The present invention relates to a machining apparatus and machining method for forming a gear or a shaft having a gear-shaped cross-section.
In the prior art, it is known to provide a method for generating a gear on a workpiece and a gear machining apparatus comprising a cutter which includes a cutting blade formed in the shape of a ring around a peripheral surface thereof and which is driven to rotate about an axis thereof, a workpiece holder which holds a workpiece in a rotatably driven manner, and a mover which moves the cutter and the workpiece relative to each other along the axial direction of the cutter, wherein a gear is formed on the peripheral surface of the workpiece by synchronizing the rotation of the workpiece with the relative movement of the cutter and the workpiece and by pressing the cutter onto the workpiece while rotating the cutter (for example, refer to patent document 1).
Patent document 1: Japanese Unexamined Patent Publication No. S63-2609
In the gear generation method and gear machining apparatus as disclosed in patent document 1 (Japanese Unexamined Patent Publication No. S63-2609), the gear has had to be generated by successively moving the rotating cutter while rotating the workpiece in one direction, and therefore, it is not easy to perform gear machining efficiently.
In view of the above problem, it is an object of the present invention to provide a gear machining apparatus which can easily be composed and a gear machining method which can perform gear machining easily by using an existing lathe.
To achieve the above object, there is provided a machining apparatus comprising: a cutter which includes a blade part formed in the shape of a ring around a peripheral surface thereof and which is driven to rotate about an axis thereof; a workpiece holder which holds a workpiece rotatably; and a cutter driver which moves the cutter and the workpiece relative to each other along an axial direction of the cutter, wherein an external shape of a gear or a shaft having a gear-shaped cross-section is formed on the peripheral surface of the workpiece by synchronizing the rotation of the workpiece with the relative movement of the cutter and the workpiece and by pressing the cutter onto the workpiece while rotating the cutter, a plurality of the blade parts are disposed side by side along the axis, the cutter driver drives the cutter to rotate in one direction around the axis and to reciprocate relative to the workpiece along the axis, the workpiece holder rotates the workpiece in a forward or reverse direction in accordance with the reciprocation of the cutter, and cutting is performed on the workpiece so as to form thereon an external shape of a gear or a shaft having a gear-shaped cross-section by placing each of the blade parts of the cutter in contact with the peripheral surface of the workpiece.
In the machining apparatus, the shaft having a gear-shaped cross-section is composed of a splined shaft or a serrated shaft.
The machining apparatus further comprises a controller which controls the reciprocation of the cutter by the cutter driver and the forward or reverse rotation by the workpiece holder in such a manner that a direction and speed of reciprocation of the cutter and a direction and speed of rotation of the workpiece are synchronized with each other at a face where the cutter contacts the workpiece.
The blade part may be composed of a plurality of cutting blades disposed at prescribed spaced intervals around the peripheral surface.
Alternatively, the blade part may be composed of a cutting blade formed continuously so as to go around the axis.
There is also provided a machining method comprising steps of rotating a cutter having a plurality of blade parts disposed side by side along an axis thereof, in one direction around the axis, each blade part being formed in the shape of a ring around a peripheral surface thereof, as well as reciprocating the cutter relative to a workpiece along the axis; rotating the workpiece in a forward or reverse direction in accordance with reciprocation of the cutter; cutting the workpiece so as to form thereon an external shape of a gear or a shaft having a gear-shaped cross-section by placing each of the blade parts of the cutter in contact with the peripheral surface of the workpiece.
In the machining method, the shaft having a gear-shaped cross-section is composed of a splined shaft or a serrated shaft.
In the machining method, the step of rotating the workpiece includes a step of rotating the workpiece in a forward or reverse direction in accordance with the reciprocation of the cutter in such a manner that a direction and speed of reciprocation of the cutter and a direction and speed of rotation of the workpiece are synchronized with each other at a face where the cutter contacts the workpiece.
