Lyophilization container fill fixture, system and method of use

Information

  • Patent Grant
  • 11815311
  • Patent Number
    11,815,311
  • Date Filed
    Tuesday, September 6, 2022
    2 years ago
  • Date Issued
    Tuesday, November 14, 2023
    a year ago
Abstract
Provided is a gas fill fixture for use in lyophilization, a related system and method. The gas fill fixture includes a chassis, fill indicator and a lid, such that the chassis and lid together form a cavity for receiving a flexible lyophilization container. The system includes a lyophilization container, a lyophilizer and a gas fill fixture incorporating a chassis, a fill indicator and a lid. The method includes process steps for using the system to lyophilize a fluid.
Description
BACKGROUND

The present application relates to the lyophilization of a composite fluid, such as human or animal blood or blood plasma. In particular, the present application describes a gas fill fixture for preparing a flexible lyophilization container to be used in a lyophilization process, including a related system and method. The gas fill fixture is a rigid housing configured to house a flexible lyophilization container and to provide a gas fill indication to an operator. The system includes the gas fill fixture, a lyophilization container and a lyophilizer. The method relates to the inclusion of the gas fill fixture in a lyophilization process.


Various methods for lyophilizing a fluid are known. One example of such a method is described in U.S. Application Publication No. 2019/0106245 to Weimer et al., entitled “Lyophilization Container and Method of Using Same.” In the described method, a gas is added to a flexible lyophilization container which houses a fluid to be lyophilized. The gas is added to the flexible lyophilization container prior to the freezing step for the purpose of creating a vapor space above the ice cake to be formed. The inclusion of a vapor space above the formed ice cake facilitates vapor flow throughout sublimation and desorption.


At present, a simple and precise means for inputting a correct gas volume into the flexible lyophilization container does not exist. Current gas fill procedures are generally performed manually and are consequently considered to be cumbersome and imprecise. This imprecision, in turn, may result in inconsistencies in batch lyophilization processes. Accordingly, the present application describes an improvement to current devices and techniques used to perform a gas fill step in the lyophilization of a biological fluid such as blood or a blood product.


Although specific embodiments of the present application are provided in view of the above-described considerations, the specific problems discussed herein should not be interpreted as limiting the applicability of the embodiments of this disclosure in any way.


SUMMARY

This summary is provided to introduce aspects of some embodiments of the present application in a simplified form and is not intended to comprise an exhaustive list of all critical or essential elements of the claimed invention, nor is it intended to limit the scope of the claims.


In one aspect, embodiments provide for a gas fill fixture for use in lyophilization. The gas fill fixture includes a chassis, fill indicator and a lid. The chassis and lid together form a cavity configured to receive a flexible lyophilization container placed along its longitudinal axis therein.


In another aspect, embodiments provide for a system for lyophilizing a fluid. The system includes a lyophilization container, a lyophilizer and a gas fill fixture. The gas fill fixture includes a chassis, a fill indicator and a lid.


In yet another aspect, embodiments provide for a method of lyophilizing a fluid. The method includes inputting a liquid into a flexible lyophilization container, inputting a portion of the lyophilization container into a gas fill fixture, inputting a gas into the lyophilization container, determining an appropriate gas fill volume based on an indication from a fill indicator of the gas fill fixture, loading the lyophilization container into a lyophilizer and lyophilizing the fluid.


Further embodiments of the present application include additional methods and devices and systems for lyophilizing fluids. The fluid may be any suitable liquid, including human or animal plasma.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments are described with reference to the following figures.



FIG. 1 is an illustration of a flexible multi-part lyophilization container according to the related art;



FIG. 2 is an illustration of a lyophilizer according to the related art;



FIG. 3 is a plan view of a gas fill fixture according to an embodiment of the present application;



FIGS. 4A to 4C are front views of a gas fill fixture according to an embodiment of the present application;



FIG. 5 is a side view of a gas fill fixture according to an embodiment of the present application;



FIG. 6 is perspective view of a gas fill fixture housing a flexible lyophilization container according to an embodiment of the present application;



FIG. 7 is an illustration of a system for lyophilizing a fluid according to an embodiment of the present application; and



FIG. 8 is a workflow schematic illustrating a lyophilization process according to an embodiment of the present application.





DETAILED DESCRIPTION

The principles described in the present application may be further understood by reference to the following detailed description and the embodiments depicted in the accompanying drawings. Although specific features are shown and described below with respect to particular embodiments, the present application is not limited to the specific features or embodiments provided. Moreover, embodiments below may be described in association with the lyophilization of biological fluids, such as human or animal blood or blood components; however, such descriptions are merely illustrative. Those of skill in the art will appreciate that embodiments of this disclosure may be used in connection with the determining of a correct gas fill volume in many contexts.


Embodiments of the present application principally refer to a stand-alone fixture that is utilized in the preparation of a fluid to be lyophilized. More particularly, a gas fill fixture is described which allows for the placement of a flexible lyophilization container therein, and which provides an indication to an operator when a proper gas fill volume in the flexible container has been achieved.


Any suitable fluid may be prepared for lyophilization and lyophilized using the devices and techniques described in this disclosure, including a biological fluid such as human or animal blood or a blood product, such as blood plasma.


Various advantages of the enumerated embodiments are noted throughout this disclosure.



FIG. 1 is an illustration of a flexible multi-part lyophilization container according to the related art.


Referring to FIG. 1, the lyophilization container 100 includes a non-breathable section 102; including a port region 104; a breathable section 106, including a breathable membrane 108; and an occlusion zone 110.


In operation, lyophilization container 100 exchanges fluids via ports positioned in the port region 104 of non-breathable section 102. Fluid exchanges occur during the initial filling of the container with liquid plasma and during the post-lyophilization filling of the container with sterile water for reconstitution and transfusion into a patient. Non-breathable section 102 and breathable section 106 are isolated from one another by a peelable seal or by a creation of an occlusion of the container in the occlusion zone 110 encompassing the transition between the non-breathable section 102 and breathable section 106. In this respect, the occlusion zone (i.e., the position of the peelable seal and/or the occlusion) 110 defines the boundary between non-breathable section 102 and breathable section 106.



FIG. 2 is an illustration of a lyophilizer according to the related art.


Referring to FIG. 2, the lyophilizer 200 comprises timing and temperature controls 202; and a hydraulic shelf system 204.


The lyophilizer shown in FIG. 2 is generic illustration of a conventional lyophilizer suitable for use in conjunction with embodiments of the present application. Typical components of suitable conventional lyophilizers include timing and temperature controls, a refrigeration system, a vacuum system, a condenser and a chamber including a hydraulic shelf system capable of lyophilization and stoppering.



FIG. 3 is a plan view of a gas fill fixture according to an embodiment ofthe present application.


Referring to FIG. 3, gas fill fixture 300 comprises chassis 302, including platform 304, side wall 306 and hinges 308; lid 310; fill indicator 312 and handle 314.


Chassis 302 comprises platform 304, side wall 306 and hinges 308. Lid 310 is attached to chassis 302 via hinges 308. Fill indicator 312 and handle 314 are respectively attached to the bottom side and to the top side of lid 310.


The length and width of chassis 302 are respectively denoted as “L” and “W”. In the embodiment shown in FIG. 3, chassis 302 length is approximately 26 cm and chassis 302 width is approximately 17 cm. As shown, lid 310 length, denoted as “LL,” is essentially coincident to the length of the chassis 302. Lid 310 width, denoted as “WL,” is likewise essentially coincident to width of the chassis 302.


In embodiments, neither the size and shape of the chassis 302 or the lid 310, nor their relationship to one another, are limited. For example, chassis 302 length may be between 15 cm and 50 cm, such as between 25 cm and 30 cm, and chassis width may be between 10 cm and 30 cm, such as between 15 cm and 20 cm. Similarly, lid 310 length may be between 15 cm and 50 cm, such as between 25 cm and 30 cm and lid 310 width may be between 10 cm and 30 cm, such as between 15 and 20 cm.


