This disclosure relates in general to reciprocating well pump assemblies and in particular to travelling and standing valves that are magnetized to repel each other.
Rod pumps are commonly used in oil wells to pump well fluid. A typical rod pump secures to a string of production tubing lowered into a well. The pump has a barrel with a plunger that is stroked within the barrel usually by a string of sucker rods extending to a stroking mechanism at the surface. A traveling valve mounts to the plunger, and a standing valve mounts to the barrel below the plunger.
During an up stroke, well fluid that has entered the plunger will be lifted up the production tubing. During the up stroke, the traveling valve is in a closed position and the standing valve is open to allow well fluid to flow into the barrel. During the down stroke, the standing valve closes and the travelling valve is designed to move to the open position to allow well fluid that has entered the barrel to flow into the plunger.
Some wells produce gas as well as liquid. If the well fluid flowing into the barrel contains gas, the plunger will tend to compress the gas during the down stroke. The compression of the gas can result in not enough liquid being in the barrel to push the travelling valve back to an open position during the down stroke. As a result, the pump can become gas locked and cease to pump liquid up the well.
The well pump assembly disclosed herein has a barrel with an axis and is adapted to be suspended in a well. A standing valve seat is mounted in the barrel. A standing valve is carried on the standing valve seat and is movable relative to the standing valve seat between an open position and a closed position. A plunger is carried within the barrel for axial stoking movement. A travelling seat is mounted in a lower end of the plunger. A travelling valve is carried on the travelling valve seat and is movable relative to the travelling valve seat between an open position and a closed position. A magnetic field cooperatively associated with the travelling valve pushes the travelling valve to the open position as the plunger nears a bottom of a stroke.
In the embodiment shown, the magnetic field is provided in part by a travelling magnet carried by the travelling valve for movement therewith. The magnetic field is also provided by a standing magnet carried by the barrel below the travelling magnet. The travelling magnet and the standing magnet have polarities that repel each other, causing the travelling valve to lift from the travelling valve seat as the travelling magnet approaches the standing magnet.
In the embodiment shown, the travelling valve comprises a head and a stem, the stem extending downward from the head through a hole in the travelling seat, the head being landed on the travelling seat while in the closed position. The stem comprises a travelling magnet, defining part of the magnetic field. The stem has one polarity at a lower end of the stem and an opposite polarity at the head. The travelling seat is formed of a non magnetic material;
In the embodiment shown, the stem extends downward horn the head through a hole in the travelling seat. The head lands on an upper side of the travelling seat and blocks the hole while in the closed position. The stem has an outer diameter less than an inner diameter of the hole, enabling well fluid to flow through the hole in an annulus around the stem while the travelling valve is in the open position.
The standing valve may also comprise a standing valve head and a standing valve stem. The standing valve stem extends downward from the standing valve head through a hole in the standing valve seat. The standing valve head lands on an upper side of the standing valve seat while in the closed position of the standing valve. The standing valve seat is also formed of a non magnetic material. In the embodiment shown, the standing valve stem comprises a standing magnet having one polarity at a lower end of the standing valve stem and an opposite polarity at the standing valve head. The polarity of the standing magnet at the head of the standing valve is configured to repel the travelling magnet. A standing valve annulus may surround the standing valve stem in the hole in the standing seat. Well fluid flows through the annulus while the standing valve is in the open position. The standing valve head blocks the annulus while in the closed position of the standing valve.
So that the manner in which the features, advantages and objects of the disclosure, as well as others which will became apparent, are attained and can be understood in more detail, more particular description of the disclosure briefly summarized above may be had by reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the disclosure and is therefore not to be considered limiting of its scope as the disclosure may admit to other equally effective embodiments.
The methods and systems of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The methods and systems of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Referring to
Pump assembly 15 is a rod-type, having a barrel 19 that is secured to a lower end of tubing 17. Barrel 19 is a tubular member with a polished bore. A standing valve seat 21 is located at the lower end of barrel 19. A standing valve 23 is carried on standing valve seat 21 and moves axially relative to standing valve sear 21 between an open position and a closed position.
A plunger 25 sealingly engages barrel 19 and is stroked between upper and lower positions by a lilting mechanism, such as a string of sucker rod 27. Plunger 25 has a travelling valve seat 29 that moves in unison with plunger 25. A travelling valve 31 is carried on travelling valve seat 29 and is axially movable relative to travelling valve seat 29 between an open position and a closed position.
A wellhead 33 locates at the upper end of casing 13 and supports production tubing 17. Sucker rod 27 extends sealingly through wellhead 33 to a mechanism for stroking sucker rod 27, such as a pump jack 35. A flow line 37 connects to wellhead 33. As pump jack 35 lifts sucker rod 27 and plunger 25, travelling valve 31 closes and plunger 25 will lift the column of well fluid in tubing 17, causing a portion of the column of fluid to flow out flow line 37. At the same time, the upward movement of plunger 25 causes standing valve 23 to open, admitting well fluid from perforations 14 into barrel 19.