The blade part may be composed of a plurality of cutting blades disposed at prescribed spaced intervals around the peripheral surface.
Alternatively, the blade part may be composed of a cutting blade formed continuously so as to go around the axis.
According to the present invention, by continuously reciprocating the cutter and the workpiece relative to each other, and continuously rotating the workpiece in a forward or reverse direction in synchronism with the reciprocation, a gear or a shaft having a gear-shaped cross-section can be generated easily and continuously, and thus the machining of the gear, splined shaft, serrated shaft, etc., can be performed efficiently. Further, since the cutter can be composed by disposing a plurality of blade parts side by side along the axis, each blade part being formed in the shape of a ring around the axis, and since there is no need to form cutting blades along a helix as in a well-known hob as a gear cutting tool, the cutter can easily be composed.
Furthermore, since there is no need to tilt the cutter relative to the workpiece in accordance with the inclined angle of the helix of the cutting blade as in the above hob, a gear or a shaft having a gear-shaped cross-section can be easily generated using a general lathe.
In this way, according to the present invention, a machining apparatus and a machining method which can perform the machining of a gear or a shaft having a gear-shaped cross-section easily by using an existing lathe can be achieved.
The gear machining apparatus 1 includes a cutter 11, a cutter driver 12, a workpiece holder 13, and a controller 14. The cutter driver 12 and the workpiece holder 13 are controlled by the controller 14.
A plurality of cutting blades 21 are disposed, being spaced at a prescribed distance from each other around the axis R1 of the cutter 11, on the peripheral surface of the cutter 11. The plurality of cutting blades 21 together constitute one set of cutting blades 21, and one set of cutting blades 21 forms one ring-shaped blade part 20 around the peripheral surface of the cutter 11. A plurality of blade parts 20 is disposed side by side along the axis R1.
The cutter driver 12, which includes, for example, a cutter holder of a lathe, drives the cutter 11 to rotate about the axis R1 and to reciprocate along the axis R1 in accordance with control of the controller 14. The rotational speed of the cutter 11 is set fast enough for the blade parts 20 of the cutter 11 to cut the workpiece W.
The workpiece holder 13, which includes, for example, a spindle of a lathe, holds the workpiece W so that the axis R1 of the cutter 11 and the axis R2 of the workpiece W cross each other, and drives the workpiece W to rotate in the forward or reverse direction about the axis R2 in synchronism with the reciprocation of the cutter 11 in accordance with control of the controller 14. In the present embodiment, the workpiece W is held so that the axis R1 and the axis R2 cross each other at right angles.
In the present embodiment, the cutter driver 12 and the workpiece holder 13 are controlled by the controller 14 such that, when the cutter 11 moves in direction A, the workpiece W rotates in direction a (for convenience, referred to as the “forward direction” in this specification) and, when the cutter 11 moves in direction B, the workpiece W rotates in direction b (for convenience, referred to as the “reverse direction” in this specification).
By continuously repeating the operation for rotating the workpiece W in the forward direction while moving the cutter 11 in direction A (
As has been described above, the controller 14 controls the reciprocation of the cutter 11 by the cutter driver 12 and the forward or reverse rotation by the workpiece holder 13 in such a manner that the direction and speed of reciprocation along the axis R1 of the cutter 11 and the direction and speed of rotation around the rotational axis R2 of the workpiece W are synchronized with each other at the face where the cutter 11 contacts the workpiece W.