In the embodiment shown in FIG. 3, platform 304, side wall 306 and hinges 308 comprise a blend of Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS). PC/ABS is preferable for its toughness and impact resistance. Platform 304 is a solid piece of PC/ABS, whereas side wall 306 and hinges 308 are injection molded and cored using conventional techniques to reduce mass. Lid 310 is a transparent thermoplastic (e.g., acrylic). Thermoplastic is preferable for its durability and low cost. Transparency allows an operator to visually inspect the lyophilization container throughout a gas fill process.


In the embodiment of FIG. 3, hinges 308 are a type of pivot hinge. Each hinge 308 comprises a top and a bottom hinge mount respectively attached to lid 310 and to platform 314. Each of the top and the bottom hinge 308 mount comprises a cup configured to house a portion of a dowel forming a pivotal connection therebetween. Alternative embodiments are not limited and may include a variety of conventional hinges, such as alternative pivot hinges, a metal butt hinge or Mortise hinge. Fill indicator 312 is a mechanical gauge configured to provide an operator with a means to visually determine a correct gas fill volume of an inputted lyophilization container. Handle 314 is plastic and resembles a conventional cabinet door pull or drawer pull.


A variety of alternative materials may be used in the individual components of the gas fill fixture 300. Any material selected should be resilient under repeated use conditions, including but not limited to plastics, metals, and metal alloys. In a preferred embodiment, fixture components are attached to one another with conventional screws; however, fixture components may be attached or adhered to one another using any other conventional technique, hardware, adhesive or the like.


In various alternative embodiments, a bumper or similar implement may be positioned between the side wall 306 and the lid 310 to absorb the shock of lid 310 closures, thereby prolonging fixture 300 lifespan. Such bumper embodiments may comprise any of a variety of materials, including but not limited to a high-density synthetic rubber such as Ethylene Propylene Diene Monomer rubber (EPDM). Material selected for use in a bumper should be shock absorbent and durable.



FIGS. 4A to 4C are front views of a gas fill fixture according to an embodiment of the present application.


Referring to FIGS. 4A to 4C, gas fill fixture 400 comprises chassis 402, including platform 404, side wall 406 and hinge 408; lid 410; fill indicator 412, including first indication section 414 and second indication section 416; and handle 418.



FIG. 4A is in illustration of a fill fixture 400 in a closed state. FIG. 4B is an illustration of a fill fixture 400 indicating a proper fill condition. FIG. 4C is an illustration of a fill fixture 400 indicating an overfilled condition.


In the embodiments shown in FIGS. 4A to 4C, chassis 402 is constructed from platform 404, side wall 406 and hinges 408 which together support lid 410. The fixture cavity formed within the assembled components is configured to accept, along its longitudinal axis, a portion of a flexible lyophilization container to be filled with a gas.


As shown in FIG. 4A, chassis 402 width, denoted as “W” is approximately 17 cm. Each of side wall 406 width and hinge width is approximately 1.5 cm. In embodiments, however, neither of side wall 406 width nor hinge 408 width are limited and either may be between 0.5 cm and 5 cm, such as between 2 cm and 4 cm. As shown, platform 404 width is coincident with chassis width. In embodiments, however, platform 404 width is not limited and may be between 10 cm and 30 cm, such as between 15 cm and 20 cm. In yet further embodiments having a differently configured chassis, platform 404 width may not be coincident to chassis width.


Overall fixture 400 height denoted as “H” is approximately 3.5 cm. In embodiments, however, fixture height is not limited and may be between 2 cm and 8 cm, such as between 3 cm and 5 cm. Overall fixture height includes lid 410 thickness and platform 404 thickness. As shown, each of lid 410 thickness and platform 404 thickness is approximately 0.5 cm. In embodiments, however, neither lid 410 thickness nor platform 404 thickness are limited, and either may be between 0.1 cm and 1 cm, such as between 0.3 cm and 0.7 cm. Side wall 406 height and hinge 408 height are each approximately 2.5 cm. In embodiments, however, neither side wall 406 height nor hinge 408 height is limited and either may be between 1 cm and 5 cm, such as between 2 cm and 3 cm.


Internal cavity height, denoted as “HC,” is approximately 2.5 cm. In embodiments, internal cavity height is not limited and may be between 2 cm and 6 cm, such as between 3 cm and 5 cm. As shown in FIG. 4, internal cavity height is coincident to the side wall height and to hinge 408 height; however, in alternative embodiments comprising a differently configured chassis, internal cavity height may not be coincident to side wall 406 height or hinge 408 height. Internal cavity width, denoted as “WC,” is approximately 14 cm. In embodiments, however, internal cavity width is not limited and may be between 8 cm and 20 cm, such as between 12 cm and 16 cm. Internal cavity length, although not shown, is generally coincident to chassis length and, in embodiments, may vary accordingly. In embodiments, any ofthe fixture dimensions, including their relationship to one another, are not limited and may vary.


As described below and shown in FIGS. 4A to 4C, fill indicator 412 is a vertically oriented, linear indicator attached to the bottom side of lid 410. Fill indicator 412 may be considered a conventional go/no-go gauge including a first indication section 414 and second indication section 416; the first section indicating a proper fill condition and the second section indicating an overfilled condition. In alternative embodiments; however, the location and configuration of fill indicator 412 is not limited and may vary without departing from the scope of this application.



FIG. 4A illustrates fill fixture 400 in a closed position. That is, lid 410 is at rest on chassis 402, and the fill indicator 412 remains obstructed from view behind an end portion of sidewall 406. In this closed position, fill indicator 412 does not indicate any fill condition.



FIG. 4B is an illustration of a fill fixture 400 indicating a proper fill condition. That is, a flexible lyophilization container has been placed within the fixture cavity and filled with a gas. Consequently, lid 410 has been lifted, and a first indication section 414 of fill indicator 412 configured to indicate that the lyophilization container has been filled with a desired amount of gas has been exposed. In exemplary embodiments, the color green is used to indicate a proper fill condition. However, in alternative embodiments, the type of visual indicator used for the first indication section is not limited and may be any suitable visual indicator such as another color, a conspicuous texture, or the like.



FIG. 4C illustrates fill fixture 400 in an overfilled condition. That is, a flexible lyophilization container has been placed within the fixture cavity and overfilled with a gas. Consequently, lid 410 has been lifted beyond a proper fill condition, exposing a second indication section 416 of fill indicator 412 designed to indicate that the lyophilization container has been filled with an amount of gas in excess of a desired amount. In exemplary embodiments, the color red is used to indicate an overfilled condition. However, in alternative embodiments, the type of visual indicator used for the second indication section is not limited and any suitable visual indicator that is dissimilar to the indicator used for a proper fill condition may be used. For example, another color, a different texture, or the like may be used to indicate an overfilled condition.


In embodiments, chassis 402 may include components comprising dissimilar materials. For instance, platform 404 may comprise plastic whereas side wall 406 and hinges 408 may comprise a metal or vice versa. In further embodiments, platform 404 and side wall 406 may be formed as a single component. Various additional material choices and design combinations are within the scope of this application and can be readily envisioned by one of skill in the art.


As shown in FIGS. 4A to 4C, handle 418 resembles a conventional cabinet door pull or drawer pull. Handle 418 may be sized to allow an operator to manipulate lid 410 with a bare hand or with a gloved hand. Handle 418 is disposed at approximately the center of lid 410, perpendicular to the longitudinal axis of the fixture 400 cavity. In this configuration, it is possible to load a portion of a flexible lyophilization container into the fixture cavity along its longitudinal axis and to fold the remainder of the flexible container over the edge of the lid 410 in a manner allowing the remainder of the flexible container to be secured in the void space of the handle 418 (See FIG. 6). In such embodiments, specialized features such as cutouts, indentations or any other suitable features may be incorporated into the flexible container to cooperate with the handle 418 in securing the container. The ability to secure the entire flexible container to the fill fixture 400 in this manner may simplify the process of obtaining an accurate weight of the combined fixture and container before a fill procedure.



FIG. 5 is a side view of a gas fill fixture according to an embodiment of the present application.


Referring to FIG. 5, gas fill fixture 500 comprises side wall 502, including cutout portions 504; fill indicator 506; lid 508; and handle 510.


