The present invention relates generally to a system for magnetic attachment. More particularly, the present invention relates to a system for magnetic attachment involving a male component and female component each having complementary magnetic structures.
A magnetic attachment system includes a female component associated with a first object, the female component including a hole and a first magnetic structure having a first plurality of magnetic source regions having a first polarity pattern, and a male component associated with a second object, the male component including a peg that can be inserted into the hole and a second magnetic structure having a second plurality of magnetic source regions having a second polarity pattern complementary to the first polarity pattern. The male component and the female component are configured such that when the peg is inserted into the hole the first and second magnetic structures face each other across an interface boundary enabling magnetic attachment of the first object to the second object, where while the peg remains within said hole said male component can be rotated relative to the female component but translational movement of the male component relative to the female component is constrained, where the first polarity pattern and said second polarity pattern are in accordance with a cyclic implementation of a code of length N, and where said code has a cyclic correlation function having a single peak and a plurality of off peaks per code modulo.
The first and second polarity patterns can be irregular polarity patterns.
The first and second magnetic structures can produce a peak attract force when in a complementary rotational alignment position that magnetically attaches the first object to the second object.
The first and second magnetic structures can produce an off-peak force that is an attract force less than the peak attract force when the male component has been rotated relative to the female component plus or minus 360/N degrees from the complementary rotational alignment position and said cyclic implementation of said code includes only one code modulo of said code.
The first and second magnetic structures can produce an off-peak force that is a substantially zero force when the male component has been rotated relative to the female component plus or minus 360/N degrees from the complementary rotational alignment position and said cyclic implementation of said code includes only one code modulo of said code.
The first and second magnetic structures can produce an off-peak force that is a repel force when the male component has been rotated relative to the female component plus or minus 360/N degrees from the complementary rotational alignment position and said cyclic implementation of said code includes only one code modulo of said code.
The code can be a Barker code.
Each symbol of the code can be implemented with one of a region having a first polarity or a region having a second polarity.
Each symbol of the code can be implemented with an irregular polarity pattern.
Each symbol of the code can be a Barker code.
Each symbol of the code can be implemented with alternating polarity regions, where one polarity region can be rotated relative to another polarity region and/or polarities of opposing regions of the first and second magnetic structures can be exchanged.
One of the first object or the second object can be one of a flashlight, a strap, an electronic device, a cell phone, a PDA, a camera, a GPS, a sign, a picture, a fire extinguisher, or a rod holder.
One of the first object or the second object can be one of a wall, a vehicle, or a garment.
At least one of the male component or the female component can include at least one of attachment holes enabling attachment to at least one of said first object or said second object using a nail or screw, an adhesive enabling attachment to at least one of said first object or said second object, rounded edges, first notches providing a hand grip, at least one marking for identifying one or more alignment positions, or at least one second notch for removing said at least one of said first magnetic structure or said second magnetic structure using a tool.
The male component can be integrated with the first object.
The female component can be integrated with the second object.
One of the male component or the female component can be placed inside a pocket of a garment.
One of the male component or the second component can be integrated into one of a sleeve, a shoulder portion of a garment, a belt, a hat, a knapsack, or a shoe.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.
Certain described embodiments may relate, by way of example but not limitation, to systems and/or apparatuses comprising magnetic structures, magnetic and non-magnetic materials, methods for using magnetic structures, magnetic structures produced via magnetic printing, magnetic structures comprising arrays of discrete magnetic elements, combinations thereof, and so forth. Example realizations for such embodiments may be facilitated, at least in part, by the use of an emerging, revolutionary technology that may be termed correlated magnetics. This revolutionary technology referred to herein as correlated magnetics was first fully described and enabled in the co-assigned U.S. Pat. No. 7,800,471 issued on Sep. 21, 2010, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A second generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 7,868,721 issued on Jan. 11, 2011, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A third generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 8,179,219, issued May 15, 2012, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. Another technology known as correlated inductance, which is related to correlated magnetics, has been described and enabled in the co-assigned U.S. Pat. No. 8,115,581 issued on Feb. 14, 2012, and entitled “A System and Method for Producing an Electric Pulse”. The contents of this document are hereby incorporated by reference.
Material presented herein may relate to and/or be implemented in conjunction with multilevel correlated magnetic systems and methods for producing a multilevel correlated magnetic system such as described in U.S. Pat. No. 7,982,568 issued Jul. 19, 2011 which is all incorporated herein by reference in its entirety. Material presented herein may relate to and/or be implemented in conjunction with energy generation systems and methods such as described in U.S. patent application Ser. No. 13/184,543 filed Jul. 17, 2011, which is all incorporated herein by reference in its entirety. Such systems and methods described in U.S. Pat. No. 7,681,256 issued Mar. 23, 2010, U.S. Pat. No. 7,750,781 issued Jul. 6, 2010, U.S. Pat. No. 7,755,462 issued Jul. 13, 2010, U.S. Pat. No. 7,812,698 issued Oct. 12, 2010, U.S. Pat. Nos. 7,817,002, 7,817,003, 7,817,004, 7,817,005, and 7,817,006 issued Oct. 19, 2010, U.S. Pat. No. 7,821,367 issued Oct. 26, 2010, U.S. Pat. Nos. 7,823,300 and 7,824,083 issued Nov. 2, 2011, U.S. Pat. No. 7,834,729 issued Nov. 16, 2011, U.S. Pat. No. 7,839,247 issued Nov. 23, 2010, U.S. Pat. Nos. 7,843,295, 7,843,296, and 7,843,297 issued Nov. 30, 2010, U.S. Pat. No. 7,893,803 issued Feb. 22, 2011, U.S. Pat. Nos. 7,956,711 and 7,956,712 issued Jun. 7, 2011, U.S. Pat. Nos. 7,958,575, 7,961,068 and 7,961,069 issued Jun. 14, 2011, U.S. Pat. No. 7,963,818 issued Jun. 21, 2011, and U.S. Pat. Nos. 8,015,752 and 8,016,330 issued Sep. 13, 2011, and U.S. Pat. No. 8,035,260 issued Oct. 11, 2011 are all incorporated by reference herein in their entirety.
