Magnetic buckling assembly

Information

  • Patent Grant
  • 11758988
  • Patent Number
    11,758,988
  • Date Filed
    Thursday, November 4, 2021
    3 years ago
  • Date Issued
    Tuesday, September 19, 2023
    a year ago
Abstract
A magnetic buckling assembly includes a male buckling component, a female buckling component, a first locking portion, a second locking portion, an operating component, a first magnetic component, a second magnetic component and a clearance structure. The first magnetic component magnetically attracts the second magnetic component for preventing separation of the male buckling component and the female buckling component or magnetically repulses the second magnetic component for promoting the separation of the male buckling component and the female buckling component when the operating component is operated to disengage the first locking portion from the second locking portion for allowing the separation of the male buckling component and the female buckling component. The clearance structure allows the second locking portion to slide an offsetting position for preventing the separation of the male buckling component and the female buckling component after engagement of the first locking portion and the second locking portion.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to a buckling assembly, and more particularly, to a magnetic buckling assembly.


2. Description of the Prior Art

With development of economy and advancement of technology, there are more and more consumer goods available in the market for bringing convenience in people's lives. A baby carrier is one of these consumer goods.


It is well known that a baby carrier usually includes multiple straps and multiple buckling assemblies for quickly connecting or disconnecting the straps.


Currently, a conventional buckling assembly usually includes a male buckling component, a female buckling component and a releasing button. The male buckling component is connected to a strap, and the female buckling component is connected to another strap, so that the straps can be connected to each other by engagement of the male buckling component and the female buckling component. The releasing button is for disengaging the male buckling component from the female buckling component to disconnect the straps.


However, the conventional buckling assembly has drawbacks of difficult operation and complicated structure.


Therefore, there is a need to provide an improved buckling assembly with easy operation and compact structure for solving the aforementioned problems.


SUMMARY OF THE INVENTION

It is an objective of the present invention to provide a magnetic buckling assembly with easy operation and compact structure.


In order to achieve the aforementioned objective, the present invention discloses a magnetic buckling assembly. The magnetic buckling assembly includes a male buckling component, a female buckling component, a first locking portion, a second locking portion, an operating component, a first magnetic component and a second magnetic component. The first locking portion is disposed on one of the male buckling component and the female buckling component. The second locking portion disposed on the other one of the male buckling component and the female buckling component and for engaging with the first locking portion. The operating component is movably disposed on the other one of the male buckling component and the female buckling component. The first magnetic component is disposed on the female buckling component. The second magnetic component is disposed on the male buckling component and for magnetically cooperating with the first magnetic component. The male buckling component is connected to the female buckling component along a connecting direction by engagement of the first locking portion and the second locking portion. The first magnetic component magnetically attracts or magnetically repulses the second magnetic component during a connecting process of the male buckling component and the female buckling component along the connecting direction. The first magnetic component magnetically attracts the second magnetic component for preventing separation of the male buckling component and the female buckling component or magnetically repulses the second magnetic component for promoting the separation of the male buckling component and the female buckling component when the operating component is operated to disengage the first locking portion from the second locking portion for allowing the separation of the male buckling component and the female buckling component. At least one clearance structure is formed on at least one of the second locking portion and the one of the male buckling component and the female buckling component for allowing the second locking portion to slide along an offsetting direction intersecting with the connecting direction to an offsetting position after the first locking portion engages with the second locking portion, and the one of the male buckling component and the female buckling component comprises an abutting portion for abutting against the second locking portion for preventing the separation of the male buckling component and the female buckling component when the second locking portion is located at the offsetting position.


According to an embodiment of the present invention, the second locking portion includes at least one first partition for engaging with the first locking portion and at least one second partition for abutting against the abutting portion. The at least one clearance structure includes a first clearance structure formed on the second locking portion, and the first clearance structure is a clearance slot.


According to an embodiment of the present invention, the one of the male buckling component and the female buckling component includes an outer cover and a buckling body disposed inside the outer cover. The first locking portion is disposed on the buckling body. A connecting hole is formed on a side of the outer cover for allowing the second locking portion to pass therethrough. The at least one clearance structure further includes a second clearance structure formed on the outer cover. The second clearance structure is a clearance hole communicated with the connecting hole, and the abutting portion is formed on the outer cover.


According to an embodiment of the present invention, the lateral wall of the clearance slot abuts against an inner wall of the clearance hole when the second locking portion is located at the offsetting position.


According to an embodiment of the present invention, a contacting surface of the lateral wall of the clearance slot and a contacting surface of the inner wall of the clearance hole are flat surfaces.


According to an embodiment of the present invention, the connecting hole is arc-shaped hole, and the clearance hole is a rectangular hole and communicated with the arc-shape hole.


According to an embodiment of the present invention, the abutting portion is located on an inner surface of the outer cover adjacent to the inner wall of the clearance hole.


According to an embodiment of the present invention, a notch is formed on the buckling body and corresponding to the clearance hole. The notch is parallel to the connecting direction. The at least one second partition of the second locking portion slides into the notch during an offsetting process of the second locking portion.


According to an embodiment of the present invention, two clearance structures are formed on the second locking portion and opposite to each other.


