ends


21


A,


21


B in a bend


36


A,


36


B of a current supply conductor


30


A,


30


B, respectively.




In the embodiments shown in

FIGS. 2

,


3


and


4


, both end portions


11


,


11


′ of the discharge vessel


10


comprise an auxiliary amalgam


27


which is provided on a carrier


25


;


25


′ which is connected to the stem


21


;


21


′ via a supporting wire


23


;


23


′ (FIG.


2


), on an extended exhaust tube


26


(

FIG. 3

) or directly on the stem


21


,


21


′ (FIG.


4


). For clarity, the construction of the end portions is not shown in detail in FIG.


1


.




In

FIGS. 2

,


3


and


4


, the auxiliary amalgam


27


is situated at a distance d from the electrode


20


;


20


′, where d>0. The distance d is measured, as is shown in

FIGS. 2

,


3


and


4


, from the surface of the amalgam


27


to the center of the electrode


20


;


20


′. In accordance with a favorable embodiment of the invention, the distance d meets the relation:






0.5≦


d≦


8 mm.






A particularly suitable value of the distance d is 1≦d≦3 mm. In this manner, a compact discharge lamp is obtained.




Known low-pressure mercury vapor discharge lamps, wherein the auxiliary amalgam is provided on one of the current supply conductors extending parallel to the longitudinal axis of the tubular end portion, and low-pressure mercury. vapor discharge lamps in accordance with the invention, wherein an auxiliary amalgam is provided on a carrier, and said auxiliary amalgam is arranged substantially parallel to the electrode, and the carrier is electrically insulate with respect to the current supply conductors, are subjected to life tests. All tests are carried out using so-called PLE-T 20 Watt at a rated voltage of 230 V (at a mains voltage of 50 Hz). The switching cycle is such that the lamp is alternately 1 minute in the on-state and 3 minutes in the off-state, the lamps burning in the so-called “base-up” position for 8 hours; the switch-off time was 16 hours. At zero, 1000, 2000 and 3000 switching operations, the run-up time was measured for eight lamps of each series. The time necessary to reach the rated light intensity of the discharge lamp is expressed by means of the so-called “run-up” time, which describes the time period within which the discharge lamp reaches 80% of its maximum light output. Table I shows the results. Also the standard deviations of the run-up times are listed in the Table.












TABLE I











Run-up time














Run-up time (s)
















discharge lamp in








accordance with the







known discharge lamp:




invention: auxiliary






number of




auxiliary amalgam




amalgam on an electrically






switching




on current




insulated carrier parallel






operations




supply conductor




to the electrode
















0




177 ± 13




112 ± 27






1000




168 ± 8 




105 ± 27






2000




174 ± 18




 95 ± 29






3000




162 ± 39




106 ± 25














The known discharge lamps exhibit a much longer run-up time than the discharge lamps in accordance with the invention. By virtue of the measure in accordance with the invention, a low-pressure mercury vapor discharge lamp of the type described in the opening paragraph is provided which reaches its rated light intensity more rapidly. By electrically insulating the auxiliary amalgam with respect to the current supply conductors, blackening on the tubular end portion of cold-start low-pressure mercury vapor discharge lamps in accordance with the invention is effectively precluded.




It will be clear that, within the scope of the invention, many variations are possible to those skilled in the art.




The scope of protection of the invention is not limited to the above examples. The invention is embodied in each novel characteristic and each combination of characteristics. Reference numerals in the claims do not limit the scope of protection thereof. The use of the verb “to comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in the claims. The use of the article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.



