There are described herein packaging machines for producing packs of articles in bags or packs of plastic film. Embodiments described herein concern, in particular, packaging machines for packaging groups of articles in a pack formed by a welded plastic film, each of which consists of a pack of rolls of toilet tissue, kitchen towel or the like.
In the packaging sector of tissue paper, such as rolls of toilet tissue, rolls of kitchen towel, facial tissues and paper napkins, the production of packaged articles, each comprising a plurality of products ordered in groups, such as a plurality of rolls of tissue paper, is well known. These articles, intended for distribution to the final consumer, are in turn packaged in bags formed by a plastic film by means of a “wrapping tunnel”, in which a web of plastic film is transformed into a tube of plastic film, which is subsequently filled with articles each formed by ordered groups of packs of rolls, and subsequently welded at the ends. The bags thus formed are intended for transportation to final distributors, such as department stores or the like. Here the bags can be opened and the single articles, each containing a plurality of rolls, are displayed on shelves for sale.
In other cases, the bags can contain single tissue paper products, packaged directly in the bags and not previously wrapped in a pack.
WO 2007/088567 describes a packaging machine of this type, with a wrapping tunnel and a group of members for feeding ordered groups of products to be packaged.
The single rolls of tissue paper can be arranged according to various geometries and in variable number inside each pack that forms the single article to be packaged in the tube of plastic film. As a function of the size, of the shape, of the orientation and of the arrangement of the articles to be grouped and packaged in the tube of plastic film, in other words, as a function of the format to be produced, different feed systems must be used.
Current machines have limits in terms of flexibility and capacity for adaptation of the machine to the type of pack to be packaged and to the arrangement and number of articles for each pack.
Therefore, it would be advantageous to produce more flexible machines, capable of being easily and automatically adapted to produce packs of variable size and shape.
According to one aspect, described herein is a packaging machine for packaging articles in packs of plastic film, comprising a wrapping tunnel, adapted to form a tube of plastic film around groups of articles. The machine further comprises a feed conveyor, adapted to feed articles to be packaged toward the wrapping tunnel. An elevator is positioned between the feed conveyor and the wrapping tunnel, which can advantageously be movable vertically from a lower position, to receive articles from the feed conveyor, to a higher position, to transfer articles to the wrapping tunnel. The machine also comprises a pusher to push articles to be packaged from the elevator into the wrapping tunnel. The movement of the pusher is controlled as a function of the size of the group of articles to be packaged.
As will be apparent from the detailed description below of embodiments of the machine and of the method forming the subject-matter of the present disclosure, by controlling the pusher as a function of the size of the group of articles to be packaged it is possible to obtain a faster operating cycle and consequently increase the productivity of the machine.
The size according to which the movement of the pusher is controlled can in practice be the size of the articles or groups of articles to be packaged, in the direction of advance of the articles toward the wrapping tunnel.
In some embodiments the machine can comprise a detection system of the size, in the direction of feed, of the group of articles to be transferred into the wrapping tunnel. The detection system can be associated with the elevator and can be positioned at a suitable height along the vertical stroke carried out by the elevator. The detection system can comprise, by way of non-limiting example, a series or array of pairs of optical emitters and receivers, arranged on opposite sides of the feed path of the articles to be packaged. It would also be possible to use other detection systems, for example of capacitive type, or viewing systems with video cameras, suitable to detect images that are then processed by an image processing software to obtain from the image information on the size of articles to be packaged. In other embodiments, a graduated scale can be provided that is filmed by a video camera together with the image of the articles aligned and prepared for insertion into the wrapping tunnel. The relative position of graduated scale, video camera and articles to be packaged is such that the size of the group of articles can be read on the image (via processing software) using the graduated scale.
Regardless of how the size of the articles to be packaged is detected, the movement of the pusher can be controlled as a function of the size detected by the detection system. In this way, the need to provide the control unit with data for calculating the size is avoided, and at the same time precise operation that also takes account of any differences between theoretical size and actual size of the articles to be packaged is obtained.
In other embodiments, the size is calculated by a central control unit as a function of the type of articles to be packaged. In particular, the user can supply the central control unit with data relating to the size of each article and to the number of articles aligned in the direction of advance, which must be inserted into each pack.