In accordance with one aspect of the invention, a magnetic attachment system comprises a male component and a female component, where the male component can be inserted into the female component. The male component comprises a first magnetic structure having a first plurality of magnetic source regions having a first polarity pattern. The female component comprises a second magnetic structure having a second plurality of magnetic source regions having a second polarity pattern complementary to said first polarity pattern. The male component and female component are configured such that a peg of the male component can be inserted into a hole within the female component such that the first and second magnetic structures face each other across an interface boundary. While the peg of the male component remains inserted within the hole within the female component the male component can be rotated relative to the female component but translational movement is constrained.
The first and second polarity patterns may be in accordance with a cyclic implementation of a code of length N having a cyclic correlation function having a single peak and a plurality of off peaks per code modulo. The first and second magnetic structures produce a peak attract force when in a complementary rotational alignment position. The first and second magnetic structures produce an off-peak force that is one of an attract force less than the peak attract force, a substantially zero force, or a repel force when the male component has been rotated relative to the female component plus or minus 360/N degrees from the complementary rotational alignment position. The first and second magnetic structure produce substantially the same off-peak force when the male component has been rotated relative to the female component between plus 360/N degrees from the complementary rotational alignment position and minus 360/N degrees from the complementary rotational alignment position.
Typically N is greater than 2, but N can be 2.
Under one arrangement, the first and second polarity patterns are irregular polarity patterns. Under such an arrangement, the code can be a Barker code having a length greater than 2.
Under another arrangement. Each symbol of the code can be implemented with a single polarity region, with alternating polarity regions where the alternating polarity regions can be arc segments that form concentric circles, or with an irregular polarity pattern such as a Barker code. The arc segments can also be subdivided into smaller arc segments having a polarities within a given symbol portion that is part of a given concentric circle. One concentric circle can be rotated relative to another concentric circle and the polarities of opposing concentric circles of the two magnetic structures can be exchanged.
The first component 102a and/or the second component 102b may include optional holes 110, for example counter-sunk holes, enabling attachment to objects (e.g., a wall) using screws, nails, etc. Alternatively or additionally, either or both of the first component 102a and second component 102b may have an adhesive on their back side (i.e., the sides beneath them are not shown). Such an adhesive may have a protective layer that can be removed to expose the adhesive at the time of installation. Furthermore, the first component 102a or the second component 102b could be integrated into an object. For example, the second circular hole 108b and third circular hole 108c could be formed in wood object such a wood door. Similarly, peg 104 could be attached directly to a wall using an adhesive.
The first component 102a and/or the second component 102b can have notches 112 providing for a better hand grip. Edges of the first component 102a and/or the second component 102b can also be rounded (e.g., to prevent harm to fingers). Other optional features include at least one notch 114 or other marking used for identifying one or more alignment positions or notches 116 for removing/replacing magnetic structures (e.g., with a flat head screwdriver). One skilled in the art will understand that the first and second magnetic structures can be placed into the first and second components in such a way that their peak attach force rotational alignment position corresponds to the alignment of notches 116 or other markings. For example, the magnetic structures can be attached in their peak attach force rotational alignment position and then placed into the first and second components.
Also shown in
Optionally, an adhesive can be placed beneath the shunt plates 206a 206b and/or beneath the magnetic structures so as to affix them in the first and second components. Alternatively or additionally, a covering layer (e.g., of plastic, Titanium, stainless steel, Aluminum, Brass, epoxy, etc.) can be placed on top of the magnetic structures to hold the magnetic structures in place within the first and second components. Alternatively or additionally a low-friction material (e.g., Teflon, Kapton) can be used to cover one or both of the magnetic structures (or a covering layer on top of one or both of the structures) or a high-friction material (e.g., neoprene or latex) could be used to cover one or both of the magnetic structures (or a covering layer on top of one or both of the structures) or a combination thereof. In one preferred embodiment a high-friction material can be used on one of the magnetic structures and a low-friction material can be used on the other. For example, in an application where a first component is placed inside a pocket of a garment and a second component is used to magnetically attach an object, for example, a camera to the garment the first component might have a low-friction material applied making it easy to turn the first component to detach the two structures while the second component would have a high-friction material making it more difficult for the object to turn by itself, for example, as a result of movement by the person wearing the garment. Alternatively, low and high-friction materials could be integrated in the first and second components at locations other than where the magnets are placed.
An alternative method of assembly of a magnetic attachment system in accordance with the present invention is disclosed in U.S. patent Ser. No. 13/779,611 filed Feb. 27, 2013, titled “System for detaching a magnetic structure from a ferromagnetic material”, which is incorporated by reference. With this assembly method, a beveled magnetic structure is placed into a fixture (e.g., the first component or second component) via a hole in the back of the fixture such that a portion of the magnetic structure is exposed via a hole in the front of the fixture, for example a beveled hole, that is smaller than the magnetic structure, where the beveled portion of the magnet and fixture is used to hold the magnetic structure in place. With this approach, the fixture (i.e., first or second component) can be sealed in the back or not, an adhesive can be used or not, etc. but generally the hole in the front of the fixture being smaller than the magnet holds the magnetic structure in place.
All sorts of other well know methods of keeping magnetic structures in place are possible including set screws and the like.
As seen in
It should also be noted that if the two magnetic structures are in an anti-complementary arrangement (i.e., one of the two structures shown in
Although examples provided herein are all based on a Barker 4 code, any of the other Barker codes can be used in accordance with the present invention. Moreover pseudorandom codes can be used as well as other such codes, as has been previously disclosed.
While particular embodiments of the invention have been described, it will be understood, however, that the invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.
