In order to depict the manner in which the embodiments are obtained, a more particular description of embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments that are not necessarily drawn to scale and are not therefore to be considered to be limiting of its scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Embodiments in this disclosure relate to a low-resistance inductor component that is used in an integrated circuit (IC) package. Embodiments also relate to processes of forming low-resistance inductors.
The following description includes terms, such as upper, lower, first, second, etc., that are used for descriptive purposes only and are not to be construed as limiting. The embodiments of a device or article described herein can be manufactured, used, or shipped in a number of positions and orientations. The terms “die” and “chip” generally refer to the physical object that is the basic workpiece that is transformed by various process operations into the desired integrated circuit device. A die is usually singulated from a wafer, and wafers may be made of semiconducting, non-semiconducting, or combinations of semiconducting and non-semiconducting materials. A board is typically a resin-impregnated fiberglass structure that acts as a mounting substrate for the die.
The dielectric first film 110 supports an overhand arcuate inductor first section 112 (OAF). The “overhand” configuration is given with respect to the orientation of the FIG. In a process embodiment, the OAF 112 is patterned in a process such as screen printing or template printing. In an embodiment, the OAF 112 is made of a metal that contains copper. In an embodiment, the OAF 112 is made of a metal that contains silver. In an embodiment, the OAF 112 as well as all the electrodes, are fired with the ceramic materials, in a non-reactive environment to resist oxidation of the electrodes. In an embodiment, the OAF 112 is made of a metal that contains silver. In an embodiment, the OAF 112 is made of a metal that contains a copper-silver alloy. In an embodiment, the OAF 112 is made of a metal that contains aluminum. In an embodiment, the OAF 112 is made of a metal that contains a combination of any of the above metals.
Electrical current 114 in the OAF 112 is illustrated with a directional arrow for one possible current-flow direction. The OAF 112 includes a via 116, which in the illustrated embodiment is not used because it is represented as a first structure that is at a boundary of an inductor embodiment. The OAF 112 also includes an OAF via land 118, which is used to make an electrical coupling to a subsequent overhand arcuate first inductor section that is disclosed below.
Reference is made again to
A plurality of vias (not shown on the drawing) and 126 is also depicted for electrical contact between the abutting arcuate inductor sections; the OAF 112 and the OAS 122. In an embodiment, the plurality of vias 124 and 126 provides electrical coupling between spaced-apart arcuate inductor sections.
In a process embodiment, the OAS 122 is patterned in a process such as screen printing or template printing. In an embodiment, the OAS 122 is made of a metal. The OAS 122 can be made of any metal embodiment disclosed herein. In an embodiment, the OAS 122 is made of the same metal that is contained in the OAF 112. In an embodiment, the OAS 122 is of a subsequent thickness, the OAS 112 is of a first thickness, and the first thickness is different from the subsequent thickness. In an embodiment, the OAS 122 and the OAF 112 are made of different metals. In an embodiment, the OAS 122 is of a subsequent thickness, the OAF 112 is of a first thickness, the first thickness is different from the subsequent thickness, and the OAS 122 and the OAF 112 are made of different metals.
Electrical current 128 in the OAS 122 is illustrated with a directional arrow for one possible current-flow direction. The via 126 is illustrated in phantom lines since it is below the plane of the FIG. The via 126 is a filled via such as the filled via 216 that is illustrated in
Next, a dielectric film 132 is laminated above and on the dielectric subsequent film 120 and the OAS 122. In an embodiment, the dielectric film 132 is a dielectric material that has a high permeability such as at least one of the high permeability materials set forth in this disclosure. A via 134 is also depicted for electrical contact between abutting arcuate inductor sections.
The-film 132 supports an underhand arcuate inductor first section 136 (UAF) that is disposed upon a dielectric film 132. The “underhand” configuration is given with respect to the orientation of the FIG. In a process embodiment, the UAF 136 is patterned in a process such as screen printing or template printing. In an embodiment, the UAF 136 is made of a metal. The UAF 136 can be made of any metal embodiment disclosed herein. In an embodiment, the UAF 136 is made of the same metal that is contained in the overhand section of the inductor.
Electrical current 138 in the UAF 136 is illustrated with a directional arrow for one possible current-flow direction. The UAF 136 includes the via 134, which in the illustrated embodiment is delineated in phantom lines since it is below the plane of the FIG. The via 134 is a filled via such as the filled via 216 that is illustrated in
Next, a dielectric film 140 for the UAF 136 is laminated above and on the dielectric film 132 and the UAF 136. In an embodiment, the dielectric film 140 for the UAF 136 is a dielectric material that has a high permeability such as at least one of the high permeability materials set forth in this disclosure. A plurality of vias 142 and 144 is also depicted for electrical contact between abutting arcuate inductor sections. In an embodiment, the plurality of vias 142 and 144 provides electrical coupling between spaced-apart arcuate inductor sections.