Furthermore, the present invention further discloses a magnetic buckling assembly. The magnetic buckling assembly includes a male buckling component, a female buckling component, a first locking portion, a second locking portion, an operating component, a first magnetic component, a second magnetic component and a protecting component. The first locking portion is disposed on one of the male buckling component and the female buckling component. The second locking portion is disposed on the other one of the male buckling component and the female buckling component and for engaging with the first locking portion. The operating component is movably disposed on the other one of the male buckling component and the female buckling component. The first magnetic component is disposed on the female buckling component. The second magnetic component is disposed on the male buckling component and for magnetically cooperating with the first magnetic component. The protecting component is disposed on the one of the male buckling component and the female buckling component and movable relative to the one of the male buckling component and the female buckling component between a first position and a second position. The protecting component restrains the operating component from disengaging the first locking portion from the second locking portion when the protecting component is located at the first position, and the operating component is allowed to disengage the first locking portion from the second locking portion when the protecting component is located at the second position. The male buckling component is connected to the female buckling component along a connecting direction by engagement of the first locking portion and the second locking portion. The first magnetic component magnetically attracts or magnetically repulses the second magnetic component during a connecting process of the male buckling component and the female buckling component along the connecting direction. The first magnetic component magnetically attracts the second magnetic component for preventing separation of the male buckling component and the female buckling component or magnetically repulses the second magnetic component for promoting the separation of the male buckling component and the female buckling component when the operating component is operated to disengage the first locking portion from the second locking portion for allowing the separation of the male buckling component and the female buckling component.


According to an embodiment of the present invention, the protecting component engages with the operating component when the protecting component is located at the first position, and the protecting component disengages from the operating component when the protecting component is located at the second position.


According to an embodiment of the present invention, the protecting component covers the operating component when the protecting component is located at the first position, and the operating component is exposed when the protecting component is located at the second position.


According to an embodiment of the present invention, the protecting component includes a covering portion and a guiding portion connected to the covering portion. The covering portion selectively covers or exposes the operating component. The guiding portion is movably disposed on the one of the male buckling component and the female buckling component, and the covering portion and the guiding portion are misaligned with each other along the connecting direction.


According to an embodiment of the present invention, at least one of the guiding portion and the covering portion is a hollow structure with an opening toward the other one of the male buckling component and the female buckling component.


According to an embodiment of the present invention, the operating component is slidably disposed on the one of the male buckling component and the female buckling component along an operating direction parallel to the connecting direction, and the protecting component is slidably disposed on the one of the male buckling component and the female buckling component along a sliding direction intersecting with the connecting direction.


According to an embodiment of the present invention, the protecting component is disposed on the one of the male buckling component and the female buckling component and slidable or rotatable relative to the one of the male buckling component and the female buckling component between the first position and the second position.


According to an embodiment of the present invention, the magnetic buckling assembly further includes a recovering component for biasing the protecting component to slide or rotate to the first position.


According to an embodiment of the present invention, the protecting component includes a first end and a second end. The first end of the protecting component is a resilient structure and connected to the one of the male buckling component and the female buckling component, and the second end of the protecting component is configured to cover or expose the operating component.


In summary, the present invention utilizes engagement of the first locking portion and the second locking portion for connecting the male buckling component to the female buckling component. Furthermore, the present invention further utilizes magnetic cooperation of the first magnetic component and the second magnetic component for securing connection between the male buckling component and the female buckling component. Therefore, the connection between the male buckling component and the female buckling component is more reliable. If the first magnetic component is configured to magnetically attract the second magnetic component, the male buckling component can still be connected to the female buckling component in a condition that the first locking portion and the second locking portion are disengaged from each other due to an operational mistake of the operating component, which provides better safety in use and prevents the male buckling component or the female buckling component from falling and missing due to disengagement of the male buckling component or the female buckling component. On the other hand, if the first magnetic component is configured to magnetically repulse the second magnetic component, the male buckling component can be connected to the female buckling component because the first locking portion and the second locking portion can be driven to abut against each other by magnetic repulsion of the first magnetic component and the second magnetic component, which makes the connection of the male buckling component and the female buckling component more reliable. Furthermore, the male buckling component can be driven to be separated from the female buckling component by the magnetic repulsion of the first magnetic component and the second magnetic component in a condition that the first locking portion and the second locking portion are disengaged from each other by the operating component, which provides convenience in use. Besides, the magnetic buckling assembly of the present invention also has an advantage of compact structure.


These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 and FIG. 2 are schematic diagrams of a magnetic buckling assembly at different views according to a first embodiment of the present invention.



FIG. 3 is an exploded diagram of the magnetic buckling assembly according to the first embodiment of the present invention.



FIG. 4 is an internal structural diagram of the magnetic buckling assembly according to the first embodiment of the present invention.



FIG. 5 is a diagram of the magnetic buckling assembly without illustrating an outer cover according to the first embodiment of the present invention.



FIG. 6 is a partial diagram of a female buckling component according to the first embodiment of the present invention.



FIG. 7 and FIG. 8 are schematic diagrams of a magnetic buckling assembly at different views according to a second embodiment of the present invention.



FIG. 9 is an internal structural diagram of the magnetic buckling assembly according to the second embodiment of the present invention.



FIG. 10 is a partial exploded diagram of the magnetic buckling assembly according to the second embodiment of the present invention.



FIG. 11 and FIG. 12 are exploded diagrams of a magnetic buckling assembly at different views according to a third embodiment of the present invention.



FIG. 13 is an internal structural diagram of the magnetic buckling assembly according to the third embodiment of the present invention.



FIG. 14 is a schematic diagram of a magnetic buckling assembly according to a fourth embodiment of the present invention.



FIG. 15 is a sectional diagram of the magnetic buckling assembly according to the fourth embodiment of the present invention.



FIG. 16 to FIG. 18 are schematic diagrams of the magnetic buckling assembly in different states according to the fourth embodiment of the present invention.



FIG. 19 is a partial diagram of the magnetic buckling assembly according to the fourth embodiment of the present invention.



FIG. 20 is an exploded diagram of the magnetic buckling assembly according to the fourth embodiment of the present invention.