This application is a continuation in part of non-provisional application Ser. No. 14/035,818, titled: “Magnetic Structures and Methods for Defining Magnetic Structures Using One-Dimensional Codes” filed Sep. 24, 2013 by Fullerton et al. and claims the benefit under 35 USC 119(e) of provisional application 61/851,275, titled “Magnetic Attachment System”, filed Mar. 6, 2013, by Roberts et al.; Ser. No. 14/035,818 is a continuation in part of non-provisional application Ser. No. 13/959,649, titled: “Magnetic Device Using Non Polarized Magnetic Attraction Elements” filed Aug. 5, 2013 by Richards et al. and claims the benefit under 35 USC 119(e) of provisional application 61/744,342, titled “Magnetic Structures and Methods for Defining Magnetic Structures Using One-Dimensional Codes”, filed Sep. 24, 2012 by Roberts; Ser. No. 13/959,649 is a continuation in part of non-provisional Application Ser. No. 13/759,695, titled: “System and Method for Defining Magnetic Structures” filed Feb. 5, 2013 by Fullerton et al., which is a continuation of application Ser. No. 13/481,554, titled: “System and Method for Defining Magnetic Structures”, filed May 25, 2012, by Fullerton et al., U.S. Pat. No. 8,368,495; which is a continuation-in-part of Non-provisional application Ser. No. 13/351,203, titled “A Key System For Enabling Operation Of A Device”, filed Jan. 16, 2012, by Fullerton et al., U.S. Pat. No. 8,314,671; Ser. No. 13/481,554 also claims the benefit under 35 USC 119(e) of provisional application 61/519,664, titled “System and Method for Defining Magnetic Structures”, filed May 25, 2011 by Roberts et al.; Ser. No. 13/351,203 is a continuation of application Ser. No. 13,157,975, titled “Magnetic Attachment System With Low Cross Correlation”, filed Jun. 10, 2011, by Fullerton et al., U.S. Pat. No. 8,098,122, which is a continuation of application Ser. No. 12/952,391, titled: “Magnetic Attachment System”, filed Nov. 23, 2010 by Fullerton et al., U.S. Pat. No. 7,961,069; which is a continuation of application Ser. No. 12/478,911, titled “Magnetically Attachable and Detachable Panel System” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,843,295; Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/478,950, titled “Magnetically Attachable and Detachable Panel Method,” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,843,296; Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/478,969, titled “Coded Magnet Structures for Selective Association of Articles,” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,843,297; Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/479,013, titled “Magnetic Force Profile System Using Coded Magnet Structures,” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,839,247; the preceding four applications above are each a continuation-in-part of Non-provisional application Ser. No. 12/476,952 filed Jun. 2, 2009, by Fullerton et al., titled “A Field Emission System and Method”, which is a continuation-in-part of Non-provisional application Ser. No. 12/322,561, filed Feb. 4, 2009 by Fullerton et al., titled “System and Method for Producing an Electric Pulse”, which is a continuation-in-part application of Non-provisional application Ser. No. 12/358,423, filed Jan. 23, 2009 by Fullerton et al., titled “A Field Emission System and Method”, which is a continuation-in-part application of Non-provisional application Ser. No. 12/123,718, filed May 20, 2008 by Fullerton et al., titled “A Field Emission System and Method”, U.S. Pat. No. 7,800,471, which claims the benefit under 35 USC 119(e) of U.S. Provisional Application Ser. No. 61/123,019, filed Apr. 4, 2008 by Fullerton, titled “A Field Emission System and Method”. The applications and patents listed above are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
93931 | Westcott | Aug 1869 | A |
361248 | Winton | Apr 1887 | A |
381968 | Tesla | May 1888 | A |
493858 | Edison | Mar 1893 | A |
675323 | Clark | May 1901 | A |
687292 | Armstrong | Nov 1901 | A |
996933 | Lindquist | Jul 1911 | A |
1081462 | Patton | Dec 1913 | A |
1171351 | Neuland | Feb 1916 | A |
1236234 | Troje | Aug 1917 | A |
1252289 | Murray, Jr. | Jan 1918 | A |
1301135 | Karasick | Apr 1919 | A |
1312546 | Karasick | Aug 1919 | A |
1323546 | Karasick | Aug 1919 | A |
1554236 | Simmons | Jan 1920 | A |
1343751 | Simmons | Jun 1920 | A |
1624741 | Leppke et al. | Dec 1926 | A |
1784256 | Stout | Dec 1930 | A |
1895129 | Jones | Jan 1933 | A |
2048161 | Klaiber | Jul 1936 | A |
2147482 | Butler | Dec 1936 | A |
2186074 | Koller | Jan 1940 | A |
2240035 | Catherall | Apr 1941 | A |
2243555 | Faus | May 1941 | A |
2269149 | Edgar | Jan 1942 | A |
2327748 | Smith | Aug 1943 | A |
2337248 | Koller | Dec 1943 | A |
2337249 | Koller | Dec 1943 | A |
2389298 | Ellis | Nov 1945 | A |
2401887 | Sheppard | Jun 1946 | A |
2414653 | lokholder | Jan 1947 | A |
2438231 | Schultz | Mar 1948 | A |
2471634 | Vennice | May 1949 | A |
2475456 | Norlander | Jul 1949 | A |