The cutter driver 12 being composed of a cutter holder of a lathe and the workpiece holder 13 being composed of a spindle of a lathe, the above-described gear machining apparatus 1 can be achieved by using a general lathe, for example, an automatic lathe. More specifically, an operating program of a lathe has only to be made which mounts the cutter 11 rotatably on the cutter holder of the lathe, holds the workpiece W by a chuck of the spindle, rotates the cutter 11 in one direction around the axis R1 and reciprocate the cutter 11 within a prescribed distance along the axis R1, and rotates the spindle in the forward or reverse direction around the axis R2 in synchronism with the reciprocation of the cutter 11 as described above. By operating the lathe in accordance with this operating program, the workpiece W is rotated in the forward or reverse direction around the axis R2 in synchronism with the reciprocation of the cutter 11, and the gear 31 can be easily generated on the workpiece W. Therefore, there is no need to provide a mechanism for tilting the cutter (hob), as would be the case if a hob were used as the cutter to generate a gear, but by just mounting the cutter 11 so as to cross at right angles with respect to the axis of the spindle, the gear can be easily generated using a general lathe.
In the above embodiment, a spur gear has been generated on the peripheral surface of the workpiece W by setting the axis R1 of the cutter 11 at right angles to the axis R2 of the workpiece W. As a modified example, if either or both of the tilt angle of the axis of the cutter 11 driven by the cutter driver 12 and the tilt angle of the rotational axis of the workpiece W held by the workpiece holder 13 are set so that the axis R1 of the cutter 11 and the axis R2 of the workpiece W cross each other at a prescribed angle other than right angles, it is also possible to generate a helical gear.
In the example shown in
Further, using the gear machining apparatus according to the above-mentioned embodiment, an external shape of shaft having a gear-shaped cross-section, for example, a splined shaft or a serrated shaft, may be formed in the workpiece W. In that case, for example, while rotating the workpiece W, the workpiece holder 13 should be moved in direction C by the length of the splined shaft to be formed on the workpiece W.
Examples of the splined shaft or serrated shaft to be formed here may include an involute shaft or serrated shaft whose external shape of the cross-section is an involute profile or an involute tooth profile defining a rectangular, triangular, or similar tooth shape, or whose teeth are rectangular, triangular, etc. in shape. Further, a gear or a shaft having a gear-shaped cross-section (a splined shaft or a serrated shaft) may be formed so that the teeth are formed on a portion of the outer circumference thereof.
The present invention can be applied to generating a gear or a shaft having a gear-shaped cross-section by using a lathe.
Number | Date | Country | Kind |
---|---|---|---|
2014-018882 | Feb 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/052563 | 1/29/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/115562 | 8/6/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1545070 | Sears | Jul 1925 | A |
1763983 | Olson | Jun 1930 | A |
2112455 | Edgar | Mar 1938 | A |
2736239 | Higashi et al. | Feb 1956 | A |
4565474 | Charles | Jan 1986 | A |
4750848 | Adler | Jun 1988 | A |
20110027031 | Zeller | Feb 2011 | A1 |
20130051948 | Masuo | Feb 2013 | A1 |
20130322974 | Scherbarth | Dec 2013 | A1 |
20160325366 | Ellicott | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
S60-501052 | Jul 1985 | JP |
S63-002609 | Jan 1988 | JP |
S63-068315 | Mar 1988 | JP |
2013-158883 | Aug 2013 | JP |
2013-543450 | Dec 2013 | JP |
2007051222 | May 2007 | WO |
WO-2011129008 | Oct 2011 | WO |
Entry |
---|
International Search Report for PCT/JP2015/052563, dated Mar. 31, 2015. |
Written opinion of the International Searching Authority for PCT/JP2015/052563, dated Mar. 31, 2015. |
State Intellectual Property Office of the People's Republic of China, Office Action for Chinese patent application No. 201580007105.2, dated Jul. 25, 2017. |
European Patent Office, Extended European Search Report for EP patent application No. 15743949.8, Oct. 16, 2017. |
Jablonwski J: “Generating Gears Via Software, New Concept Has the CNC Directing All Motions of the Machine, Allowing Milling Cutters to Generate Any Gear Geometry”, American Machi, Jul. 1, 1983, pp. 85-88, New York, NY, US, XP009071490. |
Number | Date | Country | |
---|---|---|---|
20170182572 A1 | Jun 2017 | US |