FIG. 21 is a partial diagram of a female buckling component according to the fourth embodiment of the present invention.



FIG. 22 is a diagram of a male buckling component according to the fourth embodiment of the present invention.



FIG. 23 and FIG. 24 are schematic diagrams of a magnetic buckling assembly at different views according to a fifth embodiment of the present invention.



FIG. 25 and FIG. 26 are exploded diagrams of the magnetic buckling assembly at different views according to the fifth embodiment of the present invention.



FIG. 27 is a diagram of a male buckling component according to the fifth embodiment of the present invention.



FIG. 28 is a diagram of an outer cover according to the fifth embodiment of the present invention.



FIG. 29 is a partial diagram of a female buckling component according to the fifth embodiment of the present invention.



FIG. 30 is a diagram of an operating component according to the fifth embodiment of the present invention.



FIG. 31 and FIG. 32 are internal structural diagrams of the magnetic buckling assembly at different views according to the fifth embodiment of the present invention.





DETAILED DESCRIPTION

In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” etc., is used with reference to the orientation of the Figure(s) being described. The components of the present invention can be positioned in a number of different orientations. As such, the directional terminology is used for purposes of illustration and is in no way limiting. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.


Please refer to FIG. 1 to FIG. 4. FIG. 1 and FIG. 2 are schematic diagrams of a magnetic buckling assembly 100 at different views according to a first embodiment of the present invention. FIG. 3 is an exploded diagram of the magnetic buckling assembly 100 according to the first embodiment of the present invention. FIG. 4 is an internal structural diagram of the magnetic buckling assembly 100 according to the first embodiment of the present invention. As shown in FIG. 1 to FIG. 4, the magnetic buckling assembly 100 includes a female buckling component 1, a male buckling component 2, an operating component 3, a first magnetic component 4, a second magnetic component 5, a first locking portion 1a and a second locking portion 2a. In this embodiment, the first locking portion 1a and the first magnetic component 4 can be disposed on the female buckling component 1, and the second locking portion 2a and the second magnetic component 5 can be disposed on the male buckling component 2. The male buckling component 2 can be connected to the female buckling component 1 along a connecting direction by engagement of the first locking portion 1a and the second locking portion 2a. The operating component 3 can be movably disposed on the female buckling component 1 for disengaging the first locking portion 1a from the second locking portion 2a to allow separation of the male buckling component 2 and the female buckling component 1.


Furthermore, the first magnetic component 4 can be configured to magnetically attract the second magnetic component 5. Therefore, the first magnetic component 4 can magnetically attract the second magnetic component 5 during a connecting process of the male buckling component 2 and the female buckling component 1 along the connecting direction, which achieves a purpose of a quick connection of the male buckling component 2 and the female buckling component 1. Furthermore, the first magnetic component 4 can magnetically attract the second magnetic component 5 for preventing separation of the male buckling component 2 and the female buckling component 1 when the operating component 3 is operated to disengage the first locking portion 1a from the second locking portion 2a for allowing the separation of the male buckling component 2 and the female buckling component 1. However, it is not limited thereto. For example, in another embodiment, the first magnetic component can be configured to magnetically repulse the second magnetic component for driving the first locking portion to abut against the second locking portion when the male buckling component is connected to the female buckling component, which makes the connection of the male buckling component and the female buckling component more reliable. Furthermore, the male buckling component can be driven to be separated from the female buckling component by magnetic repulsion of the first magnetic component and the second magnetic component when the first locking portion and the second locking portion are disengaged from each other by the operating component, which provides convenience in use.


Specifically, in this embodiment, the female buckling component 1 can further include an outer cover 6 and a buckling body 1b. The buckling body 1b is disposed inside the outer cover 6, and the first locking portion 1a is disposed on the buckling body 1b. The operating component 3 movably passes through the outer cover 6 along the connecting direction, i.e., a vertical direction in FIG. 4. Preferably, in this embodiment, the operating component 3 can be a circular button for allowing a user to disengage the first locking portion 1a from the second locking portion 2a by pressing the operating component 3 easily. A disposing hole 61 is formed on a first side of the outer cover 6 away from the second locking portion 2a, i.e., an upper side of the outer cover 6 shown in FIG. 4, for allowing the operating component 3 to be disposed therein, and a connecting hole 62 is formed on a second side of the outer cover 6 adjacent to the second locking portion 2a, i.e., a lower side of the outer cover 6 shown in FIG. 4, for allowing the second locking portion 2a to pass therethrough to engage with the first locking portion 1a.


The outer cover 6 can not only make cooperation of the male buckling component 2 and the female buckling component 1 more reliable but also prevent wear damage of the male buckling component 2 or the female buckling component 1 caused by dust from environment, which extends a service life of the magnetic buckling assembly 100 and improves aesthetic appearance of the magnetic buckling assembly 100. However, it is not limited to this embodiment. For example, in another embodiment, the outer cover of the female buckling component can be omitted, i.e., the operating component can be directly disposed on the buckling body of the female buckling component. Alternatively, in another embodiment, the male buckling component can include an outer cover and a buckling body disposed inside the outer cover. The first locking portion and the second locking portion can be respectively disposed on the buckling body of the male buckling component and the buckling body of the female buckling component. The operating component can be correspondingly movably disposed on the outer cover of the male buckling component for disengaging the first locking portion from the second locking portion.