2508305 | Teetor | May 1950 | A |
2513226 | Wylie | Jun 1950 | A |
2514927 | Bernhard | Jul 1950 | A |
2520828 | Bertschi | Aug 1950 | A |
2565624 | phelon | Aug 1951 | A |
2570625 | Zimmerman et al. | Oct 1951 | A |
2690349 | Teetor | Sep 1954 | A |
2694164 | Geppelt | Nov 1954 | A |
2964613 | Williams | Nov 1954 | A |
2701158 | Schmitt | Feb 1955 | A |
2722617 | Cluwen et al. | Nov 1955 | A |
2770759 | Ahlgren | Nov 1956 | A |
2837366 | Loeb | Jun 1958 | A |
2853331 | Teetor | Sep 1958 | A |
2888291 | Scott et al. | May 1959 | A |
2896991 | Martin, Jr. | Jul 1959 | A |
2932545 | Foley | Apr 1960 | A |
2935352 | Heppner | May 1960 | A |
2935353 | Loeb | May 1960 | A |
2936437 | Fraser et al. | May 1960 | A |
2962318 | Teetor | Nov 1960 | A |
3055999 | Lucas | Sep 1962 | A |
3089986 | Gauthier | May 1963 | A |
3102314 | Alderfer | Sep 1963 | A |
3151902 | Ahlgren | Oct 1964 | A |
3204995 | Teetor | Sep 1965 | A |
3208296 | Baermann | Sep 1965 | A |
3238399 | Johanees et al. | Mar 1966 | A |
3273104 | Krol | Sep 1966 | A |
3288511 | Tavano | Nov 1966 | A |
3301091 | Reese | Jan 1967 | A |
3351368 | Sweet | Nov 1967 | A |
3382386 | Schlaeppi | May 1968 | A |
3408104 | Raynes | Oct 1968 | A |
3414309 | Tresemer | Dec 1968 | A |
3425729 | Bisbing | Feb 1969 | A |
3468576 | Beyer et al. | Sep 1969 | A |
3474366 | Barney | Oct 1969 | A |
3500090 | Baermann | Mar 1970 | A |
3521216 | Tolegian | Jul 1970 | A |
3645650 | Laing | Feb 1972 | A |
3668670 | Andersen | Jun 1972 | A |
3684992 | Huguet et al. | Aug 1972 | A |
3690393 | Guy | Sep 1972 | A |
3696258 | Anderson et al. | Oct 1972 | A |
3790197 | Parker | Feb 1974 | A |
3791309 | Baermann | Feb 1974 | A |
3802034 | Bookless | Apr 1974 | A |
3803433 | Ingenito | Apr 1974 | A |
3808577 | Mathauser | Apr 1974 | A |
3836801 | Yamashita et al. | Sep 1974 | A |
3845430 | Petkewicz et al. | Oct 1974 | A |
3893059 | Nowak | Jul 1975 | A |
3976316 | Laby | Aug 1976 | A |
4079558 | Gorham | Mar 1978 | A |
4117431 | Eicher | Sep 1978 | A |
4129846 | Yablochnikov | Dec 1978 | A |
4209905 | Gillings | Jul 1980 | A |
4222489 | Hutter | Sep 1980 | A |
4296394 | Ragheb | Oct 1981 | A |
4340833 | Sudo et al. | Jul 1982 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4355236 | Holsinger | Oct 1982 | A |
4399595 | Yoon et al. | Aug 1983 | A |
4416127 | Gomez-Olea Naveda | Nov 1983 | A |
4451811 | Hoffman | May 1984 | A |
4453294 | Morita | Jun 1984 | A |
4517483 | Hucker et al. | May 1985 | A |
4535278 | Asakawa | Aug 1985 | A |
4547756 | Miller et al. | Oct 1985 | A |
4629131 | Podell | Dec 1986 | A |
4645283 | MacDonald et al. | Feb 1987 | A |
4680494 | Grosjean | Jul 1987 | A |
4764743 | Leupold et al. | Aug 1988 | A |
4808955 | Godkin et al. | Feb 1989 | A |
4837539 | Baker | Jun 1989 | A |
4849749 | Fukamachi et al. | Jul 1989 | A |
4862128 | Leupold | Aug 1989 | A |
H693 | Leupold | Oct 1989 | H |
4893103 | Leupold | Jan 1990 | A |
4912727 | Schubert | Mar 1990 | A |
4941236 | Sherman et al. | Jul 1990 | A |
4956625 | Cardone et al. | Sep 1990 | A |
4980593 | Edmundson | Dec 1990 | A |
4993950 | Mensor, Jr. | Feb 1991 | A |
4994778 | Leupold | Feb 1991 | A |
4996457 | Hawsey et al. | Feb 1991 | A |
5013949 | Mabe, Jr. | May 1991 | A |
5020625 | Yamauchi et al. | Jun 1991 | A |
5050276 | Pemberton | Sep 1991 | A |
5062855 | Rincoe | Nov 1991 | A |
5123843 | Van der Zel et al. | Jun 1992 | A |
5179307 | Porter | Jan 1993 | A |
5190325 | Doss-Desouza | Mar 1993 | A |
5213307 | Perrillat-Amede | May 1993 | A |
5302929 | Kovacs | Apr 1994 | A |
5309680 | Kiel | May 1994 | A |
5345207 | Gebele | Sep 1994 | A |
5349258 | Leupold et al. | Sep 1994 | A |
5367891 | Furuyama | Nov 1994 | A |
5383049 | Carr | Jan 1995 | A |
5394132 | Poil | Feb 1995 | A |
5399933 | Tsai | Mar 1995 | A |
5425763 | Stemmann | Jun 1995 | A |
5440997 | Crowley | Aug 1995 | A |
5461386 | Knebelkamp | Oct 1995 | A |
5485435 | Matsuda et al. | Jan 1996 | A |
5492572 | Schroeder et al. | Feb 1996 | A |
5495221 | Post | Feb 1996 | A |
5512732 | Yagnik et al. | Apr 1996 | A |
5570084 | Ritter et al. | Oct 1996 | A |
5582522 | Johnson | Dec 1996 | A |
5604960 | Good | Feb 1997 | A |
5631093 | Perry et al. | May 1997 | A |
5631618 | Trumper et al. | May 1997 | A |
5633555 | Ackermann et al. | May 1997 | A |
5635889 | Stelter | Jun 1997 | A |
5637972 | Randall et al. | Jun 1997 | A |
5730155 | Allen | Mar 1998 | A |
5742036 | Schramm, Jr. et al. | Apr 1998 | A |
5759054 | Spadafore | Jun 1998 | A |
5788493 | Tanaka et al. | Aug 1998 | A |
5838304 | Hall | Nov 1998 | A |
5852393 | Reznik et al. | Dec 1998 | A |
5935155 | Humayun et al. | Aug 1999 | A |
5956778 | Godoy | Sep 1999 | A |
5983406 | Meyerrose | Nov 1999 | A |
6000484 | Zoretich et al. | Dec 1999 | A |
6039759 | Carpentier et al. | Mar 2000 | A |
6047456 | Yao et al. | Apr 2000 | A |
6072251 | Markle | Jun 2000 | A |
6074420 | Eaton | Jun 2000 | A |
6104108 | Hazelton et al. | Aug 2000 | A |
