The present description relates to a luminaire having a light source consisting of at least one LED, a reflector and a transparent cover.
Luminaires which contain LEDs (including OLEDs) as light sources tend slightly to dazzle a viewer because the light sources are virtually punctiform. In addition, depending on the location in which the luminaire is used, e.g. as an office luminaire, a light distribution is desired which is weak enough to avoid glare at high radiation angles relative to the normal perpendicular to the light exit face.
Such light distributions for glare-free luminaires in interiors are achieved for example by specific covering of the luminaires for glare suppression. Such covers may contain microstructures or textures which effect light scattering to a certain extent. The covers are also obtainable as comparatively thin films.
It is also known to use such glare suppression covers in combination with reflectors to increase the total efficiency of the luminaire.
The object of the present description is to develop a luminaire of the type in question to provide a glare-free, soft light distribution with a sufficient full width at half maximum for use as built-in or attached ceiling luminaires or pendant ceiling luminaires, e.g. for office lighting.
A special property of the luminaire consists in that the planar translucent cover extends inwards into the reflector, i.e. in the direction of the light source, preferably to a point, relative to the plane of the light exit opening. This means that the light influenced by the microstructures in the cover is deflected towards the centre axis of the luminaire rather than emitted in the plane of the light exit opening. This produces an effect similar to that of slats in a conventional luminaire. The light distribution at high radiation angles, e.g. at angles above 85°, 80° or 65°, is reduced to improve the glare suppression of the luminaire.
According to a non-limiting embodiment, the shape of the light-directing cover is defined by the side wall of a pyramid or of a cone, wherein the base of the pyramid or of the cone lies in the imaginary plane which is defined by the edge of the reflector. The pyramid or conical shape has the advantage that the inclination angle of the cover to the imaginary plane, which may be arranged parallel to the ceiling of the room, is always constant.
According to a non-limiting embodiment, an angle which is formed in a cross-section perpendicular to the imaginary plane between the face of the translucent cover and the imaginary plane is less than 30°, preferably less than 20° or 15°. This shallow angle is sufficient to achieve the effect that the light emission in solid angle ranges above e.g. 85°, in particular 80° or 65°, is reduced or shielded. The shallow inclination angle specifically prevents light being deflected to a significant extent so far to the opposite side of the luminaire that it is emitted on the side opposite the central axis within a solid angle range above a desired shielding angle. The shape of the cover in combination with the microstructure elements ensures that the light is scattered by the microstructures to prevent reflected glare on the one hand and excessively high radiation angles are avoided to prevent direct glare by shielding. Alternatively or additionally, the height of the translucent cover by which it protrudes from the imaginary plane into the reflector may be limited to less than ⅕, preferably ⅛, of the largest diameter in the imaginary plane. This height-to-width ratio of the cover ensures that, as explained above, light emission above a limit angle relative to the luminaire normal is prevented or at least reduced.
According to a non-limiting embodiment, the microstructures comprise textures on a surface of the cover facing the light source and/or facing away from the light source. The textures may in particular comprise lenticular or prism-shaped elevations and/or depressions. The elevations and/or depressions may be arranged regularly or irregularly. The shape of the textures should help to ensure that the light is scattered or dispersed locally at the cover. The inclination of the cover relative to the light outlet opening then improves the shielding for glare suppression.
According to a non-limiting embodiment, the microstructures may also be formed by scattering particles in the material of the cover and/or on a surface of the cover. The scattering particles have a similar function to the surface textures, i.e. they create local light scattering. Textures or scattering particles on the inside of the cover have the advantage that they are not damaged when the cover is cleaned. On the other hand, textures and scattering particles on the outside have the advantage that no reflections on the otherwise flat surface are visible when the cover is viewed from above.
According to a non-limiting embodiment, an additional reflector is provided, which adjoins the peripheral edge on the side of the cover facing away from the light source. The additional reflector may act as a cutoff reflector which improves shielding of the light distribution. The reflector and the additional reflector may also be connected integrally to each other, the peripheral edge of the reflector, as mentioned above, being in this case formed by the edge at which the transparent cover bears against the assembled reflector.