Please refer to FIG. 3 to FIG. 6. FIG. 5 is a diagram of the magnetic buckling assembly 100 without illustrating the outer cover 6 according to the first embodiment of the present invention. FIG. 6 is a partial diagram of the female buckling component 1 according to the first embodiment of the present invention. As shown in FIG. 3 to FIG. 6, the first locking portion 1a is a resilient structure. The second locking portion 2a includes an abutting structure 21 and an engaging structure 22. The abutting structure 21 can push and resiliently deform the first locking portion 1a during the connecting process of the male buckling component 2 and the female buckling component 1 along the connecting direction, so that the first locking portion 1a can slide to engage with the engaging structure 22. Therefore, the abutting structure 21 allows the engaging structure 22 to engage with the first locking portion 1a easily and smoothly. Furthermore, the operating component 3 can be operated to resiliently deform the first locking portion 1a to disengage the first locking portion 1a from the engaging structure 22.


Specifically, the first locking portion 1a includes two resilient arms 11 and two engaging heads 12. Each engaging head 12 is connected to the corresponding resilient arm 11 for engaging with the engaging structure 22. Preferably, as shown in FIG. 3, in this embodiment, each resilient arm 11 and the corresponding engaging head 12 can be an integrally formed structure, and the two engaging heads 12 can be hung inside a middle portion of the female buckling component 1 by the two resilient arms 11, so that the two resilient arms 11 can reliably drive the two engaging heads 12 to move. The two resilient arms 11 are for biasing the two engaging heads 12 to engage with the engaging structure 22. Therefore, the abutting structure 21 pushes the two engaging heads 12 to resiliently deform the two resilient arms 11 during the connecting process of the male buckling component 2 and the female buckling component 1 along the connecting direction, so that the two engaging heads 12 can slide to engage with the engaging structure 22, which achieves a purpose of automatic engagement of the male buckling component 2 and the female buckling component 1 during the connecting process of the male buckling component 2 and the female buckling component 1.


Furthermore, the operating component 3 is operated to resiliently deform the two resilient arms 11 to disengage the two engaging heads 12 from the engaging structure 22. Preferably, in this embodiment, the operating component 3 can be operated to push the two resilient arms 11 along an operating direction parallel to the connecting direction to resiliently deform the two resilient arms 11 along two deforming directions intersecting with the connecting direction to disengage the two engaging heads 12 from the engaging structure 22, which facilitates disengagement of the two engaging heads 12 and the engaging structure 22.


Preferably, in this embodiment, the two resilient arms 11 can surround the second locking portion 2a cooperatively, and the two engaging heads 12 can surround the engaging structure 22 cooperatively. Such configuration can make engagement of the two engaging heads 12 and the engaging structure 22 more reliable, which secures the connection of the male buckling component 2 and the female buckling component 1. However, it is not limited to this embodiment. For example, in another embodiment, the numbers of the resilient arm and the engaging head also can be one, three, four or five.


Preferably, in this embodiment, each engaging head 12 can be a hook, and the engaging structure 22 can be a hook slot corresponding to the hook, so that the male buckling component 2 can be connected to the female buckling component 1 firmly by the engagement of the hook and the hook slot. Furthermore, the buckling body 1b of the female buckling component 1 can be a hollow structure, and the female buckling component 1 can further include a supporting arm 14 located in a middle portion of the buckling body 1b of the female buckling component 1 and between the two resilient arms 111 and connected to two opposite sides of the buckling body 1b of the female buckling component 1 for reinforcing structural strength of the female buckling component 1.


As shown in FIG. 3 to FIG. 6, an end of the abutting structure 21 includes a first inclined structure 211 inclined relative to the connecting direction. Each engaging head 12 includes a second inclined structure 121 cooperating with the first inclined structure 211. The abutting structure 21 can slide across the two engaging heads 12 to engage the engaging structure 22 with the two engaging heads 12 easily by cooperation of the first inclined structure 211 and the second inclined structures 121, which facilitates the connection of the male buckling component 2 and the female buckling component 1.


Furthermore, the operating component 3 includes two abutting inclined surfaces 31 inclined relative to the connecting direction, and the operating component 3 can be operated to push and resiliently deform the two resilient arms 11 by the two abutting inclined surfaces 31, so as to disengage the two engaging heads 12 from the engaging structure 22. Since the two engaging heads 12 surround the engaging structure 22 cooperatively, each abutting inclined surface 31 can be configured to be inclined away from the corresponding engaging head 12 from inside to outside. Therefore, the operating component 3 can be operated to push and resiliently spread the two resilient arms 11 outwardly by the two abutting inclined surfaces 31, which achieves a purpose of driving the two engaging heads 12 to move outwardly to disengage from the engaging structure 22 by the two resilient arms 11. However, it is not limited to this embodiment. For example, in another embodiment, each engaging head also can be driven to move inwardly to disengage from the engaging structure by the two resilient arms.


Besides, two expanding legs 32 extend from the operating component 3 along the connecting direction, and each abutting inclined surface 31 is formed on the corresponding expanding leg 32. The first locking portion 1a includes two driven inclined surfaces 111. Each driven inclined surface 111 is disposed on a proximal end of the corresponding resilient arm 11 connected to the corresponding engaging head 12 for cooperating with the corresponding abutting inclined surface 31. The operating component 3 can be operated to push and resiliently deform the two resilient arms 11 by cooperation of the two abutting inclined surfaces 31 and the two driven inclined surfaces 111, so as to disengage the two engaging heads 12 from the engaging structure 22. Preferably, in this embodiment, a recess 112 can be formed on the proximal end of each resilient arm 11 connected to the corresponding engaging head 12. Each expanding leg 32 extends into the corresponding recess 112. Each driven inclined surface 111 is formed on a wall of the corresponding recess 112. Each abutting inclined surface 31 is formed on an end of the corresponding expanding leg 32. Such configuration allows the operating component 3 to be operated easily to push and deform the two resilient arms 11. Furthermore, since the two expanding legs 32 can directly cooperate with the two driven inclined surfaces 111 on the two recesses 112 adjacent to the proximal ends of the two resilient arms 11, it allows the two resilient arms 11 to deform quickly, so as to quickly disengage the two engaging heads 12 from the engaging structure 22. Besides, the operating component 3 can be driven to recover by the two resilient arms 11 because of the cooperation of the abutting inclined surfaces 31 of the expanding legs 32 and the proximal ends of the resilient arms 11. However, it is not limited thereto. For example, in another embodiment, the numbers of abutting inclined surface, the expanding leg, the recess and the driven inclined surface also can be one if there is only one resilient arm.