In possible embodiments the feed conveyor comprises: a main conveyor belt, with an inlet end and an outlet end for the articles to be packaged; a transfer belt, positioned between the outlet end of the main conveyor belt and the auxiliary conveyor; and a continuous flexible member, carrying a plurality of transverse bars, movable along a closed path, with an active portion and a return portion, the active portion extending along the feed path of the main conveyor belt and along the feed path of the transfer belt.
In some embodiments, a control unit of the packaging machine can be configured to define the loading height of the elevator, of the feed conveyor and of the auxiliary conveyor as a function of the height of the group of articles, so as to optimize the movement of each component and hence reduce the cycle time and increase the productivity of the packaging machine.
According to a further aspect, disclosed herein is a new method for packaging articles in tubular packs of plastic film, comprising the steps of: feeding a plurality of articles to be packaged along a feed path toward an elevator; forming on the elevator an ordered group of articles to be packaged; lifting by means of the elevator the ordered group of articles to be packaged, from a lower position, at which the articles to be packaged are fed from the feed path onto the elevator, to a higher position, at which the articles are transferred from the elevator to a wrapping tunnel; pushing, by means of a pusher, the ordered group of articles from the elevator into the wrapping tunnel. Advantageously, the method can also provide for the step of controlling the movement of the pusher as a function of the size of the group of articles to be packaged in the direction of pushing into the wrapping tunnel.
Further advantageous features and embodiments of the packaging machine and of the method disclosed herein are set forth in the dependent claims and their many advantages will be apparent from the detailed description of some embodiments set forth below.
The invention will be better understood by following the description and accompanying drawings, which show a non-limiting example of embodiment of the invention. More specifically, in the drawing:
The following detailed description of embodiments given by way of example refers to the accompanying drawings. The same reference numbers in different drawings identify identical or similar elements. Moreover, the drawings are not necessarily to scale. The following detailed description does not limit the invention. Rather, the scope of the invention is defined by the accompanying claims.
Reference in the description to “an embodiment” or “the embodiment” or “some embodiments” means that a particular feature, structure or element described in relation to an embodiment is included in at least one embodiment of the object described. Therefore, the phrase “in an embodiment” or “in the embodiment” or “in some embodiments” used in the description does not necessarily refer to the same embodiment or embodiments. Furthermore, the particular features, structures or elements may be combined in any appropriate manner in one or more embodiments.
The distributor 5 is provided with a pivoting motion according to the double arrow f5 around a substantially vertical axis, in a known manner to distribute the articles A in the channels 10.
Each article A can consist of ordered groups or packs of products, typically rolls of tissue paper, as represented schematically in
The groups of rolls forming an article A can be packaged in a plastic film or can be loose.
Each article A can comprise one or more layers of rolls, each containing an arrangement of ordered rolls.
The group of rolls forming each article can be packaged in a welded plastic film, or also in a sheet of paper or the like. The articles A are formed in a station, not shown and known per se, of the production line upstream of the portion of production line 1 shown in
In the embodiment illustrated in the accompanying drawings, the feed conveyor 7 comprises a main conveyor belt 11, which can extend from an inlet end 11A to an outlet end 11B and along which the articles A to be packaged are fed. A transfer belt 13 can be arranged downstream of the main conveyor belt 11, with respect to the direction of feed F of the articles A.
The feed conveyor 7 can comprise, or can be associated with, a continuous flexible member 15 to which transverse bars 17 are fixed, visible in particular in
A wrapping tunnel 21, with a structure known per se, is arranged downstream of the feed conveyor 7. By means of the wrapping tunnel 21 a film of plastic material FP, unwound from a reel B 1, which can be placed under the wrapping tunnel 21, is transformed into a tube of plastic material that wraps the articles A to be packaged. The wrapping tunnel 21 can be associated with a welding member 22 that makes a longitudinal weld along the edges, folded one over the other, of the plastic film FP unwound from the reel B 1, to form the plastic tube, inside which the articles A to be packaged are inserted.
Positioned between the outlet of the feed conveyor 7 and the wrapping tunnel 21 are further members adapted to convey and group together the articles A in ordered groups, which are inserted in the tube of plastic film FP formed by the wrapping tunnel 21.
More in particular, an elevator 23 and a multi-function station, this latter positioned upstream of the elevator 23 with respect to the direction of advance F of the articles to be packaged, are placed between the feed conveyor 7 and the wrapping tunnel 21.