The film 140 supports an underhand arcuate inductor subsequent section 146 (UAS). The “underhand” configuration is given with respect to the orientation of the FIG. In a process embodiment, the UAS 146 is patterned in a process such as screen printing or template printing. In an embodiment, the UAS 146 is made of a metal. The UAS 146 can be made of any metal embodiment disclosed herein. In an embodiment, the UAS 146 is made of the same metal that is contained in the overhand section of the inductor.
Electrical current 148 in the UAS 146 is illustrated with a directional arrow for one possible current-flow direction. The UAS 146 includes the plurality of vias 142 and 144, which in the illustrated embodiment is depicted with dashed lead lines because they are below the plane of the FIG. The plurality of vias 142 and 144 are filled vias such as the filled vias 216 and 218 that are illustrate in
In an embodiment, the unit cell 400 is repeated once to produce an inductor article with two complete turns. In an embodiment, the unit cell 400 is trebled to produce an inductor article with three complete turns. In an embodiment, the unit cell 400 is repeated to produce an inductor article that has up to about 1,000 inductor sections, and in the plurality duplicate embodiment, that results in about 250 complete turns for the inductor article. Other complete turn numbers can be fabricated for a given application.
In an embodiment, the resistivity in the OAF is dissimilar to the resitivity of the OAS. Similarly, the resistivity in the UAF is dissimilar to the resitivity of the UAS.
In an embodiment, the unit cell 500 is repeated once to produce an inductor article with two complete turns. In an embodiment, the unit cell 500 is trebled to produce an inductor article with three complete turns. In an embodiment, the unit cell 500 is repeated to produce an inductor article that has up to about 1,000 inductor sections, and in the plurality triplicate embodiment, that results in about 166 complete turns for the inductor article. In an embodiment, about 333 contiguous, serial unit cells are provided. In an embodiment, about 500 contiguous, serial unit cells are provided. Other complete turn numbers can be fabricated for a given application In an embodiment, three contiguous, serial unit cells are provided. In an embodiment, more than three contiguous, serial unit cells are provided.
The low-resistance inductor 700 first unit cell 701 includes an OAF 712, an OAS 722, a UAF 736, and a UAS 746. The OAF 712 is disposed upon an OAF dielectric 710. The OAS 722 is disposed upon an OAS dielectric 720. The UAF 736 is disposed upon a UAF dielectric 732. The UAS 746 is disposed upon a UAS dielectric 740.
Filled vias are also illustrated in
The OAF 712 depicted in
The low-resistance inductor 974 that is disposed laterally to the die 970 is illustrated in greater detail. Further to the structure of the low-resistance inductor 974 are a first pin-out contact 978 that contacts one end of the low-resistance inductor 974, and a second pin-out contact 980 that contacts the second electrode.
At 1010, the process includes forming an overhand arcuate inductor first section on a dielectric film.
At 1020, the process includes forming an overhand arcuate inductor subsequent section above the overhand arcuate inductor first section.
At 1012, the process includes forming at least one overhand arcuate inductor intermediate section between the overhand arcuate inductor first section and the overhand arcuate inductor subsequent section.
At 1030, the process includes forming an underhand arcuate inductor first section above and on the overhand arcuate inductor subsequent section.
At 1040, the process includes forming an underhand arcuate inductor subsequent section above the underhand arcuate inductor first section.
At 1032, the process includes forming at least one underhand arcuate inductor intermediate section between the underhand arcuate inductor first section and the underhand arcuate inductor subsequent section.
At 1050, the process includes repeating the selected processes at least once to form a number of inductor turns.
At 1060, the process includes curing the inductor article. In an embodiment, the process includes firing the inductor article to transform the dielectric or magnetic layers into a fired, high permeability ceramic.
At 1070, a method embodiment includes assembling the inductor article to a mounting substrate.
The computing system 1100 includes at least one processor (not pictured), which is enclosed in a package 1110, a data storage system 1112, at least one input device such as a keyboard 1114, and at least one output device such as a monitor 1116, for example. The computing system 1100 includes a processor that processes data signals, and may include, for example, a microprocessor, available from Intel Corporation. In addition to the keyboard 1114, the computing system 1100 can include another user input device such as a mouse 1118, for example.
