A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.
The present invention is related to the following co-pending U.S. Patent applications which are all commonly owned with the present application, the entire contents of each of which are incorporated herein by reference:
This relates in general to one or more receivers for detecting electromagnetic signals in the low terahertz range and in one embodiment to at least one detection system for detecting low terahertz radiation produced by a microresonant structure.
In the related applications described above, micro- and nano-resonant structures are described that react in now-predictable manners when an electron beam is passed in their proximity. We have seen, for example, that the very small structures described in those applications allow energy of the electron beam to be converted into the energy of electromagnetic radiation (e.g., light) when the electron beam passes nearby. When the electron beam passes near the structure, it excites synchronized oscillations of the electrons in the structure (surface plasmons) and/or electrons in the beam. As often repeated as the many electrons in a beam pass, these surface plasmons result in reemission of detectable photons as electromagnetic radiation (EMR).
Spectroscopy is the study of the interaction of EMR with materials and surfaces and is useful in several areas including: (1) night vision systems and (2) detectors for certain types of chemicals. Electromagnetic radiation of known frequencies (and amounts) is transmitted into an area or structure to be tested. By detecting whether and how the transmitted electromagnetic radiation is reflected, absorbed or transmitted through the object under test, detections can be achieved. Alternatively, by detecting the presence of electromagnetic radiation leaving an object under examination at one or more frequencies other than the frequency that was transmitted into the object, detection of other materials can similarly be made.
A transmitter 1 can include an ultra-small resonant structure, such as any one described in U.S. patent application Ser. Nos. 11/238,991; 11/243,476; 11/243,477; 11/325,448; 11/325,432; 11/302,471; 11/325,571; 11/325,534; 11/349,963; and/or 11/353,208 (each of which is identified more particularly above). The resonant structures in the transmitter can be manufactured in accordance with any of U.S. application Ser. Nos. 10/917,511; 11/350,812; or 11/203,407 (each of which is identified more particularly above) or in other ways. Their sizes and dimensions can be selected in accordance with the principles described in those applications and, for the sake of brevity, will not be repeated herein. The contents of the applications described above are assumed to be known to the reader.
Although less advantageous than the ultra-small resonant structures identified in the applications described above, alternatively the transmitter 1 can also comprise any macroscopic or microscopic electromagnetic radiation (EMR) emitter emitting in the low terahertz range, and can include even prior art low terahertz transmitters, semiconductors or other low terahertz-emitting devices.
The transmitter 1 may be operated in association with a controller 18, which may be part of the transmitter or may be separated from the transmitter 1 (the former embodiment is shown in
The object 5 under examination is depicted as a cylinder, but any object, person, material, chemical, element, etc. may be used as the “object.” Materials that may be detected in an object 5 include, but are not limited to, biologically active materials and explosives. The object may be placed in a specialized container which is then inserted into a machine for testing, or the object may be in an open area where the open area itself is then subjected to EMR. An example of an open air environment includes passenger screening systems in which a potential passenger (e.g., an airline passenger) first walks through a detector area where the passenger can be tested prior to boarding. An example of testing using machines into which an object is placed includes a swab analyzer into which a swab is placed after the swab has been rubbed over an article of interest (e.g., luggage). Alternatively, the detector can detect radiation emitted by the objects. This could be radiation due to thermal emission or due to other causes such as chemical or molecular vibrational EMR emission. This EMR could also consist partly or fully of reflected and transmitted background EMR
In an alternate configuration, the controller 18 can pulse the at least one EMR source 17 and images can be created based on delay time to the receiver. Images or “snap-shots” may also be taken in series to capture how a sample is changing or reacting (e.g., fluorescing or otherwise emitting EMR) for some time after receiving an EMR pulse or its condition can be monitored continuously if the source is left on continuously or repeatedly pulsed.