In some embodiments, the multi-function station 25 can comprise an auxiliary conveyor 27, for example a belt or preferably a plurality of belts or belt conveyors 27N (
The auxiliary conveyor 27 can be provided with a lifting and lowering movement according to double arrow f27. An actuator 29, such as a piston-cylinder actuator, or a mechanism with an electric motor and a threaded bar, or any other actuator that can be controlled electronically, can be used to move the auxiliary conveyor 27 according to double arrow f27, in order to adjust the height of the auxiliary conveyor 27.
The elevator 23 can comprise a further auxiliary conveyor 31, provided with a lifting and lowering movement according to the double arrow f23, controlled by an actuator 33, such as a piston-cylinder actuator, or a mechanism with an electronically controlled servo-motor or any other suitable means.
In general, the feed conveyor 7 is positioned, with its outlet end represented by the outlet of the transfer belt 13, at a height below the height of the wrapping tunnel 21. As will be clear from the description below, the multi-function station 25 can be utilized to group together the articles A, for example superimposing several articles on one another, i.e., it can act as a layering device, while the elevator 23 lifts the groups of articles A from the forming height of the groups of articles A coming from the feed conveyor 7 to the height of the wrapping tunnel 21.
A pusher 35, provided with a reciprocating rectilinear motion according to the double arrow f35, is provided to transfer the groups of articles A from the elevator 23 into the wrapping tunnel 21. This movement can be controlled by a servo-motor 37, for example an electric motor that operates a pulley 39 around which a belt 40 is guided, the ends of which are constrained to points of a rod 35.1 spaced from one another, said rod carrying at one end a pusher plate 35.2. The rod 35.1 and the pusher plate 35.2 form the main components of the pusher 35.
In some embodiments, a detection system 41 can be associated with the elevator 23, with the function of detecting the size, in the direction of feed (arrow F), of the groups of articles A to be inserted into each pack formed by the tube of plastic film FP produced by the wrapping tunnel 21. The purpose of the detection system 41 of the size of the group of articles A to be transferred into the wrapping tunnel 21 is to optimize the operating sequence of the various members of the machine 3 described above. In particular, the detection system 41 has the purpose of optimizing movement of the pusher 35, as will be explained below.
The machine 3 can also comprise a programmable control unit, indicated as a whole with 47, such as a microcontroller, a microcomputer, a PLC or an assembly of electronic hardware and software components. The control unit 47 can be interfaced to the servo-motor 37 and to the actuators 29 and 33, and if necessary to the moving components forming the feed conveyor 7, or more in particular, the main conveyor belt 11, the transfer belt 13 and the continuous flexible member 15 carrying the transverse bars 17. The control unit 47 can also be interfaced to the motor members that drive the auxiliary conveyors 27 and 31 of the multi-function station 25 and of the elevator 23. As will be described below, the multi-function station 25 can also be provided with further actuators or servo-motors to drive various components or devices included in the multi-function station 25. These further actuators or servo-motors can also be interfaced to the programmable control unit 47.
The upender 51 can have a star configuration, with a central core or support 51C rotating around the horizontal axis 51A. Radial arms 51B with a star structure extend from the central core or support 51C. The radial arms 51B can, for example, be spaced from one another by 90°.
In some embodiments, the auxiliary conveyor 27 and the upender 51 are at least partially superimposed on one another in a plan view, to reduce the longitudinal overall dimension (i.e., the overall dimension in the direction of arrow F) of the multi-function station. For this purpose, according to some embodiments the auxiliary conveyor 27 can consist of a plurality of parallel and spaced belts. A free space is left between adjacent belts for passage of the arms 51B, which can each have a comb structure. Further details of an embodiment of this type will be described later.
In some embodiments, advantageously the position of the rotation axis of the core can be adjusted in vertical direction and/or in horizontal direction, to adapt the multi-function station 25 to different operating modes and/or to different sizes or shapes of the articles A to be handled. An embodiment of the upender will be described in more detail below.
More in particular,
Again, with reference to
From the configuration of
While the group of articles A is transferred by means of the pusher 35 from the elevator 23 into the wrapping tunnel 21, a group of three articles A is formed on the auxiliary conveyor 27 by feeding single articles A from the feed conveyor 7, which are upended by 90° by the upender 51.