As shown in FIG. 3, FIG. 4 and FIG. 6, a first installation chamber 13 is formed on the female buckling component 1, and a second installation chamber 23 is formed on the male buckling component 2. The first magnetic component 4 is installed into the first installation chamber 13, and the second magnetic component 5 is installed into the second installation chamber 23, so that the first magnetic component 4 and the second magnetic component 5 can be hidden inside the female buckling component 1 and the male buckling component 2, respectively. Specifically, in this embodiment, the first installation chamber 13 can be aligned with the second installation chamber 23 along the connecting direction, so as to maximize the magnetic cooperation of the first magnetic component 4 and the second magnetic component 5, which achieves a purpose of the quick connection of the male buckling component 2 and the female buckling component 1 and a purpose of preventing separation of the male buckling component 2 and the female buckling component 1. In this embodiment, the second installation chamber 23 can be formed inside the second locking portion 2a, the first installation chamber 13 can be formed inside the middle portion of the female buckling component 1, and more specifically in a middle portion of the supporting arm 14, which makes structure of the magnetic buckling assembly 100 reasonable and compact for achieving a purpose of saving material.


Furthermore, in this embodiment, each of the first magnetic component 4 and the second magnetic component 5 can be a permanent magnetic component. However, it is not limited to this embodiment. For example, in another embodiment, one of the first magnetic component and the second magnetic component can be a permanent magnetic component, and the other one of the first magnetic component and the second magnetic component can be a conductive magnetic component, such as a metal structure. Preferably, a thickness of the first magnetic component 4 can be from 3.0 to 5.5 millimeters. More preferably, the thickness of the first magnetic component 4 can be 3.0, 3.8, 4.5, 5.0 or 5.5 millimeters. In this embodiment, the thickness of the first magnetic component 4 can be 3.8 millimeters. It should be noticed that, in another embodiment, the first installation chamber can be formed inside the second locking portion if the second locking portion is disposed on the female buckling component.


As shown in FIG. 1, FIG. 2, FIG. 3 and FIG. 5, each of the male buckling component 2 and the outer cover 6 includes at least one assembling portion for installing at least one strap. Preferably, the male buckling component 2 can include two assembling portions opposite to each other, and the outer cover 6 can include one assembling portion. The assembling portion of the outer cover 6 can be always misaligned with one of the two assembling portions of the male buckling component 2 for easy assembly of the straps. Specifically, a through hole 24 can be formed on each of the two assembling portions of the male buckling component 2, and a through hole 63 can be formed on the assembling portions of the outer cover 6. The male buckling component 2 can be fixed to a first cloth surface, which is not shown in figures, by passing the straps through the two assembling portions of the male buckling component 2. The female buckling component 1 can be fixed on a second cloth surface, which is not shown in figures, bypassing the straps through the assembling portion of the outer cover 6. Therefore, the first cloth surface can be detachably connected to the second cloth surface by the magnetic buckling assembly 100.


In this embodiment, the second locking portion 2a can be a column structure, so that the male buckling component 2 is rotatable relative to the female buckling component 1 around the second locking portion 2a, which brings flexibility in use. Positions of the two assembling portions relative to the outer cover 6 are adjustable by rotation of the male buckling component 2 relative to the female buckling component 1, and therefore, any one of the two assembling portions of the male buckling component 2 can be used together with the assembling portion of the outer cover 6. If one of the two assembling portions of the male buckling component 2 is broken, the other one of two assembling portions of the male buckling component 2 can be used together with the assembling portion of the outer cover 6 by the rotation of the male buckling component 2 relative to the female buckling component 1, which makes the magnetic buckling assembly 100 more durable.


As shown in FIG. 1 to FIG. 6, operational principle of the magnetic buckling component 100 of this embodiment is provided as follows. When it is desired to separate or disconnect the male buckling component 2 from the female buckling component 1, the operating component 3 can be pressed downwardly to drive the expanding legs 32 to push the driven inclined surfaces 111 on the recesses 112 on the resilient arms 11. By the cooperation of the abutting inclined surfaces 31 on the expanding legs 32 and the driven inclined surfaces 111 on the recesses 112, the resilient arms 11 can resiliently spread outwardly to drive the engaging heads 12 connected to the resilient arms 11 to move outwardly to disengage from the engaging structure 22 of the second locking portion 2a for allowing the separation of the female buckling component 1 and the male buckling component 2. At this moment, the male buckling component 2 is still connected to the female buckling component 1 by magnetic attraction of the first magnetic component 4 and the second magnetic component 5. Afterwards, as long as the female buckling component 1 and the male buckling component 2 are pulled away from each other to overcome the magnetic attraction of the first magnetic component 4 and the second magnetic component 5, the female buckling component 1 can be separated or disconnected from the male buckling component 2.