In the example of
As the term is used herein, the structures are considered ultra-small when they embody at least one dimension that is smaller than the wavelength of light that they are detecting or emitting. The ultra-small structures are employed in a vacuum environment. Methods of evacuating the environment where the beam 13 passes by the structures 12 can be selected from known evacuation methods.
After the anode 19, the electron beam 13 passes energy anode 23, which further accelerates the electrons in known fashion. When the resonant structures 12 are not receiving the EMR 15, then the electron beam 13 passes by the resonant structures 12 with the structures 12 having no significant effect on the path of the electron beam 13. The electron beam 13 thus follows, in general, the path 13b. In the embodiment of
Next, we describe the situation when the EMR 15 is incident on the resonant structures 12. Like the earlier scenario, the cathode 20 produces the electron beam 13, which is directed by the current anode 19 and energy anode 23, past the resonant structures 12. In this case, however, the EMR 15 is inducing resonance on the resonant structures 12. The ability of the EMR 15 to induce the electron resonance is described in one or more of the above applications and is not repeated herein. The electron beam 13 is deflected by the electron density oscillation effect causing the electron beam to deflected randomly from path 13b (into the Faraday cup) and into one or more alternative paths depending on the surface charge at the moment at which the electron in the beam passes the resonant structure, such as paths 13a or 13c. (Paths other than the illustrated alternate paths are also possible, so paths 13a and 13c should be understood to be any path that does not impact the detector electrode 14.) Note that the dimensions in
Many alternative structures and arrangements are available for the various components shown in
As is generally known, the EMR 15 will not interact with the electron beam directly. That is, the electrons in the beam are so small and so dispersed and the photons of the EMR 15 are small and dispersed that practical interaction between them is essentially statistically non-existent. Although the EMR 15 cannot be reliably transferred to the electronic structures of the receiver 10 by simple interaction of the EMR 15 with the electron beam 13, we have provided a receiver that “holds” the information in the EMR on the resonant structures 12 via the activity of the surface plasmons long enough for the electron beam 13 passing by to interact with EMR 15. The EMR 15 is thus coupled onto the electron beam 13 (and thus to electronic circuit elements) when it was previously considered impossible to do so.
In
As described, the existence of the EMR 15 is reflected in a detection of a current difference in the differential current detector 16 caused by the deflection of the electron beam 13 into the electrode 24 rather than the detector electrode 14. The absence of the EMR 15 is reflected in a detection of a different differential current value in the differential current detector 16 when the electron beam 13 is directed straight into the Faraday cup or other detector electrode 14.
Recognizing now how the receiver 10 can determine what EMR 15r is received in the presence of transmitted EMR 15t, the artisan can readily appreciate how the receiver can detect the presence or absence of a portion of interest of the received spectrum.
In general, a resonant structure 12 and/or 21 will respond most effectively to a particular frequency of EMR 15. In a preferred arrangement, the transmitter transmits EMR 15t at a particular wavelength and the resonant structures 12 and 21 have geometries that respond to the wavelength to be detected 15r.
For any given structure, the wavelength characteristics shown in
Emissions can also be measured to help in design. One example empirical graph is shown in
In
In earlier embodiments, we described the detector referenced from a “present” electrode to an “absent” electrode, from a “present” electrode to ground, and from an “absent” electrode to ground. In
One way that that noise can corrupt the receiving process is by stray electrons bouncing from the receiving electrode (either the “absent” or “present” electrode) rather than being captured thereby. The shield 29a/29b in
As shown in
As shown in
In some embodiments, additional optical devices, such as lens and deflectors may be required to properly direct the signals onto an array or matrix of receivers.
In an alternate embodiment, the transmitter may include a modulated source of EMR. The modulated source of EMR can enable the receiver to be tuned to the modulation for increased sensitivity. The receiver may therefore perform signal lock-in and phase sensitive detection.
The above-described matrices and arrays can be formed into any number of configurations and devices, such as focal planes, still cameras, moving picture/video cameras, etc. Furthermore, more than one type of receiver can be integrated into the same device. For example, various receivers for receiving one set of frequencies can be integrated into a single device. Such a combined device may include a video camera combined with a still camera or a video camera combined with a focal plane.