6115849 | Meyerrose | Sep 2000 | A |
6118271 | Ely et al. | Sep 2000 | A |
6120283 | Cousins | Sep 2000 | A |
6125955 | Zoretich et al. | Oct 2000 | A |
6142779 | Siegel et al. | Nov 2000 | A |
6170131 | Shin | Jan 2001 | B1 |
6187041 | Garonzik | Feb 2001 | B1 |
6188147 | Hazelton et al. | Feb 2001 | B1 |
6205012 | Lear | Mar 2001 | B1 |
6210033 | Karkos, Jr. et al. | Apr 2001 | B1 |
6224374 | Mayo | May 2001 | B1 |
6234833 | Tsai et al. | May 2001 | B1 |
6241069 | Mazur et al. | Jun 2001 | B1 |
6273918 | Yuhasz et al. | Aug 2001 | B1 |
6275778 | Shimada et al. | Aug 2001 | B1 |
6285097 | Hazelton et al. | Sep 2001 | B1 |
6387096 | Hyde, Jr. | May 2002 | B1 |
6422533 | Harms | Jul 2002 | B1 |
6457179 | Prendergast | Oct 2002 | B1 |
6467326 | Garrigus | Oct 2002 | B1 |
6535092 | Hurley et al. | Mar 2003 | B1 |
6540515 | Tanaka | Apr 2003 | B1 |
6561815 | Schmidt | May 2003 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6607304 | Lake et al. | Aug 2003 | B1 |
6652278 | Honkura et al. | Nov 2003 | B2 |
6653919 | Shih-Chung et al. | Nov 2003 | B2 |
6720698 | Galbraith | Apr 2004 | B2 |
6747537 | Mosteller | Jun 2004 | B1 |
6821126 | Neidlein | Nov 2004 | B2 |
6841910 | Gery | Jan 2005 | B2 |
6842332 | Rubenson et al. | Jan 2005 | B1 |
6847134 | Frissen et al. | Jan 2005 | B2 |
6850139 | Dettmann et al. | Feb 2005 | B1 |
6862748 | Prendergast | Mar 2005 | B2 |
6864773 | Perrin | Mar 2005 | B2 |
6913471 | Smith | Jul 2005 | B2 |
6927657 | Wu | Aug 2005 | B1 |
9636937 | Tu et al. | Aug 2005 | |
6954968 | Sitbon | Oct 2005 | B1 |
6971147 | Halstead | Dec 2005 | B2 |
7009874 | Deak | Mar 2006 | B2 |
7016492 | Pan et al. | Mar 2006 | B2 |
7031160 | Tillotson | Apr 2006 | B2 |
7033400 | Currier | Apr 2006 | B2 |
7038565 | Chell | May 2006 | B1 |
7065860 | Aoki et al. | Jun 2006 | B2 |
7066739 | McLeish | Jun 2006 | B2 |
7066778 | Kretzschmar | Jun 2006 | B2 |
7097461 | Neidlein | Aug 2006 | B2 |
7101374 | Hyde, Jr. | Sep 2006 | B2 |
7135792 | Devaney et al. | Nov 2006 | B2 |
7137727 | Joseph et al. | Nov 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7224252 | Meadow, Jr. et al. | May 2007 | B2 |
7264479 | Lee | Sep 2007 | B1 |
7276025 | Roberts et al. | Oct 2007 | B2 |
7311526 | Rohrbach et al. | Dec 2007 | B2 |
7339790 | Baker et al. | Mar 2008 | B2 |
7344380 | Neidlein et al. | Mar 2008 | B2 |
7351066 | DiFonzo et al. | Apr 2008 | B2 |
7358724 | Taylor et al. | Apr 2008 | B2 |
7362018 | Kulogo et al. | Apr 2008 | B1 |
7364433 | Neidlein | Apr 2008 | B2 |
7381181 | Lau et al. | Jun 2008 | B2 |
7402175 | Azar | Jul 2008 | B2 |
7416414 | Bozzone et al. | Aug 2008 | B2 |
7438726 | Erb | Oct 2008 | B2 |
7444683 | Prendergast et al. | Nov 2008 | B2 |
7453341 | Hildenbrand | Nov 2008 | B1 |
7467948 | Lindberg et al. | Dec 2008 | B2 |
7498914 | Miyashita et al. | Mar 2009 | B2 |
7583500 | Ligtenberg et al. | Sep 2009 | B2 |
7637746 | Lindberg et al. | Dec 2009 | B2 |
7645143 | Rohrbach et al. | Jan 2010 | B2 |
7658613 | Griffin et al. | Feb 2010 | B1 |
7715890 | Kim et al. | May 2010 | B2 |
7762817 | Ligtenberg et al. | Jul 2010 | B2 |
7775567 | Ligtenberg et al. | Aug 2010 | B2 |
7796002 | Hashimoto et al. | Sep 2010 | B2 |
7799281 | Cook et al. | Sep 2010 | B2 |
7808349 | Fullerton et al. | Oct 2010 | B2 |
7812697 | Fullerton et al. | Oct 2010 | B2 |
7817004 | Fullerton et al. | Oct 2010 | B2 |
7828556 | Rodrigues | Nov 2010 | B2 |
7832897 | Ku | Nov 2010 | B2 |
7837032 | Smeltzer | Nov 2010 | B2 |
7839246 | Fullerton et al. | Nov 2010 | B2 |
7843297 | Fullerton et al. | Nov 2010 | B2 |
7868721 | Fullerton et al. | Jan 2011 | B2 |
7871272 | Firman, II et al. | Jan 2011 | B2 |
7874856 | Schriefer et al. | Jan 2011 | B1 |
7889037 | Cho | Feb 2011 | B2 |
7901216 | Rohrbach et al. | Mar 2011 | B2 |
7903397 | McCoy | Mar 2011 | B2 |
7905626 | Shantha et al. | Mar 2011 | B2 |
7997906 | Ligtenberg et al. | Aug 2011 | B2 |
8002585 | Zhou | Aug 2011 | B2 |
8009001 | Cleveland | Aug 2011 | B1 |
8050714 | Fadell et al. | Nov 2011 | B2 |
8078224 | Fadell et al. | Dec 2011 | B2 |
8078776 | Novotney et al. | Dec 2011 | B2 |
8087939 | Rohrbach et al. | Jan 2012 | B2 |
8099964 | Saito et al. | Jan 2012 | B2 |
8138869 | Lauder et al. | Mar 2012 | B1 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8143983 | Lauder et al. | Mar 2012 | B1 |
8165634 | Fadell et al. | Apr 2012 | B2 |
8177560 | Rohrbach et al. | May 2012 | B2 |
8187006 | Rudisill et al. | May 2012 | B2 |
8190205 | Fadell et al. | May 2012 | B2 |
8242868 | Lauder et al. | Aug 2012 | B2 |
8253518 | Lauder et al. | Aug 2012 | B2 |
8264310 | Lauder et al. | Sep 2012 | B2 |
8264314 | Sankar | Sep 2012 | B2 |
8271038 | Fadell et al. | Sep 2012 | B2 |
8271705 | Novotney et al. | Sep 2012 | B2 |
8297367 | Chen et al. | Oct 2012 | B2 |
8344836 | Lauder et al. | Jan 2013 | B2 |
8348678 | Hardisty et al. | Jan 2013 | B2 |
8354767 | Pennander et al. | Jan 2013 | B2 |
8390411 | Lauder et al. | Mar 2013 | B2 |
8390412 | Lauder et al. | Mar 2013 | B2 |