In the configuration of
In the subsequent
The elevator 23 continues its descent or could already be positioned in its lower position aligned with the auxiliary conveyor 27. Two articles A upended in vertical position are located on this latter, one inserted into the space between the auxiliary conveyor 27 and the flexible member 53 and the other about to enter this space. A third article in horizontal position is about to be upended by the upender 51. The pusher 35 has been retracted to allow the subsequent lifting of a new group of articles A by the elevator 23.
The detection system of the size of the group of articles A to be packaged, indicated schematically with 41, is arranged so as to detect the size of the group of articles A in the direction of feed F, when the group of articles A is located in the most downstream position along the extension of the conveyor belt 31 of the elevator 23. Detection of this size is advantageous in order to optimize the movement of the pusher 35.
Alternatively, the size of the group of articles A can be calculated by the programmable control unit 47 as a function of the type of product to be packaged set by the operator or by a production management program. In this way the position of the pusher 35 is not adapted for each pack, but remains constant until the subsequent product change.
In fact, in order to reduce the cycle time, the pusher 35 can be advanced toward the wrapping tunnel 21 by an extent correlated to the longitudinal size (according to the arrow F) of the group of articles A ready to be lifted by the elevator 23 to the height of the wrapping tunnel 21, before the elevator 23 carries out its lifting movement or during the lifting movement. In this way the subsequent step of inserting the group of articles A into the wrapping tunnel 21 is shorter. In fact, the pusher 35 is already in an advanced position with respect to the position of maximum retraction, illustrated schematically in
While in conventional machines the pusher 35 starts its stroke for insertion of the group of articles into the wrapping tunnel 21 only when the group of articles to be packaged has reached its upper height, defined by the upper limit of the lift stroke of the elevator 23, in the machine described herein the pusher can carry out a portion of the its stroke before the elevator 23 has reached its uppermost position. This is made possible in that the control unit 47 knows the size along to the direction F of the group of articles A and can therefore indicate to the servo-motor 37 to what point the pusher 35 can be advanced toward the wrapping tunnel 21 before the lift stroke of the elevator 23 has been completed, without the risk of the pusher 35 interfering with the articles A grouped together and ordered on the elevator 23 to be inserted into the wrapping tunnel 21.
Alternatively, the return stroke of the pusher 35 can be shortened without returning the pusher 35 to the position of maximum retraction. In this way the cycle times of the pusher 35 are optimized as the stroke during pushing of the group of articles A and the return stroke are shorter.
The detection system of the size in the direction F of the groups of articles A to be packaged can comprise any system adapted to detect the presence of articles A along the longitudinal extension of the elevator 23. For example, the detection system 41 can comprise optical emitters and receivers arranged according to linear arrays on the two sides of the path of the articles A moved horizontally according to the arrow F by the conveyor belt 31 of the elevator 23. In other embodiments other detection systems, such as ultrasonic, capacitive or the like, can be used.
The sequences described above and illustrated in
When the machine 3 requires to handle articles A that must not be upended from a horizontal position to a vertical position, the machine can be set up as illustrated in
In the sequence of
In the event that the pusher 35 is retracted in a position closer to the wrapping tunnel 21, depending upon the size of the group of articles A, the pusher 35 is stationary and waits until the elevator 23 finishes or is about to finish its stroke toward the highest position, i.e. aligned with the wrapping tunnel 21. In this step the pusher 35 can start its stroke pushing the group of articles A inside the wrapping tunnel 21 as shown in
In
It must be understood that the operating sequence of
In practice, in the operating mode illustrated in
The sequence of
There can be associated with the auxiliary conveyor 27 a movable stop 61, whose position along the direction represented by the direction F of advance of the articles A can be adjusted as a function of the longitudinal size of the articles A.