While some of the examples above have been given with respect to transmission and absorption of EMR, it is also possible to measure the fluorescence of a material upon being placed in the presence of electromagnetic radiation. One such example is the use of EMR to distinguish synthetic diamond from natural diamond. One technique for determining the difference measures the length of time that the diamond under test fluoresces. The receiver of the present invention can be tuned to the fluorescence frequency and a series of images captured or measurements taken to determine the time length of fluorescence.
While certain configurations of structures have been illustrated for the purposes of presenting the basic structures of the present invention, one of ordinary skill in the art will appreciate that other variations are possible which would still fall within the scope of the appended claims. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1948384 | Lawrence | Feb 1934 | A |
2307086 | Varian et al. | Jan 1943 | A |
2431396 | Hansell | Nov 1947 | A |
2473477 | Smith | Jun 1949 | A |
2634372 | Salisbury | Apr 1953 | A |
2932798 | Kerst et al. | Apr 1960 | A |
2944183 | Drexler | Jul 1960 | A |
2966611 | Sandstrom | Dec 1960 | A |
3231779 | White | Jan 1966 | A |
3297905 | Rockwell et al. | Jan 1967 | A |
3315117 | Udelson | Apr 1967 | A |
3387169 | Farney | Jun 1968 | A |
3543147 | Kovarik | Nov 1970 | A |
3546524 | Stark | Dec 1970 | A |
3560694 | White | Feb 1971 | A |
3571642 | Westcott | Mar 1971 | A |
3586899 | Fleisher | Jun 1971 | A |
3761828 | Pollard et al. | Sep 1973 | A |
3886399 | Symons | May 1975 | A |
3923568 | Bersin | Dec 1975 | A |
3989347 | Eschler | Nov 1976 | A |
4053845 | Gould | Oct 1977 | A |
4282436 | Kapetanakos | Aug 1981 | A |
4450554 | Steensma et al. | May 1984 | A |
4482779 | Anderson | Nov 1984 | A |
4528659 | Jones, Jr. | Jul 1985 | A |
4589107 | Middleton et al. | May 1986 | A |
4598397 | Nelson et al. | Jul 1986 | A |
4630262 | Callens et al. | Dec 1986 | A |
4652703 | Lu et al. | Mar 1987 | A |
4661783 | Gover et al. | Apr 1987 | A |
4704583 | Gould | Nov 1987 | A |
4712042 | Hamm | Dec 1987 | A |
4713581 | Haimson | Dec 1987 | A |
4727550 | Chang et al. | Feb 1988 | A |
4740963 | Eckley | Apr 1988 | A |
4740973 | Madey | Apr 1988 | A |
4746201 | Gould | May 1988 | A |
4761059 | Yeh et al. | Aug 1988 | A |
4782485 | Gollub | Nov 1988 | A |
4789945 | Niijima | Dec 1988 | A |
4806859 | Hetrick | Feb 1989 | A |
4809271 | Kondo et al. | Feb 1989 | A |
4813040 | Futato | Mar 1989 | A |
4819228 | Baran et al. | Apr 1989 | A |
4829527 | Wortman et al. | May 1989 | A |
4838021 | Beattie | Jun 1989 | A |