As shown, when the lid 508 is in the closed position, the fill indicator 506 rests adjacent to, and at a minimal distance from, a portion of side wall 502. Maintaining a minimal distance between the fill indicator 506 and the side wall 502 portion allows only one fill indication section of the fill indicator 506 to be visible to an operator at a given fill condition, thereby reducing the potential for operator error. Notably, side wall 502 includes cutout portions 504 to reduce mass and to reduce cost.


In further embodiments, fill indicator 506 may be differently configured and may include various alternative or additional technologies. For example, fill indicator 506 may be incorporated into one or more fixture components, and may comprise one or more of a camera, a sensor, a light or any other conventional electrical or mechanical means of providing a visual indication or performing visual or electronic monitoring or inspection of the gas fill process. The particular type of camera, sensor or light is not limited. For instance, an included sensor may be selected from among any of optical sensors, inductive sensors or capacitive sensors.



FIG. 6 is perspective view of a gas fill fixture housing a flexible multi-part lyophilization container according to an embodiment of the present application.


Referring to FIG. 6, gas fill fixture 600 is shown accommodating a flexible, multipart lyophilization container 602.


As shown, a non-permeable portion of the lyophilization container 602 has been loaded into the fixture 600 cavity and filled with a gas. Accordingly, the lid is shown as having been lifted from the chassis, allowing the fill indicator to extend upward and indicate a proper fill condition. A portion of the lyophilization container 602 including a gas permeable membrane has been folded over the lid of the gas fill fixture 600 and secured in the void space of the handle. The securing of the lyophilization container 602 in the handle is achieved by a cooperation between lyophilization container 602 features and complementary features of the fixture handle.


The fill fixture 600 assists an operator in the creation of a desired vapor space in the lyophilization container 602 to reduce the amount of ice “sticking” to the container material during and after the freezing step of lyophilization. Material and design choices should take into consideration that the creation of a vapor space in the lyophilization container 602 may cause container pressure to reach between 0.3 Pound per square inch (Psi) and 1.0 Psi, such as 0.5 Psi (approximately 26 mmHG).



FIG. 7 is an illustration of a system for lyophilizing a fluid according to an embodiment of the present application.


Referring to FIG. 7, the system 700 includes a gas fill fixture 702; a lyophilization container 704; a lyophilization loading tray 706; and a lyophilizer 708.


System 700 may vary in embodiments. For example, system 700 may exclude the lyophilization loading tray 706 altogether. In other embodiments, system 700 may employ components that are differently configured than those shown. For instance, lyophilizer 708 may be used in conjunction with a freezer that is a separate system component. Similarly, an alternatively configured lyophilization container 704 may result in differently configured system components which is within the scope of this application and can be readily envisioned by one of skill in the art. In yet further embodiments, various positioning and securing features may be incorporated into system components to ensure the proper positioning and securing of the lyophilization container to each system component.


An exemplary workflow included below describes the manner in which embodiments of the gas fill fixture may be included in a lyophilization process.



FIG. 8 is workflow schematic illustrating a lyophilization process according to an embodiment of the present application.


Referring to FIG. 8, in step 802, a subject fluid (e.g., blood plasma) is inputted into a non-breathable section of a flexible lyophilization container. In step 804, the non-breathable section of the lyophilization container is loaded into a gas fill fixture. In step 806, a gas is inputted into the non-breathable section of the lyophilization container. In step 808, an appropriate gas fill volume is determined based on a proper fill indication from fill indicator of the gas fill fixture. In this step, the gas is preferably Nitrogen; however, an alternative gas may be introduced, such as air, another inert gas, or a pH regulating gas, e.g., CO2. In step 810, the lyophilization container is optionally attached to a loading tray or other loading apparatus. In step 812, the lyophilization container is loaded into to a lyophilizer. In step 814, the liquid in the lyophilization container is frozen, creating a thin, uniformly thick structure of ice in the non-breathable section. In step 816, an occlusion is removed from the lyophilization container, allowing a pathway to exist between the non-breathable section of the lyophilization container and a breathable section of the lyophilization container. In this step, the removal of the occlusion may comprise, e.g., the opening of a peelable seal or the release of a mechanical clamp. In step 818, vacuum and heat energy are applied to accomplish sublimation and desorption, causing a phase change in the ice structure from the solid phase directly to the vapor phase. Vapor released from the ice structure flows through the lyophilization container cavity via the created pathway and escapes through the breathable section of the lyophilization container, leaving a lyophilized plasma cake in the non-breathable section. In step 820, the lyophilization container is optionally backfilled with an inert gas to raise lyophilization container pressure to partial atmospheric pressure. In step 822, the lyophilization container is occluded, dividing the non-breathable section from the breathable section in order to prevent contamination of the lyophilizate. In step 824, a permanent seam is optionally created in the non-breathable material of the lyophilization container. In step 826, the lyophilization container is optionally divided at the permanent seam, leaving the lyophilized end-product in the non-breathable section.


Notwithstanding the various specific embodiments enumerated in this disclosure, those skilled in the art will appreciate that a variety of modifications and optimizations could be implemented for particular applications without departing from the scope of this application. For instance, in alternative embodiments, the fill fixture may be adapted to fill multiple lyophilization containers simultaneously. Likewise, the fixture may be configured to accommodate the unique dimensions of any particular lyophilization container. In yet further embodiments, the gas fill fixture and other system components may include tabs, pins, clips or any other conventional attachment means configured to secure the lyophilization container in the correct position. Additionally, the present application is not limited to the lyophilization of blood or blood products. That is, the principles of the present application may be applicable to the lyophilization of many fluids. Accordingly, various modifications and changes may be made in the arrangement, operation, and details of the methods and systems of the present application which will be apparent to those skilled in the art.

Claims
  • 1. A fluid fill indicator for a lyophilization assembly, the fluid fill indicator comprising: a chassis;a lid; anda fill indicator fixed to a surface of the lid and configured to indicate a fill position based on a position of the lid relative to the chassis, the fill indicator configured to receive a lyophilization container that is configured to be received by a lyophilizer.
  • 2. The fluid fill indicator of claim 1, wherein the chassis includes Acrylonitrile Butadiene Styrene (ABS).
  • 3. The fluid fill indicator of claim 1, wherein the chassis includes Polycarbonate (PC).
  • 4. The fluid fill indicator of claim 1, wherein the lid is movably fixed to the chassis by a hinge.
  • 5. The fluid fill indicator of claim 4, wherein the hinge is a pivot hinge.
  • 6. The fluid fill indicator of claim 1, wherein the lid includes a handle.
  • 7. The fluid fill indicator of claim 1, wherein the fill indicator is disposed in a corner of the lid.
  • 8. The fluid fill indicator of claim 1, wherein the fill indicator is a mechanical indicator.
  • 9. The fluid fill indicator of claim 8, wherein the mechanical indicator is a linear indicator.
  • 10. The fluid fill indicator of claim 9, wherein the linear indicator uses multiple colors to indicate a proper fill condition and an overfilled condition.
  • 11. The fluid fill indicator of claim 1, wherein the fill indicator includes a sensor.
  • 12. The fluid fill indicator of claim 6, wherein the sensor is selected from among optical sensors, inductive sensors, and capacitive sensors.
  • 13. The fluid fill indicator of claim 1, wherein the fill indicator is a projection extending from a bottom surface of the lid toward the chassis.
  • 14. The fluid fill indicator of claim 13, wherein the chassis includes a projection extending from a top surface of the chassis, and as the lid pivots, a location of the fill indicator relative to the projection on the chassis indicates the fill position.
  • 15. A system for lyophilizing a fluid, the system comprising: a lyophilization tray configured to receive a lyophilization container;a lyophilizer configured to receive the lyophilization tray; anda fluid fill indicator configured to receive the lyophilization container, the fluid fill indicator including a chassis,a lid, anda fill indicator fixed to a surface of the lid and configured to indicate a fill position based on a position of the lid relative to the chassis.
  • 16. The system of claim 15, wherein the fill indicator is a mechanical indicator.
  • 17. The system of claim 16, wherein the mechanical indicator is a linear indicator.
  • 18. The system of claim 16, wherein the linear indicator uses multiple colors to indicate a proper fill condition and an overfilled condition.
  • 19. The system of claim 15, wherein the lid is pivotably attached to the chassis by a hinge.
  • 20. The system of claim 15, wherein the chassis includes sidewalls defining an interior space configured to receive the lyophilization container.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 16/815,904, entitled “Lyophilization Container Fill Fixture, System And Method Of Use,” filed in the U.S. Patent and Trademark Office on Mar. 11, 2020, which claims the benefit of U.S. Provisional Patent Application No. 62/818,214, entitled “Multi-part Lyophilization Container and Method of Use,” filed in the U.S. Patent and Trademark Office on Mar. 14, 2019, U.S. Provisional Application No. 62/952,752, entitled “Lyophilization Loading Tray Assembly and System,” filed in the U.S. Patent and Trademark Office on Dec. 23, 2019, and Provisional Patent Application No. 62/971,072, entitled “Lyophilization Container Fill Fixture, System and Method of Use,” filed in the U.S. Patent and Trademark Office on Feb. 6, 2020, each of which is incorporated by reference herein in its entirety.