When it is desired to connect the male buckling component 2 to the female buckling component 1, it only has to move the male buckling component 2 and the female buckling component 1 to align the second locking portion 2a with the connecting hole 62 on the outer cover 6 and then to move the male buckling component 2 and the female buckling component 1 toward each other. By the magnetic attraction of the first magnetic component 4 and the second magnetic component 5, the abutting structure 21 of the second locking portion 2a can slide across the engaging heads 12, so that the engaging structure 22 and the engaging heads 12 can be engaged with each other, which achieves a purpose of the connection of the male buckling component 2 and the female buckling component 1 as shown in FIG. 4.


Please refer to FIG. 7 to FIG. 10. FIG. 7 and FIG. 8 are schematic diagrams of a magnetic buckling assembly 100a at different views according to a second embodiment of the present invention. FIG. 9 is an internal structural diagram of the magnetic buckling assembly 100a according to the second embodiment of the present invention. FIG. 10 is a partial exploded diagram of the magnetic buckling assembly 100a according to the second embodiment of the present invention. As shown in FIG. 7 to FIG. 10, different from the first embodiment, a plurality of ribs 64 protrude from two opposite lateral walls of the outer cover 6 of this embodiment for providing friction to facilitate the user to operate the magnetic buckling assembly 100a easily. However, it is not limited to this embodiment. For example, in another embodiment, the number of the rib can be one. Furthermore, in this embodiment, the abutting inclined surface 31 on each expanding leg 32 is located adjacent to a distal end of the corresponding resilient arm 11 away from the corresponding engaging head 12 for cooperating with the distal end of the corresponding resilient arm 11. In other words, each expanding leg 32 is located between the corresponding resilient arm 11 and the supporting arm 14 and directly cooperates with the distal end of the corresponding resilient arm 11, and therefore, the driven inclined surface 111 and the recess 112 can be omitted in this embodiment. Furthermore, the supporting arm 14 of this embodiment can be configured to engage with a gap between the two expanding legs 32 spaced from each other.


Besides, in this embodiment, since each expanding leg 32 directly cooperates with the distal end of the corresponding resilient arm 11, recovering forces generated by the two resilient arms 11 might be too small to recover the operating component 3. Therefore, the magnetic buckling assembly 100a can further include a resilient component 7 for providing a recovering resilient force to recover the operating component 3. Preferably, the resilient component 7 can be an elastic spring abutting between the operating component 3 and the female buckling component 1 and be aligned with the first installation chamber 13. However, it is not limited thereto. For example, in another embodiment, the resilient component also can be a resilient structure made of plastic material. Besides, the thickness of the first magnetic component 4 of this embodiment can be 5.0 millimeters.


Other structure of the magnetic buckling assembly 100a of this embodiment is similar to the one of the magnetic buckling assembly 100 of the first embodiment. Detailed description is omitted herein for simplicity.


As shown in FIG. 7 to FIG. 10, operational principle of the magnetic buckling assembly 100a of this embodiment is provided as follows. When it is desired to separate or disconnect the male buckling component 2 from the female buckling component 1, the operating component 3 can be pressed downwardly to resiliently compress the resilient component 7. During the aforementioned process, the abutting inclined surfaces 31 on the expanding legs 32 of the operating component 3 cooperate with the distal ends of the resilient arms 11 away from the engaging head 12, so that the resilient arms 11 spread outwardly to drive the engaging heads 12 connected to the resilient arms 11 to move outwardly to disengage from the engaging structure 22 of the second locking portion 2a for allowing the separation of the male buckling component 2 and the female buckling component 1. At this moment, the male buckling component 2 is still connected to the female buckling component 1 by the magnetic attraction of the first magnetic component 4 and the second magnetic component 5. Afterwards, as long as the female buckling component 1 and the male buckling component 2 are pulled away from each other to overcome the magnetic attraction of the first magnetic component 4 and the second magnetic component 5, the female buckling component 1 can be separated or disconnected from the male buckling component 2.


When it is desired to connect the male buckling component 2 to the female buckling component 1, it only has to move the male buckling component 2 and the female buckling component 1 to align the second locking portion 2a with the connecting hole 62 on the outer cover 6 and then to move the male buckling component 2 and the female buckling component 1 toward each other. By the magnetic attraction of the first magnetic component 4 and the second magnetic component 5, the abutting structure 21 of the second locking portion 2a can slide across the engaging heads 12, so that the engaging structure 22 and the engaging heads 12 can be engaged with each other, which achieves a purpose of the connection of the male buckling component 2 and the female buckling component 1.


Please refer to FIG. 11 to FIG. 13. FIG. 11 and FIG. 12 are exploded diagrams of a magnetic buckling assembly 100b at different views according to a third embodiment of the present invention. FIG. 13 is an internal structural diagram of the magnetic buckling assembly 100b according to the third embodiment of the present invention. As shown in FIG. 11 to FIG. 13, different from the aforementioned embodiments, the operating component 3 of this embodiment can be a rectangular button. Furthermore, the rib can be omitted in this embodiment. Besides, the resilient component 7 of this embodiment can abut between the operating component 3 and the female buckling component 1 and be misaligned with the first installation chamber 13.


Other structure and operational principle of the magnetic buckling assembly 100b of this embodiment are similar to the ones of the magnetic buckling assembly 100a of the second embodiment. Detailed description is omitted herein for simplicity.