8390413 | Lauder et al. | Mar 2013 | B2 |
8395465 | Lauder et al. | Mar 2013 | B2 |
8398409 | Schmidt | Mar 2013 | B2 |
8435042 | Rohrbach et al. | May 2013 | B2 |
8454372 | Lee et al. | Jun 2013 | B2 |
8467829 | Fadell et al. | Jun 2013 | B2 |
8497753 | Difonzo et al. | Jul 2013 | B2 |
8514042 | Lauder et al. | Aug 2013 | B2 |
8535088 | Gao et al. | Sep 2013 | B2 |
8576031 | Lauder et al. | Nov 2013 | B2 |
8576034 | Bilbrey et al. | Nov 2013 | B2 |
8616362 | Browne et al. | Dec 2013 | B1 |
8648679 | Lauder et al. | Feb 2014 | B2 |
8664044 | Jin et al. | Mar 2014 | B2 |
8664045 | Tu et al. | Mar 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8702316 | DiFonzo et al. | Apr 2014 | B2 |
8734024 | Isenhour et al. | May 2014 | B2 |
8752200 | Varshavsky et al. | Jun 2014 | B2 |
8757893 | Isenhour et al. | Jun 2014 | B1 |
8770857 | DiFonzo et al. | Jul 2014 | B2 |
8774577 | Benjamin et al. | Jul 2014 | B2 |
8781273 | Benjamin et al. | Jul 2014 | B2 |
20020125977 | VanZoest | Sep 2002 | A1 |
20030136837 | Amon et al. | Jul 2003 | A1 |
20030170976 | Molla et al. | Sep 2003 | A1 |
20030179880 | Pan et al. | Sep 2003 | A1 |
20030187510 | Hyde | Oct 2003 | A1 |
20040003487 | Reiter | Jan 2004 | A1 |
20040155748 | Steingroever | Aug 2004 | A1 |
20040244636 | Meadow et al. | Dec 2004 | A1 |
20040251759 | Hirzel | Dec 2004 | A1 |
20050102802 | Sitbon et al. | May 2005 | A1 |
20050196484 | Khoshnevis | Sep 2005 | A1 |
20050231046 | Aoshima | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050263549 | Scheiner | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060066428 | McCarthy et al. | Mar 2006 | A1 |
20060189259 | Park et al. | Aug 2006 | A1 |
20060198047 | Xue et al. | Sep 2006 | A1 |
20060198998 | Raksha et al. | Sep 2006 | A1 |
20060214756 | Elliott et al. | Sep 2006 | A1 |
20060290451 | Prendergast et al. | Dec 2006 | A1 |
20060293762 | Schulman et al. | Dec 2006 | A1 |
20070072476 | Milan | Mar 2007 | A1 |
20070075594 | Sadler | Apr 2007 | A1 |
20070103266 | Wang et al. | May 2007 | A1 |
20070138806 | Ligtenberg et al. | Jun 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070267929 | Pulnikov et al. | Nov 2007 | A1 |
20080119250 | Cho et al. | May 2008 | A1 |
20080139261 | Cho et al. | Jun 2008 | A1 |
20080174392 | Cho | Jul 2008 | A1 |
20080181804 | Tanigawa et al. | Jul 2008 | A1 |
20080186683 | Ligtenberg et al. | Aug 2008 | A1 |
20080218299 | Arnold | Sep 2008 | A1 |
20080224806 | Ogden et al. | Sep 2008 | A1 |
20080272868 | Prendergast et al. | Nov 2008 | A1 |
20080282517 | Claro | Nov 2008 | A1 |
20090021333 | Fiedler | Jan 2009 | A1 |
20090209173 | Arledge et al. | Aug 2009 | A1 |
20090250576 | Fullerton et al. | Oct 2009 | A1 |
20090251256 | Fullerton et al. | Oct 2009 | A1 |
20090254196 | Cox et al. | Oct 2009 | A1 |
20090278642 | Fullerton et al. | Nov 2009 | A1 |
20090289090 | Fullerton et al. | Nov 2009 | A1 |
20090289749 | Fullerton et al. | Nov 2009 | A1 |
20090292371 | Fullerton et al. | Nov 2009 | A1 |
20100033280 | Bird et al. | Feb 2010 | A1 |
20100126857 | Polwart et al. | May 2010 | A1 |
20100167576 | Zhou | Jul 2010 | A1 |
20110026203 | Ligtenberg et al. | Feb 2011 | A1 |
20110085157 | Bloss et al. | Apr 2011 | A1 |
20110101088 | Marguerettaz et al. | May 2011 | A1 |
20110210636 | Kuhlmann-Wilsdorf | Sep 2011 | A1 |
20110234344 | Fullerton et al. | Sep 2011 | A1 |
20110248806 | Michael | Oct 2011 | A1 |
20110279206 | Fullerton et al. | Nov 2011 | A1 |
20120007704 | Nerl | Jan 2012 | A1 |
20120064309 | Kwon et al. | Mar 2012 | A1 |
20120085753 | Fitch et al. | Apr 2012 | A1 |
20120235519 | Dyer et al. | Sep 2012 | A1 |
20130186209 | Herbst | Jul 2013 | A1 |
20130186473 | Mankame et al. | Jul 2013 | A1 |
20130186807 | Browne et al. | Jul 2013 | A1 |
20130187538 | Herbst | Jul 2013 | A1 |
20130192860 | Puzio et al. | Aug 2013 | A1 |
20130207758 | Browne et al. | Aug 2013 | A1 |
20130252375 | Yi et al. | Sep 2013 | A1 |
20130256274 | Faulkner | Oct 2013 | A1 |
20130270056 | Mankame et al. | Oct 2013 | A1 |
20130305705 | Ac et al. | Nov 2013 | A1 |
20130341137 | Mandame et al. | Dec 2013 | A1 |
20140001745 | Lehmann et al. | Jan 2014 | A1 |
20140044972 | Menassa et al. | Feb 2014 | A1 |
20140072261 | Isenhour et al. | Mar 2014 | A1 |
20140152252 | Wood et al. | Jun 2014 | A1 |
20140205235 | Benjamin et al. | Jul 2014 | A1 |
20140221741 | Wang et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1615573 | May 2005 | CN |
2938782 | Apr 1981 | DE |
0 345 554 | Dec 1989 | EP |
0 545 737 | Jun 1993 | EP |
823395 | Jan 1938 | FR |
1 495 677 | Dec 1977 | GB |
557-55908 | Apr 1982 | JP |
557-189423 | Dec 1982 | JP |
60-091011 | Jun 1985 | JP |
60-221238 | Nov 1985 | JP |
64-30444 | Feb 1989 | JP |
2001-328483 | Nov 2001 | JP |
2008035676 | Feb 2008 | JP |
2008165974 | Jul 2008 | JP |
05-038123 | Oct 2012 | JP |
WO-0231945 | Apr 2002 | WO |
WO-2007081830 | Jul 2007 | WO |
WO-2009124030 | Oct 2009 | WO |
WO-2010141324 | Dec 2010 | WO |
Entry |
---|