Government Interests

The invention was made with government support under contract number H92222-16-C-0081 awarded by the United States Department of Defense. The government has certain rights in the invention.

US Referenced Citations (400)
Number Name Date Kind
136036 Craven Feb 1873 A
1441570 Fitzgerald Jan 1923 A
1504225 Fitzgerald Aug 1924 A
1956784 Allen May 1934 A
2659986 Hink, Jr. Nov 1953 A
2704075 Cherkin Mar 1955 A
2767117 Crawley Oct 1956 A
2893843 Adams, Jr. Jul 1959 A
2912359 Anigstein et al. Nov 1959 A
3008879 Harvill Nov 1961 A
3024167 Damaskus Mar 1962 A
3057781 Mace et al. Oct 1962 A
3123443 Smeby Mar 1964 A
3187750 Tenczar Jun 1965 A
3223593 Aldrich et al. Dec 1965 A
3228841 Cohen et al. Jan 1966 A
3229813 Crowe, Jr. et al. Jan 1966 A
3236732 Arquilla Feb 1966 A
3247957 Kemble Apr 1966 A
3260648 Fox Jul 1966 A
3294523 Morningstar Dec 1966 A
3322634 Fulthorpe May 1967 A
3375824 Krakauer et al. Apr 1968 A
3395210 Lenahan et al. Jul 1968 A
3423290 Chappelle Jan 1969 A
3453180 Fraser, Jr. et al. Jul 1969 A
3466249 Anderson Sep 1969 A
3468471 Linder Sep 1969 A
3490437 Bakondy et al. Jan 1970 A
3519572 Kita Jul 1970 A
3533934 Armanini Oct 1970 A
3537189 Bender et al. Nov 1970 A
3548051 Dingwall Hamilton Dec 1970 A
3556760 Bender et al. Jan 1971 A
3565987 Schuurs Feb 1971 A
3571940 Bender Mar 1971 A
3573063 Williams Mar 1971 A
3574950 Dantoni Apr 1971 A
3607858 Querry et al. Sep 1971 A
3627878 Linsner Dec 1971 A
3629142 Marbach Dec 1971 A
3674860 Welter et al. Jul 1972 A
3714345 Hirata Jan 1973 A
3717708 Wada et al. Feb 1973 A
3730843 McKie, Jr. May 1973 A
3799740 Mincey Mar 1974 A
3803299 Nouel Apr 1974 A
3831293 Ingram et al. Aug 1974 A
3859047 Klein Jan 1975 A
3922145 Turner et al. Nov 1975 A
3932943 Briggs et al. Jan 1976 A
3944665 Galoian et al. Mar 1976 A
3945523 Wertlake et al. Mar 1976 A
3964865 Das Jun 1976 A
3973002 Hagan et al. Aug 1976 A
3987159 Spona et al. Oct 1976 A
3993585 Pinto et al. Nov 1976 A
4001944 Williams Jan 1977 A
4002739 Turner et al. Jan 1977 A
4035924 Faure Jul 1977 A
4045176 Proksch et al. Aug 1977 A
4049673 Scheinberg Sep 1977 A
4056484 Heimburger et al. Nov 1977 A
4059491 Iwasa et al. Nov 1977 A
4080265 Antonik Mar 1978 A
4089944 Thomas May 1978 A
4109396 Fraser Aug 1978 A
4127502 Li Mutti et al. Nov 1978 A
4134943 Knitsch et al. Jan 1979 A
4141856 Dorwart, Jr. et al. Feb 1979 A
4141887 Seufert Feb 1979 A
4155186 Robinson May 1979 A
4157383 Sedlacek et al. Jun 1979 A
4188318 Shanbrom Feb 1980 A
4189400 Proksch et al. Feb 1980 A
4202665 Wenz et al. May 1980 A
4218321 Sasaki et al. Aug 1980 A
4249826 Studievic et al. Feb 1981 A
4284725 Fennel, III et al. Aug 1981 A
4287087 Brinkhous et al. Sep 1981 A
4298441 Seidel et al. Nov 1981 A
4323478 Adams et al. Apr 1982 A
4324685 Louderback Apr 1982 A
4330463 Luijerink May 1982 A
4333767 Nass Jun 1982 A
4337240 Saklad Jun 1982 A
4442655 Stroetmann Apr 1984 A
4456590 Rubinstein Jun 1984 A
4465774 Huang et al. Aug 1984 A
4495278 Thomas Jan 1985 A
4506455 Rossi Mar 1985 A
4543335 Sommer et al. Sep 1985 A
4581231 Purcell et al. Apr 1986 A
4595021 Shimizu et al. Jun 1986 A
4614795 Chavin et al. Sep 1986 A
4624927 Fukushima et al. Nov 1986 A
4650678 Fuhge et al. Mar 1987 A
4664913 Mielke et al. May 1987 A
4666725 Yamashita et al. May 1987 A
4687664 Philapitsch et al. Aug 1987 A
4716119 Rehner et al. Dec 1987 A
4722790 Cawley et al. Feb 1988 A
4730460 Coelho et al. Mar 1988 A
4731330 Hill et al. Mar 1988 A
4746730 De Ambrosi et al. May 1988 A
4780314 Graves Oct 1988 A
4806343 Carpenter et al. Feb 1989 A
4812557 Yasushi et al. Mar 1989 A
4813210 Masuda et al. Mar 1989 A
4850353 Stasz et al. Jul 1989 A
4874690 Goodrich, Jr. et al. Oct 1989 A
4877608 Lee et al. Oct 1989 A
4877741 Babcock et al. Oct 1989 A
4902287 Carmen et al. Feb 1990 A
4904641 Eibl et al. Feb 1990 A
4973327 Goodrich, Jr. et al. Nov 1990 A
4986998 Yoo et al. Jan 1991 A
4994057 Carmen et al. Feb 1991 A
5043261 Goodrich et al. Aug 1991 A
5045446 Goodrich, Jr. et al. Sep 1991 A
5059036 Richison et al. Oct 1991 A
5059518 Kortright et al. Oct 1991 A
5061789 Moller et al. Oct 1991 A
5063178 Toomey Nov 1991 A
5073378 Shoshan et al. Dec 1991 A
5114004 Isono et al. May 1992 A
5118795 Rubinstein Jun 1992 A
5129162 Hemmersbach et al. Jul 1992 A
5147803 Enomoto Sep 1992 A
5151500 Wismer-Pedersen et al. Sep 1992 A
5171661 Goodrich, Jr. et al. Dec 1992 A
5178884 Goodrich et al. Jan 1993 A
5213814 Goodrich, Jr. et al. May 1993 A
5242792 Rudolph et al. Sep 1993 A
5257983 Garyantes et al. Nov 1993 A
5260420 Burnouf-Radosevich et al. Nov 1993 A
5262325 Zimmermann et al. Nov 1993 A
5304383 Eibl et al. Apr 1994 A
5309649 Bergmann et al. May 1994 A
5340592 Goodrich, Jr. et al. Aug 1994 A
5399670 Bhattacharya et al. Mar 1995 A
5411893 Eden et al. May 1995 A
5420250 Lontz May 1995 A
5425951 Goodrich, Jr. et al. Jun 1995 A
5464471 Whalen et al. Nov 1995 A
5514123 Adolf et al. May 1996 A
5514586 Hottinger et al. May 1996 A
5527260 Kameyama Jun 1996 A
5547873 Magneson et al. Aug 1996 A
5551781 Wilkes et al. Sep 1996 A
5585007 Antanavich et al. Dec 1996 A
5637345 Lee et al. Jun 1997 A
5648206 Goodrich, Jr. et al. Jul 1997 A
5651966 Read et al. Jul 1997 A
5656498 Iijima et al. Aug 1997 A
5690963 Spargo et al. Nov 1997 A
5695764 Bontemps Dec 1997 A