Please refer to FIG. 14 to FIG. 22. FIG. 14 is a schematic diagram of a magnetic buckling assembly 100c according to a fourth embodiment of the present invention. FIG. 15 is a sectional diagram of the magnetic buckling assembly 100c according to the fourth embodiment of the present invention. FIG. 16 to FIG. 18 are schematic diagrams of the magnetic buckling assembly 100c in different states according to the fourth embodiment of the present invention. FIG. 19 is a partial diagram of the magnetic buckling assembly 100c according to the fourth embodiment of the present invention. FIG. 20 is an exploded diagram of the magnetic buckling assembly 100c according to the fourth embodiment of the present invention. FIG. 21 is a partial diagram of the female buckling component 1 according to the fourth embodiment of the present invention. FIG. 22 is a diagram of the male buckling component 2 according to the fourth embodiment of the present invention. As shown in FIG. 14 to FIG. 22, different from the aforementioned embodiments, the magnetic buckling assembly 100c of this embodiment further includes a protecting assembly 8. The protecting assembly 8 includes a protecting component 82 slidably disposed on the female buckling component 1 along a sliding direction intersecting with the connecting direction and movable relative to the female buckling component 1 between a first position and a second position. Preferably, in this embodiment, a sliding slot 65 can be formed on the first side of the outer cover 6 away from the second locking portion 2a, i.e., the upper side of the outer cover 6, and the protecting component 82 can be slidably disposed inside the sliding slot 65 and slidably switched between the first position and the second position. The protecting component 82 can restrain the operating component 3 from disengaging the first locking portion 1a from the second locking portion 2a when the protecting component 82 is located at the first position, and the operating component 3 is allowed to disengage the first locking portion 1a from the second locking portion 2a when the protecting component 82 is located at the second position. However, it is not limited to this embodiment. For example, in another embodiment, the protecting component also can be rotatably disposed on the male buckling component and move between the first position and the second position by rotation when the operating component is disposed on the male buckling component.


In this embodiment, the protecting component 82 includes a first end and a second end. The first end of the protecting component 82 is a resilient structure, such as a resilient arm or a resilient leg, and connected to the female buckling component 1, so that the deformed first end of the protecting component 82 can bias the second end of the protecting component 82 to recover. The second end of the protecting component 82 is configured to cover the operating component 3 for preventing the operating component 3 from being operated when the protecting component 82 is located at the first position. The second end of the protecting component 82 is configured to expose the operating component 3 for allowing the operating component 3 to be operated when the protecting component 82 is located at the second position. However, it is not limited to this embodiment. Any structure which can allow or prevent operation of the operation component 3 is included within the scope of the present invention. For example, in another embodiment, the protecting component also can be configured to engage with the operating component for preventing the operating component from being operated when the protecting component is located at the first position. The protecting component can be configured to disengage from the operating component for allowing the operating component to be operated when the protecting component is located at the second position.


Preferably, the protecting assembly 8 of the magnetic buckling assembly 100c can further include a recovering component 81 for biasing the protecting component 82 to slide to the first position. The recovering component 81 is arranged along an arrangement direction intersecting with the connecting direction. The recovering component 81 can be an elastic spring abutting between the protecting component 82 and the female buckling component 1. Specifically, the protecting component 82 includes a covering portion 821 and a guiding portion 822 connected to the covering portion 821. The covering portion 821 selectively covers or exposes the operating component 3. The guiding portion 822 is movably disposed on the female buckling component 1, and the covering portion 821 and the guiding portion 822 are misaligned with each other along the connecting direction to form a step-shaped structure. The covering portion 821 can be guided by the guiding portion 822 to move to the first position to cover the operating component 3. Preferably, in this embodiment, each of the guiding portion 822 and the covering portion 821 can be a hollow structure with an opening toward the male buckling component 2 to facilitate the covering portion 821 to cover the operating component 3 and improve aesthetic appearance of the magnetic buckling assembly 100c. However, it is not limited to this embodiment. For example, in another embodiment, when the protecting component and the operating component can be disposed on the male buckling component, the recovering component can be disposed between the male buckling component and the guiding portion of the protecting component.


Other structure and operational principle of the magnetic buckling assembly 100c of this embodiment are similar to the ones described in the aforementioned embodiments. Detailed description is omitted herein for simplicity.


Please refer to FIG. 23 to FIG. 32. FIG. 23 and FIG. 24 are schematic diagrams of a magnetic buckling assembly 100d at different views according to a fifth embodiment of the present invention. FIG. 25 and FIG. 26 are exploded diagrams of the magnetic buckling assembly 100d at different views according to the fifth embodiment of the present invention. FIG. 27 is a diagram of the male buckling component 2 according to the fifth embodiment of the present invention. FIG. 28 is a diagram of the outer cover 6 according to the fifth embodiment of the present invention. FIG. 29 is a partial diagram of the female buckling component 1 according to the fifth embodiment of the present invention. FIG. 30 is a diagram of the operating component 3 according to the fifth embodiment of the present invention. FIG. 31 and FIG. 32 are internal structural diagrams of the magnetic buckling assembly 100d at different views according to the fifth embodiment of the present invention. As shown in FIG. 23 to FIG. 32, different from the aforementioned embodiments, the female buckling component 1 of this embodiment further includes a supporting cover 15 disposed inside the first installation chamber 13 for covering and supporting the first magnetic component 4. Furthermore, two first clearance structures 9a are formed on the second locking portion 2a. The female buckling component 1 includes an abutting portion 16 for abutting against the second locking portion 2a for preventing the separation of the male buckling component 2 and the female buckling component 1 when the second locking portion 2a is located at the offsetting position. Preferably, in this embodiment, each first clearance structure 9a can be a clearance slot, and the two clearance slots can be opposite to each other and spaced from each other along a direction parallel to an offsetting direction intersecting with the connecting direction. The second locking portion 2a can include two first partitions 2a1 and two second partitions 2a2. The two first partitions 2a1 can be opposite to each other and spaced from each other along a direction perpendicular to the offsetting direction. The two second partitions 2a2 can be opposite to each other and spaced from each other along the direction parallel to the offsetting direction. That is, each second partition 2a2 is adjacent to and located between the two second partitions 2a1. The first partitions 2a1 can engage with the first locking portion 1a. The abutting portion 16 can abut against one of the two second partitions 2a2, which can save time of alignment of the male buckling component 2 and the female buckling component 1 and bring convenience in use. However, the numbers of the clearance slot, the first partition 2a1 and the second partition 2a2 are not limited to this embodiment.