For purposes of this disclosure, a computing system 1100 embodying components in accordance with the claimed subject matter may include any system that utilizes a microelectronic device system, which may include, for example, at least one low-resistance inductor embodiment that is coupled to data storage such as dynamic random access memory (DRAM), polymer memory, flash memory, and phase-change memory. In this embodiment, the embodiment(s) is coupled to any combination of these functionalities by being coupled to a processor. In an embodiment, however, an embodiment(s) configuration set forth in this disclosure is coupled to any of these functionalities. For an example embodiment, data storage includes an embedded DRAM cache on a die. Additionally, in an embodiment, the embodiment(s) configuration that is coupled to the processor (not pictured) is part of the system with an embodiment(s) configuration that is coupled to the data storage of the DRAM cache. Additionally, in an embodiment, an embodiment(s) configuration is coupled to the data storage 1112.
In an embodiment, the computing system 1100 can also include a die that contains a digital signal processor (DSP), a micro controller, an application specific integrated circuit (ASIC), or a microprocessor. In this embodiment, the embodiment(s) configuration is coupled to any combination of these functionalities by being coupled to a processor. For an example embodiment, a DSP (not pictured) is part of a chipset that may include a stand-alone processor and the DSP as separate parts of the chipset on the board 1120. In this embodiment, an embodiment(s) configuration is coupled to the DSP, and a separate embodiment(s) configuration may be present that is coupled to the processor in the package 1110. Additionally in an embodiment, an embodiment(s) configuration is coupled to a DSP that is mounted on the same board 1120 as the package 1110. It can now be appreciated that the embodiment(s) configuration can be combined as set forth with respect to the computing system 1100, in combination with an embodiment(s) configuration as set forth by the various embodiments of the low-resistance inductor within this disclosure and their equivalents.
In an embodiment, a low-resistance inductor 1280 is electrically located between the voltage source 1230 and the integrated circuit 1210. Such location in an embodiment is in a mounting substrate and the low-resistance inductor 1280 is integral to the mounting substrate. Such location of the low-resistance inductor 1280 in an embodiment is upon a mounting substrate that provides a seat for the integrated circuit 1210 and the low-resistance inductor 1280, such as a processor and a low-resistance inductor component, each mounted laterally and adjacent to the other on a board.
The integrated circuit 1210 is electrically coupled to the system bus 1220 and includes any circuit, or combination of circuits, according to an embodiment. In an embodiment, the integrated circuit 1210 includes a processor 1212 that can be of any type. As used herein, the processor 1212 means any type of circuit such as, but not limited to, a microprocessor, a microcontroller, a graphics processor, a digital signal processor, or another processor. Other types of circuits that can be included in the integrated circuit 1210 are a custom circuit or an ASIC, such as a communications circuit 1214 for use in wireless devices such as cellular telephones, pagers, portable computers, two-way radios, and similar electronic systems. In an embodiment, the integrated circuit 1210 includes on-die memory 1216 such as SRAM. In an embodiment, the integrated circuit 1210 includes on-die memory 1216 such as embedded DRAM (eDRAM).
In an embodiment, the electronic system 1200 also includes an external memory 1240 that in turn may include one or more memory elements suitable to the particular application, such as a main memory 1242 in the form of RAM, one or more hard drives 1244, and/or one or more drives that handle removable media 1246 such as diskettes, compact disks (CDs), digital video disks (DVDs), flash memory keys, and other removable media known in the art.
In an embodiment, the electronic system 1200 also includes a display device 1250, and an audio output 1260. In an embodiment, the electronic system 1200 includes an input device controller 1270, such as a keyboard, mouse, trackball, game controller, microphone, voice-recognition device, or any other device that inputs information into the electronic system 1200.
As shown herein, integrated circuit 1210 can be implemented in a number of different embodiments, including an electronic package, an electronic system, a computer system, one or more methods of fabricating an integrated circuit, and one or more methods of fabricating an electronic assembly that includes the integrated circuit and the low-resistance inductor embodiments as set forth herein in the various embodiments and their art-recognized equivalents. The elements, materials, geometries, dimensions, and sequence of operations can all be varied to suit particular packaging requirements.
It can now be appreciated that low-resistance inductor embodiments set forth in this disclosure can be applied to devices and apparatuses other than a traditional computer. For example, a die can be packaged with an embodiment(s) configuration, and placed in a portable device such as a wireless communicator or a hand-held device such as a personal data assistant, and the like. In another example, a die can be packaged with an embodiment(s) configuration and placed in a vehicle such as an automobile, a locomotive, a watercraft, an aircraft, or a spacecraft.
The Abstract is provided to comply with 37 C.F.R. § 1.72(b) requiring an abstract that will allow the reader to quickly ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments of the invention require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate preferred embodiment.
It will be readily understood to those skilled in the art that various other changes in the details, material, and arrangements of the parts and method stages which have been described and illustrated in order to explain the nature of this invention may be made without departing from the principles and scope of the invention as expressed in the subjoined claims.