4841538 | Yanabu et al. | Jun 1989 | A |
4864131 | Rich et al. | Sep 1989 | A |
4866704 | Bergman | Sep 1989 | A |
4866732 | Carey et al. | Sep 1989 | A |
4873715 | Shibata | Oct 1989 | A |
4887265 | Felix | Dec 1989 | A |
4890282 | Lambert et al. | Dec 1989 | A |
4898022 | Yumoto et al. | Feb 1990 | A |
4912705 | Paneth et al. | Mar 1990 | A |
4932022 | Keeney et al. | Jun 1990 | A |
4981371 | Gurak et al. | Jan 1991 | A |
5023563 | Harvey et al. | Jun 1991 | A |
5036513 | Greenblatt | Jul 1991 | A |
5065425 | Lecomte et al. | Nov 1991 | A |
5113141 | Swenson | May 1992 | A |
5121385 | Tominaga et al. | Jun 1992 | A |
5127001 | Steagall et al. | Jun 1992 | A |
5128729 | Alonas et al. | Jul 1992 | A |
5130985 | Kondo et al. | Jul 1992 | A |
5150410 | Bertrand | Sep 1992 | A |
5155726 | Spinney et al. | Oct 1992 | A |
5157000 | Elkind et al. | Oct 1992 | A |
5163118 | Lorenzo et al. | Nov 1992 | A |
5185073 | Bindra | Feb 1993 | A |
5187591 | Guy et al. | Feb 1993 | A |
5199918 | Kumar | Apr 1993 | A |
5214650 | Renner et al. | May 1993 | A |
5233623 | Chang | Aug 1993 | A |
5235248 | Clark et al. | Aug 1993 | A |
5262656 | Blondeau et al. | Nov 1993 | A |
5263043 | Walsh | Nov 1993 | A |
5268693 | Walsh | Dec 1993 | A |
5268788 | Fox et al. | Dec 1993 | A |
5282197 | Kreitzer | Jan 1994 | A |
5283819 | Glick et al. | Feb 1994 | A |
5293175 | Hemmie et al. | Mar 1994 | A |
5302240 | Hori et al. | Apr 1994 | A |
5305312 | Fornek et al. | Apr 1994 | A |
5341374 | Lewen et al. | Aug 1994 | A |
5354709 | Lorenzo et al. | Oct 1994 | A |
5446814 | Kuo et al. | Aug 1995 | A |
5504341 | Glavish | Apr 1996 | A |
5578909 | Billen | Nov 1996 | A |
5604352 | Schuetz | Feb 1997 | A |
5608263 | Drayton et al. | Mar 1997 | A |
5663971 | Carlsten | Sep 1997 | A |
5666020 | Takemura | Sep 1997 | A |
5668368 | Sakai et al. | Sep 1997 | A |
5705443 | Stauf et al. | Jan 1998 | A |
5737458 | Wojnarowski et al. | Apr 1998 | A |
5744919 | Mishin et al. | Apr 1998 | A |
5757009 | Walstrom | May 1998 | A |
5767013 | Park | Jun 1998 | A |
5780970 | Singh et al. | Jul 1998 | A |
5790585 | Walsh | Aug 1998 | A |
5811943 | Mishin et al. | Sep 1998 | A |
5821836 | Katehi et al. | Oct 1998 | A |
5821902 | Keen | Oct 1998 | A |
5825140 | Fujisawa | Oct 1998 | A |
5831270 | Nakasuji | Nov 1998 | A |
5847745 | Shimizu et al. | Dec 1998 | A |
5889449 | Fiedziuszko | Mar 1999 | A |
5889797 | Nguyen | Mar 1999 | A |
5902489 | Yasuda et al. | May 1999 | A |
5963857 | Greywall | Oct 1999 | A |
6005347 | Lee | Dec 1999 | A |
6008496 | Winefordner et al. | Dec 1999 | A |
6040625 | Ip | Mar 2000 | A |
6060833 | Velazco | May 2000 | A |
6080529 | Ye et al. | Jun 2000 | A |
6139760 | Shim et al. | Oct 2000 | A |