According to a non-limiting embodiment, the reflector and/or the additional reflector may be high-gloss. This embodiment achieves a high degree of luminaire efficiency. However, the reflector and/or the additional reflector may also be diffusely reflective, in particular matt white. These embodiments further reduce the risk of possible glare.
According to a non-limiting embodiment, the light source may comprise an array of LEDs which are arranged in a plane at the bottom of the reflector. In contrast to a single LED, the distribution of the light with an array of LEDs is already more favourable, i.e. better distributed, at the location of the light source. The multiple LEDs also allow different light colours of the LEDs to be mixed. It is also possible for the LEDs to be arranged in groups together, each point in the array preferably comprising a group of LEDs with each colour if multicoloured LEDs are used. Different colours may be mixed thereby. Where appropriate, the different-coloured LEDs may also be activated separately from each other to change the light colour of the luminaire.
According to a non-limiting embodiment, the LEDs or groups of LEDs are distributed uniformly over the bottom of the reflector. Alternatively, the LEDs may also be arranged around a peripheral edge of the bottom of the reflector. The latter has the advantage that the proportion of the light which is reflected by the laterally arranged reflector is increased in comparison with a flat arrangement of the LEDs on the bottom. This may likewise contribute to the glare suppression of the luminaire. In contrast, the uniform distribution of the LEDs on the bottom has the advantage that the area of the translucent cover is illuminated more uniformly, so that the light exit openings of the luminaire appear uniformly bright when viewed from outside. According to a non-limiting embodiment, the smallest distance of each LED or each LED group from its closest neighbour is greater than 10 mm. This is a relatively large spacing of the LEDs in an LED array, which the viewer would normally find annoying because the LEDs are perceived as individual, separate points of light. However, this disadvantage is overcome by combination with the cover according to the description. It is therefore possible to arrange the LEDs with a comparatively large spacing to create a luminaire having a large area without the viewer being able to visually resolve the individual light points of the LEDs or of the LED groups.
According to a non-limiting embodiment, each LED is assigned a primary lens, e.g. to disperse the light of each LED or to focus it towards the cover. Combinations of different primary lenses are also possible. For example, the primary lenses in an outer ring and/or one or more primary lenses in the centre of the LED array may have a different radius of curvature than the primary lenses of the other LEDs in the array. This allows different light effects to be produced in the region in which the light of the LEDs is predominantly reflected by the lateral reflector walls and the light which is predominantly incident directly onto the tip of the inwardly pointing cover of the luminaire.
According to a non-limiting embodiment, at least some primary lenses are flattened at their vertices. This produces a combination of focussing in the edge region of the LED and defocussing in the central region of the LED. The flattening of the vertex may also be different depending on the position of the primary lens in the LED array. In particular, the flattened portions of the lenses may increase or decrease in a stepped manner in concentric rings of the LED arrangement so that the light of each LED in the array produces approximately the same light distribution after passing through the translucent cover. The differently flattened vertices may also be combined with the different radii of curvature as described above.
According to a non-limiting embodiment, the LEDs have different colours. It may be advantageous to mix a colder and a warmer light colour to emit a mixed white light from the LED array. While the cold light tends to support human visual function, a warm white tone ensures a more pleasant feeling. The combination of the cold and warm light sources is therefore ideally suitable for illuminating an interior, e.g. an office. It is also possible to activate different-coloured light sources separately so that the mixed colour of the luminaire may be selected by dimming the light sources differently.