5698535 Geczy et al. Dec 1997 A
5736313 Spargo et al. Apr 1998 A
5747268 Herring et al. May 1998 A
5750330 Tometsko et al. May 1998 A
5750657 Edwardson et al. May 1998 A
5759774 Hackett et al. Jun 1998 A
5795571 Cederholm-Wlliams et al. Aug 1998 A
5831027 McIntosh et al. Nov 1998 A
5834418 Brazeau et al. Nov 1998 A
5837519 Savage et al. Nov 1998 A
5849473 Cabrera et al. Dec 1998 A
5853388 Semel Dec 1998 A
5860222 Leander Jan 1999 A
5861311 Maples et al. Jan 1999 A
5891393 Read et al. Apr 1999 A
5919766 Osterberg et al. Jul 1999 A
5919935 Platz et al. Jul 1999 A
5928213 Barney et al. Jul 1999 A
5946931 Lomax et al. Sep 1999 A
5968831 Shukla et al. Oct 1999 A
5985582 Triscott Nov 1999 A
6007529 Gustafsson et al. Dec 1999 A
6034060 Yamamoto et al. Mar 2000 A
6060233 Wiggins May 2000 A
6132454 Fellows Oct 2000 A
6139878 Summaria et al. Oct 2000 A
6148536 Iijima Nov 2000 A
6187553 Antignani et al. Feb 2001 B1
6199297 Wisniewski Mar 2001 B1
6218195 Gottschalk et al. Apr 2001 B1
6221575 Roser et al. Apr 2001 B1
6270985 Gottschalk et al. Aug 2001 B1
6323036 Chapoteau et al. Nov 2001 B1
6323037 Lauto et al. Nov 2001 B1
6331557 Brugnara et al. Dec 2001 B1
6346216 Kent Feb 2002 B1
6350584 Gottschalk et al. Feb 2002 B1
6358236 DeFoggi et al. Mar 2002 B1
6358678 Bakaltcheva et al. Mar 2002 B1
6372423 Braun Apr 2002 B1
6381870 Kohlman et al. May 2002 B1
6398771 Gustafsson et al. Jun 2002 B1
6416717 Suzuki et al. Jul 2002 B1
6472162 Coelho et al. Oct 2002 B1
6517526 Tamari Feb 2003 B1
6566504 Bhattacharya et al. May 2003 B2
6608237 Li et al. Aug 2003 B1
RE38431 Miekka et al. Feb 2004 E
6773425 Tamari Aug 2004 B1
6852540 Makiuchi et al. Feb 2005 B2
6869901 Lubker, II Mar 2005 B2
6872576 McIntyre Mar 2005 B1
6887852 Paik et al. May 2005 B1
6890512 Roser et al. May 2005 B2
6981337 Jones et al. Jan 2006 B2
7041635 Kim et al. May 2006 B2
7048709 Goudaliez et al. May 2006 B2
7112320 Beaulieu et al. Sep 2006 B1
7175614 Gollier et al. Feb 2007 B2
7179951 Krishnaswamy-Mirle et al. Feb 2007 B2
7202341 McGinnis et al. Apr 2007 B2
7249880 Zambaux Jul 2007 B2
7343696 Covert Mar 2008 B2
7358039 Fischer et al. Apr 2008 B2
7363726 Wang Apr 2008 B2
7411038 Haynie Aug 2008 B2
7422726 Hammerstedt et al. Sep 2008 B2
7435795 McGinnis et al. Oct 2008 B2
7473246 Vancaillie et al. Jan 2009 B2
7480032 Braig et al. Jan 2009 B2
7482020 Hennessy et al. Jan 2009 B2
7501493 Roser Mar 2009 B2
7569184 Wandell et al. Aug 2009 B2
7618406 Roger Nov 2009 B2
7678888 Friedman et al. Mar 2010 B2
7727743 Bardat et al. Jun 2010 B2
7776022 McCarthy et al. Aug 2010 B2
7811558 Ho et al. Oct 2010 B2
7879332 Zurlo et al. Feb 2011 B2
7931919 Bakaltcheva et al. Apr 2011 B2
7966746 Py Jun 2011 B2
8013022 DeAngelo et al. Sep 2011 B2
8057872 Chen Nov 2011 B2
8097403 Ho et al. Jan 2012 B2
8187475 Hecker et al. May 2012 B2
8235965 Roger Aug 2012 B2
8236355 Eijkenboom Aug 2012 B2
8268362 Braun et al. Sep 2012 B2
8277837 Fischer et al. Oct 2012 B2
8313654 Piazza et al. Nov 2012 B2
8372343 Goldstein Feb 2013 B2
8377882 Schneider Feb 2013 B2
8407912 Hubbard, Jr. et al. Apr 2013 B2
8430970 Swami et al. Apr 2013 B2
8449520 Pepper et al. May 2013 B2
8450079 Kovalenko et al. May 2013 B2
8491178 Breidenthal et al. Jul 2013 B2
8492081 Nichols et al. Jul 2013 B2
8492087 Suematsu et al. Jul 2013 B2
8512754 Needham Aug 2013 B2
8516714 Biemans et al. Aug 2013 B2
8518452 Bjornstrup et al. Aug 2013 B2
8529961 Campbell et al. Sep 2013 B2
8598319 Michel et al. Dec 2013 B2
8603063 Grimm Dec 2013 B2
8858681 Harp Oct 2014 B2
8951565 McCarthy Feb 2015 B2
9011846 Overholser et al. Apr 2015 B2
9046303 Yagi Jun 2015 B2
9132206 McCarthy Sep 2015 B2
9161527 Cutting et al. Oct 2015 B2
9469835 Bronshtain Oct 2016 B2
9545379 Liu et al. Jan 2017 B2
9561184 Khan et al. Feb 2017 B2
9561893 Root et al. Feb 2017 B2
9696284 Rannisto et al. Jul 2017 B2
9796273 Ragazzini Oct 2017 B2
9863701 Robinson Jan 2018 B2
10058091 Wolf et al. Aug 2018 B2
10377520 Root et al. Aug 2019 B2
10492507 Rizvi Dec 2019 B2
10507165 Di Naro Dec 2019 B2
10539367 Corbin, III et al. Jan 2020 B2
10723497 Diaz Guerrero Jul 2020 B2
10793327 Weimer Oct 2020 B2
10830535 Oprins et al. Nov 2020 B2
10844366 Durance et al. Nov 2020 B2
11236942 Christ Feb 2022 B2
11236943 Christ Feb 2022 B2
11609043 Johnson Mar 2023 B2
20010004641 Hawkins Jun 2001 A1
20010031721 Webb et al. Oct 2001 A1
20020035354 Mirle et al. Mar 2002 A1
20020146409 Herring et al. Oct 2002 A1
20030065149 McGinnis et al. Apr 2003 A1
20030068416 Burgess et al. Apr 2003 A1
20030080056 Boos et al. May 2003 A1
20030104508 Gempeler et al. Jun 2003 A1
20030134418 Mitaka Jul 2003 A1
20030143566 Helftenbein Jul 2003 A1
20040005310 Rapp et al. Jan 2004 A1
20040081588 Hammerstedt et al. Apr 2004 A1
20040126880 Manders et al. Jul 2004 A1
20040132207 Arima et al. Jul 2004 A1
20050158856 Edelson et al. Jul 2005 A1
20050170068 Roodink et al. Aug 2005 A1
20050282734 Kadima et al. Dec 2005 A1
20060004189 Gandy Jan 2006 A1
20060134084 Wolkers et al. Jun 2006 A1
20060182652 Burgess et al. Aug 2006 A1
20060216687 Alves-Filho et al. Sep 2006 A1
20060263759 Alves-Filho et al. Nov 2006 A1
20070014780 Woolverton Jan 2007 A1
20070110817 Shestakov May 2007 A1
20070116599 Walters et al. May 2007 A1
20070135343 Webb et al. Jun 2007 A1
20070166389 Bakaltcheva Jul 2007 A1