6180415 | Schultz et al. | Jan 2001 | B1 |
6195199 | Yamada | Feb 2001 | B1 |
6222866 | Seko | Apr 2001 | B1 |
6278239 | Caporaso et al. | Aug 2001 | B1 |
6281769 | Fiedziuszko | Aug 2001 | B1 |
6297511 | Syllaios et al. | Oct 2001 | B1 |
6301041 | Yamada | Oct 2001 | B1 |
6316876 | Tanabe | Nov 2001 | B1 |
6338968 | Hefti | Jan 2002 | B1 |
6370306 | Sato et al. | Apr 2002 | B1 |
6373194 | Small | Apr 2002 | B1 |
6376258 | Hefti | Apr 2002 | B2 |
6407516 | Victor | Jun 2002 | B1 |
6441298 | Thio | Aug 2002 | B1 |
6448850 | Yamada | Sep 2002 | B1 |
6453087 | Frish et al. | Sep 2002 | B2 |
6470198 | Kintaka et al. | Oct 2002 | B1 |
6504303 | Small | Jan 2003 | B2 |
6525477 | Small | Feb 2003 | B2 |
6534766 | Abe et al. | Mar 2003 | B2 |
6545425 | Victor | Apr 2003 | B2 |
6552320 | Pan | Apr 2003 | B1 |
6577040 | Nguyen | Jun 2003 | B2 |
6580075 | Kametani et al. | Jun 2003 | B2 |
6603781 | Stinson et al. | Aug 2003 | B1 |
6603915 | Glebov et al. | Aug 2003 | B2 |
6624916 | Green et al. | Sep 2003 | B1 |
6636185 | Spitzer et al. | Oct 2003 | B1 |
6636534 | Madey et al. | Oct 2003 | B2 |
6636653 | Miracky et al. | Oct 2003 | B2 |
6640023 | Miller et al. | Oct 2003 | B2 |
6642907 | Hamada et al. | Nov 2003 | B2 |
6687034 | Wine et al. | Feb 2004 | B2 |
6724486 | Shull et al. | Apr 2004 | B1 |
6738176 | Rabinowitz et al. | May 2004 | B2 |
6741781 | Furuyama | May 2004 | B2 |
6782205 | Trisnadi et al. | Aug 2004 | B2 |
6791438 | Takahashi et al. | Sep 2004 | B2 |
6800877 | Victor et al. | Oct 2004 | B2 |
6801002 | Victor et al. | Oct 2004 | B2 |
6819432 | Pepper et al. | Nov 2004 | B2 |
6829286 | Guilfoyle et al. | Dec 2004 | B1 |
6834152 | Gunn et al. | Dec 2004 | B2 |
6870438 | Shino et al. | Mar 2005 | B1 |
6871025 | Maleki et al. | Mar 2005 | B2 |
6885262 | Nishimura et al. | Apr 2005 | B2 |
6900447 | Gerlach et al. | May 2005 | B2 |
6909092 | Nagahama | Jun 2005 | B2 |
6909104 | Koops | Jun 2005 | B1 |
6924920 | Zhilkov | Aug 2005 | B2 |
6936981 | Gesley | Aug 2005 | B2 |
6943650 | Ramprasad et al. | Sep 2005 | B2 |
6944369 | Deliwala | Sep 2005 | B2 |
6952492 | Tanaka et al. | Oct 2005 | B2 |
6953291 | Liu | Oct 2005 | B2 |
6954515 | Bjorkholm et al. | Oct 2005 | B2 |
6965284 | Maekawa et al. | Nov 2005 | B2 |
6965625 | Mross et al. | Nov 2005 | B2 |
6972439 | Kim et al. | Dec 2005 | B1 |
6995406 | Tojo et al. | Feb 2006 | B2 |
7010183 | Estes et al. | Mar 2006 | B2 |
7064500 | Victor et al. | Jun 2006 | B2 |
7068948 | Wei et al. | Jun 2006 | B2 |
7092588 | Kondo | Aug 2006 | B2 |
7092603 | Glebov et al. | Aug 2006 | B2 |
7122978 | Nakanishi et al. | Oct 2006 | B2 |
7130102 | Rabinowitz | Oct 2006 | B2 |