Claims
  • 1. A low-pressure mercury vapor discharge lamp comprising a discharge vessel (10), said discharge vessel (10) enclosing a discharge space (18) containing a filling of mercury and an inert gas in a gastight manner, and said discharge vessel (10) comprising:tubular end portions (11; 11′), which each have a longitudinal axis (12; 12′), electrodes (20; 20′) arranged in the discharge space (18) for generating and maintaining a discharge in the discharge space (18), a main amalgam disposed for controlling the mercury pressure in the discharge space except for a starting period, and at least an auxiliary amalgam (27) provided on a carrier (25; 25′) in one of said tubular end portions of the discharge vessel (10) in the proximity of at least one of the electrodes (20; 20′), characterized in that the carrier (25; 25′) is supported on a body formed of electrically insulating material extending in said one of said tubular end portions and is electrically insulated with respect to the electrode (20; 20′), at least a major part (25A) of the carrier (25; 25′) is arranged in a plane transverse to the longitudinal axis (12; 12′), and the auxiliary amalgam extends substantially in two mutually orthogonal directions, substantially planar and transverse to said longitudinal axis, and is disposed substantially in line with said at least one of the electrodes in a direction parallel with said longitudinal axis, whereby during the starting period the lamp has a relatively short run-up time.
  • 2. A low-pressure mercury vapor discharge lamp as claimed in claim 1, wherein said body is a stem (21; 21′) in the tubular end portion (11; 11′), said stem carries the electrode (20; 20′), and the carrier (25; 25′) is provided on a supporting body arranged in the stem (21; 21′).
  • 3. A low-pressure mercury vapor discharge lamp as claimed in claim 2, wherein the supporting body is formed by a wire (23, 23′).
  • 4. A low-pressure mercury vapor discharge lamp as claimed in claim 1, wherein the carrier (25; 25′) is arranged at a side of the electrode (20; 20′) facing away from the discharge space (18).
  • 5. A low-pressure mercury vapor discharge lamp as claimed in claim 1, wherein the carrier (25; 25′) comprises a further part (25B) which is arranged in a plane parallel to the longitudinal axis (12; 12′).
  • 6. A low-pressure mercury vapor discharge lamp as claimed in claim 1, wherein a distance d between the carrier (25; 25′) and the electrode (20; 20′) lies in the range from 0.5<d<8 mm.
  • 7. A low-pressure mercury vapor discharge lamp comprising a discharge vessel (10), said discharge vessel (10) enclosing a discharge space (18) containing a filling of mercury and an inert gas in a gastight manner, and said discharge vessel (10) comprising:tubular end portions (11; 11′), which each have a longitudinal axis (12; 12′), electrodes (20; 20′) arranged in the discharge space (18) for generating and maintaining a discharge in the discharge space (18), a main amalgam disposed for controlling the mercury pressure in the discharge space except for a starting period, and at least an auxiliary amalgam (27) provided on a carrier (25; 25′) in one of said tubular end portions of the discharge vessel (10) in the proximity of at least one of the electrodes (20; 20′), characterized in that the carrier (25; 25′) is supported on a body formed of electrically insulating material extending in said one of said tubular end portions and is electrically insulated with respect to the electrode (20; 20′), at least a major part (25A) of the carrier (25; 25′) is arranged in a plane transverse to the longitudinal axis (12; 12′), the auxiliary amalgam extends substantially in two mutually orthogonal directions, substantially planar and transverse to said longitudinal axis, and is disposed substantially in line with said at least one of the electrodes in a direction parallel with said longitudinal axis, and a distance d between the carrier (25; 25′) and the electrode (20; 20′) lies in the range from 1<d<3 mm, whereby during the starting period the lamp has a relatively short run-up time.
  • 8. A low-pressure mercury vapor discharge lamp as claimed in claim 1, wherein the said body is a stem (21, 21′) which carries the electrode (20, 20′) in the tubular end portion (11, 11′), and the carrier (25; 25′) is directly press-fitted onto said stem.
  • 9. A low-pressure mercury vapor discharge lamp comprising a discharge vessel (10), said discharge vessel (10) enclosing a discharge space (18) containing a filling of mercury and an inert gas in a gastight manner, and said discharge vessel (10) comprising:tubular end portions (11; 11′), which each have a longitudinal axis (12; 12′), electrodes (20; 20′) arranged in the discharge space (18) for generating and maintaining a discharge in the discharge space (18), and, in addition to said filling of mercury and inert gas, at least an auxiliary amalgam (27) provided on a carrier (25; 25′) in the discharge vessel (10) in the proximity of at least one of the electrodes (20; 20′), characterized in that at least a part (25A) of the carrier (25; 25′) is arranged in a plane transverse to the longitudinal axis (12; 12′), the auxiliary amalgam extends substantially in two orthogonal directions transverse to said longitudinal axis, and is disposed substantially in line with said at least one of the electrodes in a direction parallel with said longitudinal axis, and the carrier is provided on an external surface of a supporting body formed by an exhaust tube (26) which extends at least partially into the discharge space (18).
  • 10. A low-pressure mercury vapor discharge lamp as claimed in claim 9, wherein said exhaust tube (26) has an end portion which is situated in the discharge space, and is electrically insulated with respect to the electrode (20; 20′), andthe carrier (25; 25′) is clamped onto the end portion of the exhaust tube (26).
  • 11. A low-pressure mercury vapor discharge lamp as claimed in claim 10, wherein the carrier (25; 25′) comprises a further part (25B) which is arranged in a plane parallel to the longitudinal axis (12; 12′).
  • 12. A low-pressure mercury vapor discharge lamp as claimed in claim 10, wherein a distance d between the carrier (25; 25′) and the electrode (20; 20′) lies in the range from 1<d<3 mm.
  • 13. A low-pressure mercury vapor discharge lamp as claimed in claim 10, wherein the carrier (25; 25′) comprises a further part (25B) which is arranged in a plane parallel to the longitudinal axis (12; 12′), said further part clamping the carrier onto said end portion.
  • 14. A low-pressure mercury vapor discharge lamp as claimed in claim 13, wherein a distance d between the carrier (25; 25′) and the electrode (20; 20′) lies in the range from 0.5<d<8 mm.
  • 15. A low-pressure mercury vapor discharge lamp as claimed in claim 13, wherein a distance d between the carrier (25; 25′) and the electrode (20; 20′) lies in the range from 1<d<3 mm.
Priority Claims (2)
Number Date Country Kind
99202689 Aug 1999 EP
00202246 Jun 2000 EP
US Referenced Citations (10)
Number Name Date Kind
3548241 Rasch et al. Dec 1970 A
3562571 Evans et al. Feb 1971 A
3629641 Hofmann et al. Dec 1971 A
3688148 Fedorenko et al. Aug 1972 A
3858075 Herrmann et al. Dec 1974 A
4047071 Busch et al. Sep 1977 A
4182971 Cassidy et al. Jan 1980 A
4542319 Grenfell et al. Sep 1985 A
5204584 Ikeda et al. Apr 1993 A
5394056 Forman et al. Feb 1995 A
Foreign Referenced Citations (2)
Number Date Country
2027893 Dec 1970 DE
01186544 Jul 1989 JP