Atallah, K., Calverley, S.D., D. Howe, 2004, “Design, analysis and realisation of a high-performance magnetic gear”, IEE Proc.-Electr. Power Appl., vol. 151, No. 2, Mar. 2004. |
Atallah, K., Howe, D. 2001, “A Novel High-Performance Magnetic Gear”, IEEE Transactions on Magnetics, vol. 37, No. 4, Jul. 2001, p. 2844-2846. |
Bassani, R., 2007, “Dynamic Stability of Passive Magnetic Bearings”, Nonlinear Dynamics, V. 50, p. 161-168. |
BNS 33 Range, Magnetic safety sensors, Rectangular design, http://www.farnell.com/datasheets/36449.pdf, 3 pages, date unknown. |
Boston Gear 221S-4, One-stage Helical Gearbox, http://www.bostongearcom/pdf/product—sections/200—series—helical.pdf, referenced Jun. 2010. |
Charpentier et al., 2001, “Mechanical Behavior of Axially Magnetized Permanent-Magnet Gears”, IEEE Transactions on Magnetics, vol. 37, No. 3, May 2001, p. 1110-17. |
Chau et al., 2008, “Transient Analysis of Coaxial Magnetic Gears Using Finite Element Comodeling”, Journal of Applied Physics, vol. 103. |
Choi et al., 2010, “Optimization of Magnetization Directions in a 3-D Magnetic Structure”, IEEE Transactions on Magnetics, vol. 46, No. 6, Jun. 2010, p. 1603-06. |
Correlated Magnetics Research, 2009, Online Video, “Innovative Magnetics Research in Huntsville”, http://www.youtube.com/watch?v=m4m81JjZCJo. |
Correlated Magnetics Research, 2009, Online Video, “Non-Contact Attachment Utilizing Permanent Magnets”, http://www.youtube.com/watch?v=3xUm25CNNgQ. |
Correlated Magnetics Research, 2010, Company Website, http://www.correlatedmagnetics.com. |
Furlani 1996, “Analysis and optimization of synchronous magnetic couplings”, J. Appl. Phys., vol. 79, No. 8, p. 4692. |
Furlani 2001, “Permanent Magnet and Electromechanical Devices”, Academic Press, San Diego. |
Furlani, E.P., 2000, “Analytical analysis of magnetically coupled multipole cylinders”, J. Phys. D: Appl. Phys., vol. 33, No. 1, p. 28-33. |
General Electric DP 2.7 Wind Turbine Gearbox, http://www.gedrivetrain.com/insideDP27.cfm, referenced Jun. 2010. |
Ha et al., 2002, “Design and Characteristic Analysis of Non-Contact Magnet Gear for Conveyor by Using Permanent Magnet”, Conf. Record of the 2002 IEEE Industry Applications Conference, p. 1922-27. |
Huang et al., 2008, “Development of a Magnetic Planetary Gearbox”, IEEE Transactions on Magnetics, vol. 44, No. 3, p. 403-12. |
International Search Report and Written Opinion dated Jun. 1, 2009, directed to counterpart application no. PCT/US2009/002027. (10 pages). |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US12/61938 dated Feb. 26, 2013. |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/028095 dated May 13, 2013. |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/047986 dated Nov. 21, 2013. |
International Search Report and Written Opinion, dated Apr. 8, 2011 issued in related International Application No. PCT/US2010/049410. |
International Search Report and Written Opinion, dated Aug. 18, 2010, issued in related International Application No. PCT/US2010/036443. |
International Search Report and Written Opinion, dated Jul. 13, 2010, issued in related International Application No. PCT/US2010/021612. |
International Search Report and Written Opinion, dated May 14, 2009, issued in related International Application No. PCT/US2009/038925. |
Jian et al., “Comparison of Coaxial Magnetic Gears With Different Topologies”, IEEE Transactions on Magnetics, vol. 45, No. 10, Oct. 2009, p. 4526-29. |
Jian, L., Chau, K.T., 2010, “A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays”, IEEE Transactions on Energy Conversion, vol. 25, No. 2, Jun. 2010, p. 319-28. |
Jørgensen et al., “The Cycloid Permanent Magnetic Gear”, IEEE Transactions on Industry Applications, vol. 44, No. 6, Nov./Dec. 2008, p. 1659-65. |
Jørgensen et al., 2005, “Two dimensional model of a permanent magnet spur gear”, Conf. Record of the 2005 IEEE Industry Applications Conference, p. 261-5. |
Kim, “A future cost trends of magnetizer systems in Korea”, Industrial Electronics, Control, and Instrumentation, 1996, vol. 2, Aug. 5, 1996, pp. 991-996. |
Krasil'nikov et al., 2008, “Calculation of the Shear Force of Highly Coercive Permanent Magnets in Magnetic Systems With Consideration of Affiliation to a Certain Group Based on Residual Induction”, Chemical and Petroleum Engineering, vol. 44, Nos. 7-8, p. 362-65. |
Krasil'nikov et al., 2009, “Torque Determination for a Cylindrical Magnetic Clutch”, Russian Engineering Research, vol. 29, No. 6, pp. 544-47. |
Liu et al., 2009, “Design and Analysis of Interior-magnet Outer-rotor Concentric Magnetic Gears”, Journal of Applied Physics, vol. 105. |
Lorimer, W., Hartman, A., 1997, “Magnetization Pattern for Increased Coupling in Magnetic Clutches”, IEEE Transactions on Magnetics, vol. 33, No. 5, Sep. 1997. |
Mezani, S., Atallah, K., Howe, D. , 2006, “A high-performance axial-field magnetic gear”, Journal of Applied Physics vol. 99. |