When sucker rod 27 moves plunger 25 back downward, travelling valve 31 opens to allow the fluid in barrel 19 to move through travelling valve seat 29. Standing valve 23 closes while plunger 25 moves downward. The lower pressure within barrel 19 created by upward movement of plunger 25 causes standing valve 23 to lift upward from standing valve seat 21. Standing valve 23 closes due to gravity when plunger 25 reaches the upper end of its strobe. Similarly, the higher pressure in barrel 19 created by downward movement of plunger 25 causes travelling valve 31 to open.
Some wells produce gas as well as liquid and the gas can cause gas lock. When plunger 25 is on the down stroke, gas previously drawn into the barrel 19 can compress, rather then pushing travelling valve 31 open. Features described hereinafter serve to prevent gas lock.
Referring to
In the embodiment shown, the outer diameter of stem 43 is considerably smaller than an inner diameter of orifice 39, defining an annulus surrounding stem 43. While travelling valve 31 is in the open position, well fluid flows through the annulus from the lower to the upper side of travelling valve seat 29. Alternately, orifice 39 could be only slightly smaller than stem 43 and additional holes (not shown) provided outside of orifice 39 for well fluid flow. Valve head 41 would be large enough to block flow through those additional holes while closed.
Referring to
Travelling valve seat 29 and at least portions of plunger 25 near sear 29 are formed of a nonmagnetic material. Similarly, standing valve seat 21 and at least nearby portions of barrel 19 are formed of non magnetic material.
In the embodiment shown the outer diameter of stem 53 is considerably smaller than an inner diameter of orifice 49, defining an annulus surrounding stem 53. While standing valve 23 is in the open position, well fluid flows through the annulus from the lower to the upper side of standing valve seal 21. Alternately, orifice 49 could be only slightly smaller than stem 53 and additional holes (not shown) provided outside of orifice 49 for well fluid flow. Valve head 51 would be large enough to block flow through those additional holes while closed.
Referring to
During operation,
Referring to
On the up stroke, as shown in
If the web fluid in chamber 63 contains a significant amount of gas, on the down stroke, travelling valve 31 may continue to remain closed due to gravity because the downward movement of plunger 25 will be compressing the gas in chamber 63. The upward force on travelling valve 31 due to the compression of the gas might not be enough to lift travelling valve 31 to the open position. However, when travelling valve stem 43 enters the magnetic field of standing valve 23, the magnetic fields of poles 47, 55 (
While the invention has been shown in only one of its forms, it should be apparent that various changes may be made. For example, instead of tappet configurations, standing valve 23 and travelling valve 31 could be other shapes, such as spherical with a depending pin to maintain each magnetic pole 45, 47 and 55, 57 in a fixed orientation. Alternately, only travelling valve 31 could have a tappet configuration, and standing valve 23 be of conventional design, other than being associated with a magnetic field. Various other arrangements to create an upward magnetic repelling force on travelling valve 31 when plunger 25 nears the bottom of the down stroke are feasible. For example, a magnet with an opposing polarity could be mounted in barrel 19 or on standing valve seat 21, rather than on standing valve 23. Rather than permanent magnets for travelling valve 31 and standing valve 23, electromagnets could be employed. Electrical power would need to be supplied, however. Plunger 23 could be stroked by a downhole electrical motor rather than by sucker rods.
This application claims priority to provisional patent application Ser. No. 61/940,667, filed Feb. 17, 2014.
Number | Name | Date | Kind |
---|---|---|---|
2192945 | Toney | Mar 1940 | A |
2764940 | Long | Oct 1956 | A |
3055306 | Tausch | Sep 1962 | A |
3476355 | Sherwood | Nov 1969 | A |
3485441 | Eaton, Jr. | Dec 1969 | A |
3510234 | Wolf | May 1970 | A |
3578886 | Nino | May 1971 | A |
3773439 | Sheridan | Nov 1973 | A |
3941516 | Soberg | Mar 1976 | A |
4173451 | Moore, Jr. | Nov 1979 | A |
4481389 | Johnson | Nov 1984 | A |
4565246 | Frazier | Jan 1986 | A |
4694860 | Eidsmore | Sep 1987 | A |
4770389 | Bodine | Sep 1988 | A |
4808089 | Buchholtz | Feb 1989 | A |
4848454 | Spears | Jul 1989 | A |
4867242 | Hart | Sep 1989 | A |
5039061 | Heard | Aug 1991 | A |
5139398 | Downing | Aug 1992 | A |
5141404 | Newcomer | Aug 1992 | A |
5141411 | Klaeger | Aug 1992 | A |
5249936 | McConnell | Oct 1993 | A |
5472323 | Hirabayashi | Dec 1995 | A |
5655604 | Newton | Aug 1997 | A |
6032734 | Telfer | Mar 2000 | A |
6347668 | McNeill | Feb 2002 | B1 |
8297367 | Chen | Oct 2012 | B2 |
20050053503 | Gallant | Mar 2005 | A1 |
20060278198 | Savage | Dec 2006 | A1 |
20070289734 | McDonald | Dec 2007 | A1 |
20080122299 | Cristoforo | May 2008 | A1 |
20090251256 | Fullerton | Oct 2009 | A1 |
20090292371 | Fullerton | Nov 2009 | A1 |
20110073319 | Wilson | Mar 2011 | A1 |
20140043126 | Fullerton | Feb 2014 | A1 |
20150024377 | Edwards | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150233370 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61940667 | Feb 2014 | US |