20070275028 Barry et al. Nov 2007 A1
20080038818 Natan et al. Feb 2008 A1
20080063697 Bedard Mar 2008 A1
20080119818 Bakaltcheva et al. May 2008 A1
20080145444 Merchant et al. Jun 2008 A1
20080193386 Yoo et al. Aug 2008 A1
20080206293 Toreki et al. Aug 2008 A1
20080234653 McCarthy et al. Sep 2008 A1
20080234654 McCarthy et al. Sep 2008 A1
20080249499 Vancaillie et al. Oct 2008 A1
20080256822 Suzuki et al. Oct 2008 A1
20080299212 Kim et al. Dec 2008 A1
20090036862 Grimm Feb 2009 A1
20090107001 McCarthy Apr 2009 A1
20090113753 Pepper et al. May 2009 A1
20090223080 McCarthy et al. Sep 2009 A1
20090324929 Yamakawa et al. Dec 2009 A1
20100049156 Dickhorner et al. Feb 2010 A1
20100144595 Bucci Jun 2010 A1
20100159023 Bjornstrup et al. Jun 2010 A1
20100168018 Pikal et al. Jul 2010 A1
20110008458 Gandy et al. Jan 2011 A1
20110008459 Marguerre et al. Jan 2011 A1
20110020299 Bader Jan 2011 A1
20110114524 Eibl May 2011 A1
20110142948 Langer et al. Jun 2011 A1
20110144613 Pepper et al. Jun 2011 A1
20110177541 Martinoli et al. Jul 2011 A1
20110183311 Ho et al. Jul 2011 A1
20110263408 Suto et al. Oct 2011 A1
20110282325 Gregory Nov 2011 A1
20120027867 Fischer et al. Feb 2012 A1
20120040384 Stangier Feb 2012 A1
20120045518 Nielsen et al. Feb 2012 A1
20120070855 Mirshahi et al. Mar 2012 A1
20120141595 Tseng et al. Jun 2012 A1
20120156306 Weissman et al. Jun 2012 A1
20120231485 Onundarson et al. Sep 2012 A1
20120252044 Rechner et al. Oct 2012 A1
20120329082 Viola et al. Dec 2012 A1
20130008048 Patel et al. Jan 2013 A1
20130019572 Beator et al. Jan 2013 A1
20130030161 Anitua Aldecoa Jan 2013 A1
20130040890 Guo et al. Feb 2013 A1
20130090291 Gulle et al. Apr 2013 A1
20130116410 Ivarsson et al. May 2013 A1
20130122107 Bakaltcheva May 2013 A1
20130126370 DiLiberto et al. May 2013 A1
20130143198 Sailliol Jun 2013 A1
20130149727 Aygen Jun 2013 A1
20130183661 Prante et al. Jul 2013 A1
20130195897 Teschner et al. Aug 2013 A1
20130195959 Patel Aug 2013 A1
20130202585 Bardat et al. Aug 2013 A1
20130243877 Haley et al. Sep 2013 A1
20130251695 Farmer et al. Sep 2013 A1
20130303842 Zeitels et al. Nov 2013 A1
20130316011 Ahn et al. Nov 2013 A1
20130326899 Yagi Dec 2013 A1
20140178513 Matthews Jun 2014 A1
20140212895 Lim Jul 2014 A1
20140259724 McCarthy et al. Sep 2014 A1
20140287643 Nozaki et al. Sep 2014 A1
20140360891 Kline et al. Dec 2014 A1
20150158652 Root et al. Jun 2015 A1
20150354894 Corbin, III et al. Dec 2015 A1
20160084572 Khan et al. Mar 2016 A1
20160375184 Albert et al. Dec 2016 A1
20170100339 Liu et al. Apr 2017 A1
20170113824 Root et al. Apr 2017 A1
20170203871 Murto et al. Jul 2017 A1
20170258877 Bare et al. Sep 2017 A1
20170259186 Khan et al. Sep 2017 A1
20170367322 Liu et al. Dec 2017 A1
20180128544 Corbin, III et al. May 2018 A1
20180221418 Daniel et al. Aug 2018 A1
20190000979 Cleek et al. Jan 2019 A1
20190030169 Ivarsson et al. Jan 2019 A1
20190142694 Di Naro May 2019 A1
20200253826 Qiu et al. Aug 2020 A1
20200288703 Parakininkas Sep 2020 A1
20200289728 Johnson Sep 2020 A1
20200292231 Johnson Sep 2020 A1
20210016943 Weimer Jan 2021 A1
20210127663 Paukkonen May 2021 A1
20230008773 Johnson Jan 2023 A1
Foreign Referenced Citations (438)
Number Date Country
517248 Jul 1981 AU
590193 Nov 1989 AU
622133 Apr 1992 AU
8165698 Jan 2000 AU
744025 Feb 2002 AU
2002326819 Apr 2003 AU
2007205748 Nov 2009 AU
2012205238 Aug 2012 AU
64922 Sep 2006 BG
745958 Nov 1966 CA
780792 Mar 1968 CA
787838 Jun 1968 CA
835939 Mar 1970 CA
843883 Jun 1970 CA
1260389 Sep 1989 CA
1210267 Mar 1999 CN
1242429 Jan 2000 CN
1376520 Oct 2002 CN
1410537 Apr 2003 CN
1156282 Jul 2004 CN
1157194 Jul 2004 CN
1162160 Aug 2004 CN
1187616 Feb 2005 CN
1220512 Sep 2005 CN
1745627 Mar 2006 CN
1250718 Apr 2006 CN
1267340 Aug 2006 CN
1270731 Aug 2006 CN
1281161 Oct 2006 CN
1931025 Mar 2007 CN
101152211 Apr 2008 CN
101216432 Jul 2008 CN
101299029 Nov 2008 CN
101310728 Nov 2008 CN
100469359 Mar 2009 CN
101416985 Apr 2009 CN
100531723 Aug 2009 CN
101579356 Nov 2009 CN
100584942 Jan 2010 CN
101618120 Jan 2010 CN
101167745 Jun 2010 CN
101766252 Jul 2010 CN
101833009 Sep 2010 CN
101879333 Nov 2010 CN
101893628 Nov 2010 CN
101893639 Nov 2010 CN
101957364 Jan 2011 CN
101971972 Feb 2011 CN
101347617 Apr 2011 CN
102000022 Apr 2011 CN
102008504 Apr 2011 CN
102012433 Apr 2011 CN
102050876 May 2011 CN
102078306 Jun 2011 CN
102106872 Jun 2011 CN
101433553 Aug 2011 CN
102207504 Oct 2011 CN
101385855 Nov 2011 CN
102229670 Nov 2011 CN
102241767 Nov 2011 CN
102250238 Nov 2011 CN
101461939 Jan 2012 CN
102337252 Feb 2012 CN
102363634 Feb 2012 CN
102426240 Apr 2012 CN
102426258 Apr 2012 CN
101285086 May 2012 CN
102435743 May 2012 CN
101830979 Jun 2012 CN
101843335 Jun 2012 CN
102507934 Jun 2012 CN
102512418 Jun 2012 CN
102524812 Jul 2012 CN
102552154 Jul 2012 CN
102579737 Jul 2012 CN
102590496 Jul 2012 CN
102590529 Jul 2012 CN
102600074 Jul 2012 CN
102600231 Jul 2012 CN
102600508 Jul 2012 CN
101899110 Aug 2012 CN
102614219 Aug 2012 CN
102628869 Aug 2012 CN
102645358 Aug 2012 CN
101816789 Sep 2012 CN
102688200 Sep 2012 CN
102692514 Sep 2012 CN
101900712 Oct 2012 CN
102327289 Oct 2012 CN
102697581 Oct 2012 CN
102746396 Oct 2012 CN
102754848 Oct 2012 CN
102327288 Nov 2012 CN
102793053 Nov 2012 CN
101843289 Dec 2012 CN
102854322 Jan 2013 CN
102866220 Jan 2013 CN