7177515 | Estes et al. | Feb 2007 | B2 |
7230201 | Miley et al. | Jun 2007 | B1 |
7253426 | Gorrell et al. | Aug 2007 | B2 |
7267459 | Matheson | Sep 2007 | B2 |
7267461 | Kan et al. | Sep 2007 | B2 |
7309953 | Tiberi et al. | Dec 2007 | B2 |
7342441 | Gorrell et al. | Mar 2008 | B2 |
7362972 | Yavor et al. | Apr 2008 | B2 |
7375631 | Moskowitz et al. | May 2008 | B2 |
7436177 | Gorrell et al. | Oct 2008 | B2 |
7442940 | Gorrell et al. | Oct 2008 | B2 |
7443358 | Gorrell et al. | Oct 2008 | B2 |
7470920 | Gorrell et al. | Dec 2008 | B2 |
7473917 | Singh | Jan 2009 | B2 |
20010025925 | Abe et al. | Oct 2001 | A1 |
20020009723 | Hefti | Jan 2002 | A1 |
20020027481 | Fiedziuszko | Mar 2002 | A1 |
20020036121 | Ball et al. | Mar 2002 | A1 |
20020036264 | Nakasuji et al. | Mar 2002 | A1 |
20020053638 | Winkler et al. | May 2002 | A1 |
20020068018 | Pepper et al. | Jun 2002 | A1 |
20020070671 | Small | Jun 2002 | A1 |
20020071457 | Hogan | Jun 2002 | A1 |
20020135665 | Gardner | Sep 2002 | A1 |
20020191650 | Madey et al. | Dec 2002 | A1 |
20030010979 | Pardo | Jan 2003 | A1 |
20030012925 | Gorrell | Jan 2003 | A1 |
20030016412 | Eilenberger et al. | Jan 2003 | A1 |
20030016421 | Small | Jan 2003 | A1 |
20030034535 | Barenburg et al. | Feb 2003 | A1 |
20030103150 | Catrysse et al. | Jun 2003 | A1 |
20030106998 | Colbert et al. | Jun 2003 | A1 |
20030155521 | Feuerbaum | Aug 2003 | A1 |
20030158474 | Scherer et al. | Aug 2003 | A1 |
20030164947 | Vaupel | Sep 2003 | A1 |
20030179974 | Estes et al. | Sep 2003 | A1 |
20030206708 | Estes et al. | Nov 2003 | A1 |
20030214695 | Abramson et al. | Nov 2003 | A1 |
20040061053 | Taniguchi et al. | Apr 2004 | A1 |
20040080285 | Victor et al. | Apr 2004 | A1 |
20040085159 | Kubena et al. | May 2004 | A1 |
20040092104 | Gunn, III et al. | May 2004 | A1 |
20040108471 | Luo et al. | Jun 2004 | A1 |
20040108473 | Melnychuk et al. | Jun 2004 | A1 |
20040136715 | Kondo | Jul 2004 | A1 |
20040150991 | Ouderkirk et al. | Aug 2004 | A1 |
20040171272 | Jin et al. | Sep 2004 | A1 |
20040180244 | Tour et al. | Sep 2004 | A1 |
20040184270 | Halter | Sep 2004 | A1 |
20040213375 | Bjorkholm et al. | Oct 2004 | A1 |
20040217297 | Moses et al. | Nov 2004 | A1 |
20040218651 | Iwasaki et al. | Nov 2004 | A1 |
20040231996 | Webb | Nov 2004 | A1 |
20040240035 | Zhilkov | Dec 2004 | A1 |
20040264867 | Kondo | Dec 2004 | A1 |
20050023145 | Cohen et al. | Feb 2005 | A1 |
20050045821 | Noji et al. | Mar 2005 | A1 |
20050045832 | Kelly et al. | Mar 2005 | A1 |
20050054151 | Lowther et al. | Mar 2005 | A1 |
20050067286 | Ahn et al. | Mar 2005 | A1 |
20050082469 | Carlo | Apr 2005 | A1 |
20050092929 | Schneiker | May 2005 | A1 |
20050104684 | Wojcik | May 2005 | A1 |