In this operating mode, stacked articles A must be inserted into each pack formed by the plastic film FP by means of the wrapping tunnel 21. More in particular, as shown in
In fact, sliding friction generated during layering generates a force that could move the stack of articles layered in the direction of the arrow F. The single articles A coming from the feed conveyor 7 are mutually superimposed on the auxiliary conveyor 27, lowering this latter in vertical direction as the articles A arrive from the feed conveyor 7, as can be understood from the sequence of
Once a stack of vertically superimposed articles A has been formed on the auxiliary conveyor 27 functioning as stacker, this stack of articles A is transferred from the auxiliary conveyor 27 to the elevator 23, which has been positioned at a height corresponding to the height of the auxiliary conveyor 27, as shown in
The stack of articles A to be packaged can then be transferred by means of the conveyer belt 31 of the elevator 23 into the position closest to the wrapping tunnel 21, so that the longitudinal size according to the arrow F of the group of articles A to be packaged can be detected by the detection system 41, to allow the pusher 35 to start its forward stroke toward the wrapping tunnel 21 while the elevator 23 carries out its lift stroke until reaching the position of
Also in this case, if the pusher 35 starts its stroke to push the group of articles A from a more advanced position according to the arrow F (previously calculated by the programmable electronic control unit 47), it is necessary to wait until the elevator 23 has terminated or almost terminated the lift stroke, i.e., has reached the height of alignment with the wrapping tunnel 21.
While the stack di articles A is being inserted into the wrapping tunnel 21, a new stack of articles A can start to be formed on the auxiliary conveyor 27 of the multi-function station 25. For this purpose, the auxiliary conveyor 25 can be taken to the outlet height of the articles A from the feed conveyor 7 and the stop 61 can be positioned in its vertical configuration, after having been retracted in a horizontal position (
The longitudinal size, i.e., the size according to the direction of arrow F, of the articles A of
While
In optimized configurations of the packaging machine 3 it is possible to adjust the unloading height of the feed conveyor 7 and therefore also of the auxiliary conveyor 27, as a function of the height of the group of articles A to be packaged, so as to minimize the lift stroke of the elevator 23. The programmable electronic control unit 47 calculates the height of the product to be packaged as a function of the group of articles A and arranges the packaging machine 3 so that a higher height of the outlet of the feed conveyor 7, of the auxiliary conveyor 27 and of the elevator 23 correspond to groups of articles A of lower height, and vice versa. In this way the cycle of the machine is optimized, as the elevator 23 always requires performing the shortest possible stroke to align a group of articles A with the wrapping tunnel 21.
Advantageously, the conveyor belts 8 of the distributor or diverter 5 can project in a cantilever fashion with respect to the conveyor 4 of the distributor 5. In this way, transfer of the single articles A from the distributor 5 to the feed conveyor 7 is facilitated. This is particularly useful as the distributor 5 is provided with a pivoting motion (arrow f5 in
The characteristics of the distributor 5 described above can also be used in the embodiment described with reference to
By way of example, the embodiment of
In brief, the feed conveyor 7 illustrated in
In some embodiments, a vertically movable partition, indicated schematically with 12, can be arranged between the first conveyor belt 11X and the second conveyor belt 11Y. The partition 12 is periodically lifted and lowered during advance of the articles A. When the partition 12 is lifted (position 12B in
Due to the partition 12, the single articles distributed in the various channels 10 are accumulated as a result of the forward movement imparted by the conveyor belt 11X against the partition 12. Once all the articles A that are to form a single group to be packaged have been distributed and are correctly accumulated against the partition 12, this latter can be lowered to allow the articles A to continue advancing from the conveyor belt 11X toward and onto the conveyor belt 11Y.
A particularly advantageous embodiment of the multi-function station 25 represented schematically in the preceding figures is shown in the subsequent
In
In the embodiment illustrated here, the auxiliary conveyor 27 comprises, or consists of, a plurality of conveyor belts 27N parallel to and spaced from one another. The conveyor belts 27N are in substance arranged according to a comb arrangement, to allow the arms 51B of the upender 51, also having a comb arrangement but offset with respect to that formed by the conveyor belts 27N, to move above the transport surface for the articles A defined by the auxiliary conveyor 27.
As shown in particular in
The vertical movement (arrow f2) of the upright 77 and of the horizontal beam 75 is given by a motor 76 (see in particular
The horizontal beam 75 has integral side elements 83 that support a motorized roller 85, which controls the advance motion of the conveyor 27. In the embodiment illustrated, the motorized roller 85 is driven in rotation by a motor 87 (see in particular
The possibility is not ruled out, to mount the motor 87 on the vertically movable structure 73, in this way making the motor 87 participate in the lifting and lowering motion of the auxiliary conveyor 27.