In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various aspects are described with reference to the following drawings, in which:
A first non-limiting embodiment of the luminaire according to the description is described with reference to
The luminaire has a baseplate 2 which may in particular be formed by a PCB (printed circuit board). An arrangement of multiple LEDs 4 is provided on one side of the baseplate, which is flat. In this embodiment, the LEDs 4 are distributed uniformly over the baseplate 2 and are electrically connected to electrical conductor tracks on the baseplate. A reflector 6 extends around the array of LEDs 4, which reflector, in the embodiment shown in
On the side of the reflector 6 opposite the LEDs, the peripheral edge of the reflector forms a light exit opening. This is closed with a cover 8. The cover 8 is shown as a single part in a perspective view in
The cover 8 is formed from an optically transparent material. The cover 8 has on its surface a plurality of microstructures which are in particular in the form of microlenses or microprisms on a surface of the cover 8. The microstructure may be distributed regularly or irregularly on the cover 8.
It may be seen in
The microstructures of the cover 8 have the effect that the light which passes through the cover 8 is deflected to the side. In particular, the microstructures ensure that the light is partially scattered.
A particular property of the cover 8 is that it extends inwards towards the LEDs 4 in a pyramid-shaped manner. This produces an angle α between each side of the cover 8 and a plane parallel to the base 2 or parallel to the plane of the light exit opening which is formed by the peripheral edge of the reflector 6. In the embodiments shown, the inclination angle α is 10°. The angle is preferably less than 30° or in particular less than 20°. The shallow angle has the effect that the light is not only scattered by the cover 8 but also deflected somewhat towards a central axis z of the luminaire. This produces a desired light distribution of the luminaire, which is greater at large radiation angles relative to the optical axis z (see
The material of the cover 8 may be in particular a transparent plastic or a glass. The microstructures may in particular be formed as depressions or elevations in the surface of the material, in the form of pyramid-shaped optical elements or lenticular optical elements. The pyramid-shaped or lenticular depressions or generally any kind of surface texture suitable for dispersing, in particular scattering, light may be provided on the side facing the lighting means or on the opposite outer side of the cover 8.
Alternatively or additionally, scattering centres may also be provided inside the material or on a surface of the material of the cover 8. Scattering centres may be formed e.g. by small particles in an otherwise transparent glass or plastic material.
It may also be provided for the surface of the cover 8 to be frosted. A type of opal glass may be formed by treating the surface by etching or sandblasting.
A luminaire according to
In the non-limiting embodiment of
In
It should be understood that the cover 8 has been omitted from
Embodiments such as in
The light distributions which are achieved with the above-described LED arrays may be produced in particular with different-coloured LEDs. For example, it may be advantageous to provide the LEDs with a warm light colour according to the arrangement in
The distance from one LED to the neighbour arranged at right angles thereto is e.g. between 10 and 20 mm, in particular approximately 16 mm, according to
In addition to the LED arrays, an array of primary lenses 10 may be arranged directly over the LEDs 4, as shown in
On the side opposite the LEDs, the primary lenses also have flattened vertices 20, 21 or 22, as shown in
The flattened vertex of the lenses has the effect that the light distribution according to the cover 8 of the LED arrays of
Numerous variants of the above-described embodiments are possible within the scope of the invention as defined by the claims. In particular, the invention is not limited to the illustrated square arrangement of the LED arrays and of the light exit face of the reflector. Round symmetries may also be used, in particular in conjunction with, for example, conical translucent covers 8. Rectangular shapes for the light exit face and the cover are also possible. In this case, for example, a planar pyramid-shaped cover with a rectangular base may be used. However, the covers are preferably flat, i.e. the shorter side is for example at least half of a longer side, to achieve similar optical effects in all directions.
While specific aspects have been described, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the aspects of this disclosure as defined by the appended claims. The scope is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 101 345.5 | Jan 2016 | DE | national |
The present application is a national stage entry according to 35 U.S.C. § 371 of PCT application No.: PCT/EP2017/051557 filed on Jan. 25, 2017, which claims priority from German Patent Application Serial No.: 10 2016 101 345.5 which was filed Jan. 26, 2016, and is incorporated herein by reference in its entirety and for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/051557 | 1/25/2017 | WO | 00 |