20050105690 | Pau et al. | May 2005 | A1 |
20050145882 | Taylor et al. | Jul 2005 | A1 |
20050152635 | Paddon et al. | Jul 2005 | A1 |
20050162104 | Victor et al. | Jul 2005 | A1 |
20050190637 | Ichimura et al. | Sep 2005 | A1 |
20050194258 | Cohen et al. | Sep 2005 | A1 |
20050201707 | Glebov et al. | Sep 2005 | A1 |
20050201717 | Matsumura et al. | Sep 2005 | A1 |
20050212503 | Deibele | Sep 2005 | A1 |
20050231138 | Nakanishi et al. | Oct 2005 | A1 |
20050249451 | Baehr-Jones et al. | Nov 2005 | A1 |
20050285541 | LeChevalier | Dec 2005 | A1 |
20060007730 | Nakamura et al. | Jan 2006 | A1 |
20060018619 | Helffrich et al. | Jan 2006 | A1 |
20060035173 | Davidson et al. | Feb 2006 | A1 |
20060045418 | Cho et al. | Mar 2006 | A1 |
20060050269 | Brownell | Mar 2006 | A1 |
20060060782 | Khursheed | Mar 2006 | A1 |
20060062258 | Brau et al. | Mar 2006 | A1 |
20060131695 | Kuekes et al. | Jun 2006 | A1 |
20060159131 | Liu et al. | Jul 2006 | A1 |
20060164496 | Tokutake et al. | Jul 2006 | A1 |
20060187794 | Harvey et al. | Aug 2006 | A1 |
20060208667 | Lys et al. | Sep 2006 | A1 |
20060216940 | Gorrell et al. | Sep 2006 | A1 |
20060243925 | Barker et al. | Nov 2006 | A1 |
20060274922 | Ragsdale | Dec 2006 | A1 |
20070003781 | de Rochemont | Jan 2007 | A1 |
20070013765 | Hudson et al. | Jan 2007 | A1 |
20070075264 | Gorrell et al. | Apr 2007 | A1 |
20070086915 | LeBoeuf et al. | Apr 2007 | A1 |
20070116420 | Estes et al. | May 2007 | A1 |
20070146704 | Schmidt et al. | Jun 2007 | A1 |
20070152176 | Gorrell et al. | Jul 2007 | A1 |
20070154846 | Gorrell et al. | Jul 2007 | A1 |
20070194357 | Oohashi | Aug 2007 | A1 |
20070200940 | Gruhlke et al. | Aug 2007 | A1 |
20070238037 | Wuister et al. | Oct 2007 | A1 |
20070252983 | Tong et al. | Nov 2007 | A1 |
20070258689 | Gorrell et al. | Nov 2007 | A1 |
20070258690 | Gorrell et al. | Nov 2007 | A1 |
20070264023 | Gorrell et al. | Nov 2007 | A1 |
20070264030 | Gorrell et al. | Nov 2007 | A1 |
20070282030 | Anderson et al. | Dec 2007 | A1 |
20070284527 | Zani et al. | Dec 2007 | A1 |
20080069509 | Gorrell et al. | Mar 2008 | A1 |
20080302963 | Nakasuji et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
0237559 | Dec 1991 | EP |
2004-32323 | Jan 2004 | JP |
WO 8701873 | Mar 1987 | WO |
WO 9321663 | Oct 1993 | WO |
WO 0072413 | Nov 2000 | WO |
WO 0225785 | Mar 2002 | WO |
WO 02077607 | Oct 2002 | WO |
WO 2004086560 | Oct 2004 | WO |
WO 2005015143 | Feb 2005 | WO |
WO 2005098966 | Oct 2005 | WO |
WO 2006042239 | Apr 2006 | WO |
WO 2007081389 | Jul 2007 | WO |
WO 2007081390 | Jul 2007 | WO |
WO 2007081391 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080149828 A1 | Jun 2008 | US |