Each conveyor belt 27N of the auxiliary conveyor 27 is guided around the motorized roller 85 and also around pulleys 103, 105, 107 and 109 (see in particular
In the embodiment illustrated in
As can be seen in particular in
As the conveyor belts 27N are guided around pulleys supported by the linear elements 111, at least in the front part, i.e. the part facing the area from which the articles A arrive, the space between adjacent conveyor belts 27N is completely free and this allows passage of the prongs 51D forming the arms 51B.
In the embodiment illustrated in
To move the upender 51 vertically, it can be carried by a vertically movable assembly. The assembly can comprise vertical uprights 121 (
The uprights 121 can be joined to one another by a lower cross member 124 and in this way form the assembly which is vertically movable according to the double arrow f51y. The vertical movement f51y can be controlled by a motor 125 that rotates a transverse shaft 127 carried by a carriage 128 (
The vertical movement of the vertically movable assembly 121 can be guided by means of guides 132 integral with the uprights 121 and engaged in sliding blocks 134 integral with the lateral side elements 128A of the carriage 128.
The rotation movement of the upender 51 around the horizontal axis 51A can be controlled by a motor 135, constrained to one or other of the uprights 121 or in any case made integral with the vertically movable assembly 121, 124 so as to move integral with the shaft 125 of the upender 51.
The horizontal movement of the upender 51 can be obtained by moving the carriage 128 along guides 141 integral with the load bearing structure 71. The guides 141 extend horizontally in a direction substantially parallel to the direction of advance of the articles A to be packaged.
The horizontal movement according to the double arrow f51x of the upender 51 can be obtained by moving the carriage 128 horizontally along the guides 141 by means of a motor 151 (
With the arrangement described above the vertical and horizontal movement of the upender 51 is obtained, which can take various positions with respect to the auxiliary conveyor 27, as a function of the specific operating mode according to which the machine is operated.
As can be observed in particular in
In fact, if the use of an upender is not required for the type of production for which the line is destined, this latter can be omitted, with reduction of the overall cost of the line. However, if at a later date the user of the line wishes to implement further functions and produce packs of different type, the upender 51 can be installed in the same space already occupied by the auxiliary conveyor 27 of the multi-function station.
In some embodiments, it is also possible for the multi-function station 25 to be modularly inserted in and removed from the line. In fact, the load bearing structure 71 is configured to support both the auxiliary conveyor 27 and the upender 51 and the members designated for its movement. Also the members above, indicated with 53 and 61 in the preceding
In substance, the multi-function station 25 described here is the most complex of a series of stations with a variable number of mechanical members, as a function of the type of pack to be produced.
While the embodiments described with reference to the accompanying figures are provided with a system 41 for detecting the longitudinal size of the groups of articles A to be packaged, in other embodiments, alternatively to or in combination with the system 41, the programmable electronic control unit 47 can receive input information on the shape and/or size of the groups of articles A to be packaged, also including the longitudinal size of the group of articles A, to obtain the same purpose. If the two approaches are used in combination, it is possible to use the system 41 when the programmable electronic control unit 47 does not receive input data on the longitudinal size of the groups of articles A to be packaged.
Number | Date | Country | Kind |
---|---|---|---|
102017000108825 | Sep 2017 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2018/057505 | 9/27/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/064226 | 4/4/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2926774 | Oppermann | Mar 1960 | A |
3269086 | Cloots et al. | Aug 1966 | A |
3352435 | Reinecke | Nov 1967 | A |
3585777 | Pesch | Jun 1971 | A |
4679379 | Cassoli | Apr 1987 | A |
4672796 | Ono et al. | Jun 1987 | A |
4680919 | Hirama et al. | Jul 1987 | A |
5039276 | Leuvering | Aug 1991 | A |
5447012 | Kovacs et al. | Sep 1995 | A |
6931823 | Forte et al. | Aug 2005 | B2 |
20070125242 | Dall'Omo et al. | Jun 2007 | A1 |
20080209866 | Dall'Omo et al. | Sep 2008 | A1 |
20100014953 | Antoniazzi et al. | Jan 2010 | A1 |
20140026524 | Rooyakkers | Jan 2014 | A1 |
20150329230 | Rasi | Nov 2015 | A1 |
20190241376 | Feng et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
4127612 | Feb 1993 | DE |
1771335 | Sep 2008 | EP |
2007088567 | Aug 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20200307841 A1 | Oct 2020 | US |