102866255 Jan 2013 CN
102879560 Jan 2013 CN
101948630 Feb 2013 CN
102908321 Feb 2013 CN
102908368 Feb 2013 CN
102093385 Mar 2013 CN
102228683 Mar 2013 CN
102240310 Mar 2013 CN
102988974 Mar 2013 CN
102210854 Apr 2013 CN
103007280 Apr 2013 CN
103039693 Apr 2013 CN
103054816 Apr 2013 CN
101756013 May 2013 CN
103076455 May 2013 CN
103113456 May 2013 CN
102258780 Jun 2013 CN
102319425 Jun 2013 CN
102525954 Jun 2013 CN
102274493 Aug 2013 CN
203572189 Apr 2014 CN
203572189 Apr 2014 CN
106461327 Feb 2017 CN
106461327 Feb 2017 CN
277138 Nov 1992 CS
109659 Nov 1974 DE
2430447 Jan 1975 DE
112775 May 1975 DE
2617742 Jun 1977 DE
2617742 Jun 1977 DE
2365629 Jun 1983 DE
19729778 Jan 1999 DE
19729778 Jan 1999 DE
69521470 May 2002 DE
69133198 Jul 2003 DE
69810755 Aug 2003 DE
105923 Apr 1984 EP
121868 Oct 1984 EP
0157579 Oct 1985 EP
0157579 Oct 1985 EP
111777 Mar 1987 EP
0124018 Nov 1987 EP
204045 Jan 1988 EP
0284249 Sep 1988 EP
0284249 Sep 1988 EP
0335682 Oct 1989 EP
0335682 Oct 1989 EP
0343596 Nov 1989 EP
0343596 Nov 1989 EP
206448 Nov 1990 EP
215050 Feb 1991 EP
445108 Sep 1991 EP
392377 Feb 1995 EP
593176 Mar 1995 EP
752097 Jan 1997 EP
485377 May 1999 EP
1021726 Jul 2000 EP
1087990 Apr 2001 EP
1087990 Apr 2001 EP
1171163 Jan 2002 EP
1243275 Sep 2002 EP
1286706 Mar 2003 EP
876155 Jul 2004 EP
1087990 Sep 2004 EP
1113269 Oct 2006 EP
1870649 Dec 2007 EP
997735 Jan 2008 EP
1958618 Aug 2008 EP
1958618 Aug 2008 EP
1730299 Jun 2011 EP
2371343 Dec 2011 EP
2431024 Mar 2012 EP
2431024 Mar 2012 EP
2574350 Apr 2013 EP
1407780 May 2013 EP
1407780 May 2013 EP
2729932 May 2014 EP
2729932 May 2014 EP
3290064 Mar 2018 EP
3290064 Mar 2018 EP
2001727 Oct 1969 FR
2160285 Jun 1973 FR
2187909 Jan 1974 FR
2224118 Oct 1974 FR
2227276 Nov 1974 FR
2363577 Mar 1978 FR
2475737 Aug 1981 FR
2600998 Jan 1988 FR
2717782 Sep 1995 FR
2717782 Sep 1995 FR
2729932 Aug 1996 FR
2729932 Aug 1996 FR
2814239 Mar 2002 FR
2963556 Feb 2012 FR
353286 Jul 1931 GB
425567 Mar 1935 GB
450146 Jul 1936 GB
450146 Jul 1936 GB
491515 Sep 1938 GB
620573 Mar 1949 GB
727148 Mar 1955 GB
731104 Jun 1955 GB
748784 May 1956 GB
748784 May 1956 GB
770075 Mar 1957 GB
807781 Jan 1959 GB
814491 Jun 1959 GB
814491 Jun 1959 GB
853288 Nov 1960 GB
859609 Jan 1961 GB
906860 Sep 1962 GB
911181 Nov 1962 GB
917012 Jan 1963 GB
941019 Nov 1963 GB
979759 Jan 1965 GB
1003748 Sep 1965 GB
1073172 Jun 1967 GB
1074461 Jul 1967 GB
1186544 Apr 1970 GB
1206033 Sep 1970 GB
1206033 Sep 1970 GB
1222810 Feb 1971 GB
1266274 Mar 1972 GB
1337178 Nov 1973 GB
1372812 Nov 1974 GB
1391746 Apr 1975 GB
1480092 Jul 1977 GB
1486787 Sep 1977 GB
1486787 Sep 1977 GB
1497517 Jan 1978 GB
1507435 Apr 1978 GB
1524712 Sep 1978 GB
1530748 Nov 1978 GB
1536725 Dec 1978 GB
1551792 Aug 1979 GB
1551928 Sep 1979 GB
1563839 Apr 1980 GB
2148090 Jul 1987 GB
2167856 Dec 1988 GB
2564481 Jan 2019 GB
2564481 Jan 2019 GB
1064142 Feb 1985 IT
S52156921 Dec 1977 JP
S53091117 Aug 1978 JP
S5426961 Feb 1979 JP
S5571452 May 1980 JP
S56127307 Oct 1981 JP
S56127308 Oct 1981 JP
S56160991 Dec 1981 JP
S5772911 May 1982 JP
S57122796 Jul 1982 JP
S57142561 Sep 1982 JP
S57159561 Oct 1982 JP
S58131566 Aug 1983 JP
S59088042 May 1984 JP
S59136657 Aug 1984 JP
S59181224 Oct 1984 JP
S59212768 Dec 1984 JP
S59218960 Dec 1984 JP
S60168051 Aug 1985 JP
S61040752 Feb 1986 JP
S61053567 Mar 1986 JP
S61128974 Jun 1986 JP
S61155332 Jul 1986 JP
S61225652 Oct 1986 JP
S61282054 Dec 1986 JP
S62010019 Jan 1987 JP
S62138433 Jun 1987 JP
H63-036828 Feb 1988 JP
H63-036828 Feb 1988 JP
S63157936 Jun 1988 JP
1021741 Apr 1989 JP
H1247060 Oct 1989 JP
H2221859 Sep 1990 JP
H07270405 Oct 1995 JP
H09020687 Jan 1997 JP
H09222427 Aug 1997 JP
2657092 Sep 1997 JP
H1045616 Feb 1998 JP
H10108907 Apr 1998 JP
H10-165480 Jun 1998 JP
H10165480 Jun 1998 JP
3140797 Mar 2001 JP
3142192 Mar 2001 JP
3219181 Oct 2001 JP
2002029977 Jan 2002 JP
2002052067 Feb 2002 JP
3292760 Jun 2002 JP
3365091 Jan 2003 JP
2003055256 Feb 2003 JP
2003055257 Feb 2003 JP
2003-144523 May 2003 JP
2003144523 May 2003 JP
2003339346 Dec 2003 JP
2004049493 Feb 2004 JP
3543144 Jul 2004 JP
3712989 Nov 2005 JP
2006036749 Feb 2006 JP
2007197353 Aug 2007 JP
4024506 Dec 2007 JP
4059299 Mar 2008 JP
2006545011-X May 2008 JP
2008527741 Jul 2008 JP
2009297212 Dec 2009 JP
2010266086 Nov 2010 JP
2011239 Jan 2011 JP
2011120763 Jun 2011 JP
2012051895 Mar 2012 JP
5002106 Aug 2012 JP
5037621 Oct 2012 JP
5049447 Oct 2012 JP
5087815 Dec 2012 JP
5252909 Jul 2013 JP
5340945 Nov 2013 JP
2014-028661 Feb 2014 JP
2014-028661 Feb 2014 JP
5960660 Aug 2016 JP
2017-517335 Jun 2017 JP
2017-517335 Jun 2017 JP
6219922 Oct 2017 JP
6305870 Apr 2018 JP
2022525398 May 2022 JP
100197297 Jun 1999 KR
20000020804 Apr 2000 KR
100503629 Jul 2005 KR
20060005770 Jan 2006 KR
100631188 Oct 2006 KR
100767541 Oct 2007 KR
100857273 Sep 2008 KR
100908742 Jul 2009 KR
20110008382 Jan 2011 KR
101157096 Jun 2012 KR
101200423 Nov 2012 KR
20130009161 Jan 2013 KR
20130034991 Apr 2013 KR
20130053609 May 2013 KR
2011202 Apr 1994 RU
2028130 Feb 1995 RU
2028133 Feb 1995 RU
2080865 Jun 1997 RU
2090165 Sep 1997 RU
2090166 Sep 1997 RU
2121364 Nov 1998 RU
2193868 Dec 2002 RU
2197267 Jan 2003 RU
2242759 Dec 2004 RU
2266542 Dec 2005 RU
2273026 Mar 2006 RU
2314527 Jan 2008 RU
2322243 Apr 2008 RU
2332666 Aug 2008 RU
2325655 Nov 2008 RU
2357252 May 2009 RU
2426548 Aug 2011 RU