Mi, “Magnetreater/Charger Model 580” Magnetic Instruments Inc. Product specification, May 4, 2009, http://web.archive.org/web/20090504064511/http://www.maginst.com/specifications/580—magnetreater.htm, 2 pages. |
Neugart PLE-160, One-Stage Planetary Gearbox, http://www.neugartusa.com/ple—160—gb.pdf, referenced Jun. 2010. |
Series BNS, Compatible Series AES Safety Controllers, http://www.schmersalusa.com/safety—controllers/drawings/aes.pdf, pp. 159-175, date unknown. |
Series BNS-B20, Coded-Magnet Sensorr Safety Door Handle, http://www.schmersalusa.com/catalog—pdfs/BNS—B20.pdf, 2pages, date unknown. |
Series BNS333, Coded-Magnet Sensors with Integral Safety Control Module, http://www.schmersalusa.com/machine—guarding/coded—magnet/drawings/bns333.pdf, 2 pages, date unknown. |
Tsurumoto 1992, “Basic Analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet”, IEEE Translation Journal on Magnetics in Japan, Vo 7, No. 6, Jun. 1992, p. 447-52. |
United States Office Action issued in U.S. Appl. No. 13/104,393 dated Apr. 4, 2013. |
United States Office Action issued in U.S. Appl. No. 13/236,413 dated Jun. 6, 2013. |
United States Office Action issued in U.S. Appl. No. 13/246,584 dated May 16, 2013. |
United States Office Action issued in U.S. Appl. No. 13/246,584 dated Oct. 15, 2013. |
United States Office Action issued in U.S. Appl. No. 13/374,074 dated Feb. 21, 2013. |
United States Office Action issued in U.S. Appl. No. 13/430,219 dated Aug. 13, 2013. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Aug. 8, 2013. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Jan. 7, 2013. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Nov. 8, 2013. |
United States Office Action issued in U.S. Appl. No. 13/529,520 dated Sep. 28,2012. |
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Mar. 22, 2013. |
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Oct. 29, 2013. |
United States Office Action issued in U.S. Appl. No. 13/718,839 dated Dec. 16, 2013. |
United States Office Action issued in U.S. Appl. No. 13/855,519 dated Jul. 17, 2013. |
United States Office Action issued in U.S. Appl. No. 13/928,126 dated Oct. 11, 2013. |
United States Office Action, dated Aug. 26, 2011, issued in counterpart U.S. Appl. No. 12/206,270. |
United States Office Action, dated Feb. 2, 2011, issued in counterpart U.S. Appl. No. 12/476,952. |
United States Office Action, dated Mar. 12, 2012, issued in counterpart U.S. Appl. No. 12/206,270. |
United States Office Action, dated Mar. 9, 2012, issued in counterpart U.S. Appl. No. 13/371,280. |
United States Office Action, dated Oct. 12, 2011, issued in counterpart U.S. Appl. No. 12/476,952. |
Wikipedia, “Barker Code”, Web article, last modified Aug. 2, 2008, 2 pages. |
Wikipedia, “Bitter Electromagnet”, Web article, last modified Aug. 2011, 1 page. |
Wikipedia, “Costas Array”, Web article, last modified Oct. 7, 2008, 4 pages. |
Wikipedia, “Gold Code”, Web article, last modified Jul. 27, 2008, 1 page. |
Wikipedia, “Golomb Ruler”, Web article, last modified Nov. 4, 2008, 3 pages. |
Wikipedia, “Kasami Code”, Web article, last modified Jun. 11, 2008, 1 page. |
Wikipedia, “Linear feedback shift register”, Web article, last modified Nov. 11, 2008, 6 pages. |
Wikipedia, “Walsh Code”, Web article, last modified Sep. 17, 2008, 2 pages. |
C. Pompermaier, L. Sjoberg, and G. Nord, Design and Optimization of a Permanent Magnet Transverse Flux Machine, XXth International Conference on Electrical Machines, Sep. 2012, p. 606, IEEE Catalog No. CFP1290B-PRT, ISBN: 978-1-673-0143-5. |
V. Rudnev, an Objective Assessment of Magnetic Flux Concentrators, Het Trating Progress, Nov./Dec. 2004, p. 19-23. |
Number | Date | Country | |
---|---|---|---|
20140182088 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61851275 | Mar 2013 | US | |
61744342 | Sep 2012 | US | |
61519664 | May 2011 | US | |
61123019 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13841554 | May 2012 | US |
Child | 13759695 | US | |
Parent | 13157975 | Jun 2011 | US |
Child | 13351203 | US | |
Parent | 12952391 | Nov 2010 | US |
Child | 13157975 | US | |
Parent | 12478911 | Jun 2009 | US |
Child | 12952391 | US | |
Parent | 12478950 | Jun 2009 | US |
Child | 12478911 | US | |
Parent | 12478969 | Jun 2009 | US |
Child | 12478950 | US | |
Parent | 12479013 | Jun 2009 | US |
Child | 12478969 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14035818 | Sep 2013 | US |
Child | 14198191 | US | |
Parent | 13959649 | Aug 2013 | US |
Child | 14035818 | US | |
Parent | 13759695 | Feb 2013 | US |
Child | 13959649 | US | |
Parent | 13351203 | Jan 2012 | US |
Child | 13841554 | US | |
Parent | 12476952 | Jun 2009 | US |
Child | 12478950 | US | |
Parent | 12476952 | US | |
Child | 12952391 | US | |
Parent | 12476952 | US | |
Child | 12478969 | US | |
Parent | 12476952 | US | |
Child | 12479013 | US | |
Parent | 12322561 | Feb 2009 | US |
Child | 12476952 | US | |
Parent | 12358423 | Jan 2009 | US |
Child | 12322561 | US | |
Parent | 12123718 | May 2008 | US |
Child | 12358423 | US |