The present invention will be understood and appreciated more fully from the following detailed description of the invention, taken in conjunction with the accompanying drawings of which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity.
In the following description, numerous specific details are set forth, such as particular structures, components, materials, dimensions, processing steps and techniques, in order to provide a thorough understanding of the present invention. However, it will be appreciated by one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known structures or processing steps have not been described in detail in order to avoid obscuring description of the present invention.
Throughout this application, the term “semiconductor” may be used from time to time to denote a semiconductor material or combination thereof including, for example, Si, SiGe, SiGeC, SiC, Ge alloys, GaAs, InAs, InP and other III/V or II/VI compound semiconductors. The term “semiconductor substrate” may be used from time to time to denote a layered structure of semiconductor materials such as, for example, Si/SiGe, Si/SiC, silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI). A semiconductor substrate may be doped, undoped or contain doped and/or undoped regions therein; may be strained, unstrained or contain strained and/or unstrained regions therein; may have a single crystal orientation or regions of different crystallographic orientations therein; and may have one or more isolation regions such as, for example, trench isolation regions or field oxide isolation regions, located therein.
FET 10 may be fabricated by any conventional semiconductor processing techniques that may be well known in the art. For example, deposition, lithography, etching, and ion implantation techniques, among others, may be used. FET 10 may be formed on a semiconductor substrate 12 to include a gate dielectric 18, a gate conductor 20, a pair of optional offset spacers 22, and source/drain regions 24. FET 10 may also include one or more contact areas 16 that are formed atop of source/drain regions 24 and/or gate contact 20, upon which stud contact structure may be formed. Contact areas 16 may include silicide such as NiSi, CoSi2, TiSi, and/or WSix.
According to one embodiment of the invention, at this stage of forming a stud contact structure, the exposed surface of the silicide contact area 16 as well the wall surfaces within the contact opening 28 may be subjected to a treatment process that is capable of removing any surface oxide or etch residue that may be present thereon. Suitable treatment processes that can be employed in the present invention include, for example, Ar sputtering and/or contacting with a chemical etchant. Some negligible widening of the contact opening 28 may occur during this step of the present invention.
Next, as is shown in
Next, as is shown in
Diffusion barrier layer 40 may typically have a thickness from about 2 nm to about 10 nm with a thickness from about 5 nm to about 8 nm being more typical. The formation of diffusion barrier layer 40 may be optionally followed by a post-deposition forming gas plasma treatment. Diffusion barrier layer 40 may prevent oxygen-getter layer 30 and portions of silicon underneath, which may be still exposed, from reacting with a gas of HF, which may be a byproduct during a subsequent CVD deposition of W and be corrosive to Ti and Si.
According to one embodiment of the invention, TiN layer 50 may be formed on top of diffusion barrier layer 40 through directional reactive sputtering Ti, in an environment of mixed gases of Ar and N2, onto stud contact openings 28. In other words, TiN layer 50 may be a PVD-deposited TiN layer and therefore may be referred to from time to time as a PVD TiN layer. PVD-deposited TiN layer may be non-conformal, and may generally have a film thickness on the sidewalls less than that at the bottom of stud contact opening 28. The film thickness at the bottom in turn may be less than that in the field area above stud contact opening 28. For example, TiN material may be directionally sputtered to produce a film or a layer of TiN with a thickness ranging from about 10 Å to about 150 Å at the bottom, and from about 5 Å to about 25 Å on the sidewalls, of stud contact openings 28.
According to another embodiment of the invention, TiN layer 50 may be formed on top of diffusion barrier layer 40 by directionally sputtering a layer of Ti onto stud contact openings 28 initially. The deposition of Ti may be followed by a post-deposition treatment process that consequently converts deposited Ti into TiN. According to one embodiment, the treatment process may be a forming gas annealing process using a mixed gases of about 5-10% atomic H2 and 90-95% atomic N2, although the present invention is not limited in this respect and lower than 5% or higher than 10% of atomic H2 (and corresponding amount of N2) may also be used to achieve similar results. The forming gas annealing process may be performed at a temperature of about 500° C. to about 650° C. for a time period of about 15 minutes to about 1 hour. However, the present invention is not limited in this respect and temperatures below 500° C. or higher 650° C., and longer or shorter time period may possibly be used. According to yet another embodiment, the treatment process may be a plasma treatment in a forming gas environment of H2 and N2, performed for a much shorter time period of about 5 second to about 30 seconds, to convert deposited Ti into TiN. Other suitable methods of converting deposited Ti into TiN may be used as well.
According to embodiments of the invention, the existence of PVD-TiN layer 50 in stub contact openings 28 may reduce and/or eliminate the creation of beta-W during a process of CVD deposition of W in a subsequent step of forming W stud contact. The reduction and/or elimination of beta-W may improve the performance of W stud contact because beta-W is known of having a high resistance and otherwise may cause device performance degradation. Additionally, PVD-TiN layer 50 does not change as much as a CVD-TiN, such as CVD-TiN 40, which allows a longer queue time window in-between liner/barrier deposition and CVD-deposition of W.
While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.