2442984 Feb 2012 RU
2455014 Jul 2012 RU
2456602 Jul 2012 RU
2463063 Oct 2012 RU
2012137892 Feb 2013 RU
2478958 Apr 2013 RU
2492867 Sep 2013 RU
548275 Feb 1977 SU
654238 Mar 1979 SU
686732 Sep 1979 SU
700129 Nov 1979 SU
786954 Dec 1980 SU
1344354 Oct 1987 SU
1592717 Sep 1990 SU
1678371 Sep 1991 SU
1716443 Feb 1992 SU
1752187 Jul 1992 SU
200600103 Jan 2006 TW
I358264 Feb 2012 TW
26543 Sep 2007 UA
WO-1992013495 Aug 1992 WO
WO-1992014360 Sep 1992 WO
WO-1995012127 May 1995 WO
WO-1995015763 Jun 1995 WO
1995-027180 Oct 1995 WO
WO-1995-027180 Oct 1995 WO
1996-029556 Sep 1996 WO
WO-1996-029556 Sep 1996 WO
1996-031748 Oct 1996 WO
WO-1996-031748 Oct 1996 WO
WO-1997046883 Dec 1997 WO
2000-036353 Jun 2000 WO
WO-2000-036353 Jun 2000 WO
WO-2000047187 Aug 2000 WO
WO-2001064228 Sep 2001 WO
WO-2002083157 Oct 2002 WO
WO-2002083737 Oct 2002 WO
WO-2002087540 Nov 2002 WO
WO-2003082310 Oct 2003 WO
2005-089816 Sep 2005 WO
WO-2005089816 Sep 2005 WO
2006-000422 Jan 2006 WO
WO-2006-000422 Jan 2006 WO
2006-028648 Mar 2006 WO
WO-2006-028648 Mar 2006 WO
WO-2006054519 May 2006 WO
2006-028648 Jan 2007 WO
WO-2006-028648 Jan 2007 WO
2007-104760 Sep 2007 WO
WO-2007-104760 Sep 2007 WO
WO-2007104760 Apr 2008 WO
2008-115548 Sep 2008 WO
WO-2008-115548 Sep 2008 WO
WO-2008108549 Sep 2008 WO
2008-130602 Oct 2008 WO
WO-2008-130602 Oct 2008 WO
2010-019217 Feb 2010 WO
WO-2010-019217 Feb 2010 WO
2010-033169 Mar 2010 WO
WO-2010-033169 Mar 2010 WO
2010-093429 Aug 2010 WO
WO-2010-093429 Aug 2010 WO
WO-2012092712 Jul 2012 WO
WO-2012098358 Jul 2012 WO
WO-2012101109 Aug 2012 WO
WO-2012140209 Oct 2012 WO
WO-2012159075 Nov 2012 WO
WO-2013013537 Jan 2013 WO
WO-2013042868 Mar 2013 WO
WO-2013057219 Apr 2013 WO
2013-062479 May 2013 WO
WO-2013-062479 May 2013 WO
WO-2013076507 May 2013 WO
WO-2013085502 Jun 2013 WO
2014-033228 Mar 2014 WO
WO-2014-033228 Mar 2014 WO
2014-165222 Oct 2014 WO
WO-2014-165222 Oct 2014 WO
2015-191599 Dec 2015 WO
WO-2015-191599 Dec 2015 WO
2019-074886 Apr 2019 WO
WO-2019074886 Apr 2019 WO
WO-2020185916 Sep 2020 WO
2020-185909 Dec 2020 WO
2020-242552 Dec 2020 WO
WO-2020185909 Dec 2020 WO
WO-2020242552 Dec 2020 WO
Non-Patent Literature Citations (27)
Entry
US 8,359,766 B2, 01/2013, Hubbard et al. (withdrawn)
Chris Cherry, “Containment systems for freeze-drying,” ISL-FD, Sep. 7, 2015.
Christopher Lee Albert Cherry, “Development of Novel Containment Systems for Freeze-Drying,” a thesis submitted to Cardiff Metropolitan University, Apr. 10, 2013.
Glassberg et al., “Freeze-dried Plasma at the Point of Injury: from Concept to Doctrine,” Shock, Dec. 2013, vol. 40, No. 6, pp. 444-450.
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US2018/054943, dated Jan. 25, 2019, 14 pages.
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US2020/022113, dated Nov. 5, 2020, 45 pages.
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US2020/022120, dated Nov. 26, 2020, 17 pages.
International Search Report and Written Opinion, PCT/US2020/022128, dated Sep. 4, 2020.
Invitation to Pay Additional Fees for International (PCT) Patent Application No. PCT/US2020/022120, dated Oct. 1, 2020, 11 pages.
Jeffrey M. Soares, “Saving Lives with Freeze-dried Plasma,” The United States Army, Nov. 27, 2017, pp. 1-5. URL: https://www.army.mil/article/197409.
Jeremy W. Cannon, M.D., “Prehospital Damage-Control Resuscitation,” The New England Journal of Medicine, Jul. 26, 2018, pp. 387-388.
Notice of Allowance for U.S. Appl. No. 16/154,976, dated Jun. 12, 2020, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/815,843, dated Sep. 24, 2021, 5 pages.
Notice of Allowance for U.S. Appl. No. 17/010,083, dated Feb. 3, 2022, 6 pages.
Notice of Allowance for U.S. Appl. No. 17/010,083, dated Nov. 24, 2021, 6 pages.
Official Action (with English abstract) for Chinese Patent Application No. 201880064085.6, dated Jul. 15, 2021, 12 pages.
Official Action (with English abstract) for Chinese Patent Application No. 201880064085.6, dated Mar. 11, 2022, 9 pages.
Official Action (with English abstract) for Japanese Patent Application No. 2020-540696, dated Aug. 24, 2021, 17 pages.
Official Action (with English abstract) for Japanese Patent Application No. 2020-540696, dated Jan. 11, 2022, 16 pages.
Official Action for Canadian Patent Application No. 3078625, dated Jul. 16, 2021, 3 pages.
Official Action for U.S. Appl. No. 16/154,976, dated Apr. 13, 2020, 9 pages.
Official Action for U.S. Appl. No. 16/154,976, dated Dec. 20, 2019, 12 pages.
Official Action for U.S. Appl. No. 16/815,843, dated Jun. 16, 2021, 11 pages.
Official Action for U.S. Appl. No. 17/010,083, dated Jul. 28, 2021, 7 pages.
Pan et al., “Study of Banana Hydration Using Sequential Infrared Radiation Heating and Freeze-Drying,” LWT—Food Science and Technology, 2008, v. 41, pp. 1944-1951.
Sperry et al., “Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk of Hemorrhagic Shock,” The New England Journal of Medicine, Jul. 26, 2018, pp. 315-326.
Updated Notice of Allowance for U.S. Appl. No. 17/010,083, dated Dec. 19, 2021, 2 pages.
Related Publications (1)
Number Date Country
20230008773 A1 Jan 2023 US
Provisional Applications (3)
Number Date Country
62971072 Feb 2020 US
62952752 Dec 2019 US
62818214 Mar 2019 US
Continuations (1)
Number Date Country
Parent 16815904 Mar 2020 US
Child 17903506 US