Furthermore, a second clearance structure 9b is formed on the outer cover 6 of the female buckling component 1. Preferably, in this embodiment, the second clearance structure 9b can be a clearance hole communicated with the connecting hole 62, and the abutting portion 16 is formed on the outer cover 6 of the female buckling component 1. After the second locking portion 2a passes through the connecting hole 62 to engage with the first locking portion 1a, the second locking portion 2a can slide toward the clearance hole to the offsetting position. Preferably, the abutting portion 16 is located on an inner surface of the outer cover 6 adjacent to an inner wall of the clearance hole, which allows the abutting portion 16 to abut against the corresponding second partition 2a2 quickly during an offsetting process of the second locking portion 2a.


Furthermore, contacting surfaces of the lateral wall of the two clearance slots and a contacting surface of the inner wall of the clearance hole can be flat surfaces, so that the contacting surface of the inner wall of the clearance hole can be attached to and abut against the contacting surface of the lateral wall of the corresponding clearance slot when the second locking portion 2a is located at the offsetting position, which effectively prevents accidental disengagement of the male buckling component 2 and the female buckling component 1. However, it is not limited to this embodiment. For example, the contacting surface of the lateral wall of the clearance slot and the contacting surface of the inner wall of the clearance hole can be curved surfaces. Furthermore, the connecting hole can preferably be an arc-shaped hole, and the clearance hole can preferably be a rectangular hole and communicated with the arc-shape hole.


However, it is not limited to this embodiment. Any structure or any configuration, which allows the second locking portion 2a to slide along the offsetting direction intersecting with the connecting direction to the offsetting position for preventing disengagement of the male buckling component 2 and the female buckling component 1 after the first locking portion 1a engages with the second locking portion 2a, is included within the scope of the present invention. For example, in another embodiment, at least one clearance structure can be formed on at least one of the second locking portion and the female buckling component for allowing the second locking portion to slide along the offsetting direction intersecting with the connecting direction to the offsetting position after the first locking portion engages with the second locking portion. Alternatively, at least one clearance structure can be formed on the male buckling component if the second locking portion is disposed on the female buckling component.


Besides, preferably, in this embodiment, a notch 17 can be formed on the buckling body 1b and corresponding to the clearance hole. The notch 17 is parallel to the connecting direction. The second partition 2a2 of the second locking portion 2a can slide into the notch 17 during an offsetting process of the second locking portion 2a. In other words, the notch 17 allows the second partition 2a2 to slide without obstruction during the offsetting process of the second locking portion.


Other structure and operational principle of the magnetic buckling assembly 100d of this embodiment are similar to the ones described in the aforementioned embodiments. Detailed description is omitted herein for simplicity.


In contrast to the prior art, the present invention utilizes engagement of the first locking portion and the second locking portion for connecting the male buckling component to the female buckling component. Furthermore, the present invention further utilizes magnetic cooperation of the first magnetic component and the second magnetic component for securing connection between the male buckling component and the female buckling component. Therefore, the connection between the male buckling component and the female buckling component is more reliable. If the first magnetic component is configured to magnetically attract the second magnetic component, the male buckling component can still be connected to the female buckling component in a condition that the first locking portion and the second locking portion are disengaged from each other due to an operational mistake of the operating component, which provides better safety in use and prevents the male buckling component or the female buckling component from falling and missing due to disengagement of the male buckling component or the female buckling component. On the other hand, if the first magnetic component is configured to magnetically repulse the second magnetic component, the male buckling component can be connected to the female buckling component because the first locking portion and the second locking portion can be driven to abut against each other by magnetic repulsion of the first magnetic component and the second magnetic component, which makes the connection of the male buckling component and the female buckling component more reliable. Furthermore, the male buckling component can be driven to be separated from the female buckling component by the magnetic repulsion of the first magnetic component and the second magnetic component in a condition that the first locking portion and the second locking portion are disengaged from each other by the operating component, which provides convenience in use. Besides, the magnetic buckling assembly of the present invention also has an advantage of compact structure.


Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims
  • 1. A magnetic buckling assembly comprising: a male buckling component; a female buckling component; a first locking portion disposed on the female buckling component; a second locking portion disposed on the male buckling component and for engaging with the first locking portion; an operating component movably disposed on the female buckling component; a first magnetic component disposed on the female buckling component; a second magnetic component disposed on the male buckling component and for magnetically cooperating with the first magnetic component; and a protecting component disposed on the female buckling component and movable relative the female buckling component between a first position and a second position, the protecting component restraining the operating component from disengaging the first locking portion from the second locking portion when the protecting component is located at the first position, and the operating component being allowed to disengage the first locking portion from the second locking portion when the protecting component is located at the second position; wherein the male buckling component is connected to the female buckling component along a connecting direction by engagement of the first locking portion and the second locking portion, the first magnetic component magnetically attracts or magnetically repulses the second magnetic component during a connecting process of the male buckling component and the female buckling component along the connecting direction, the first magnetic component magnetically attracts the second magnetic component for preventing separation of the male buckling component and the female buckling component or magnetically repulses the second magnetic component for promoting the separation of the male buckling component and the female buckling component when the operating component is operated to disengage the first locking portion from the second locking portion for allowing the separation of the male buckling component and the female buckling component.
  • 2. The magnetic buckling assembly of claim 1, wherein the protecting component engages with the operating component when the protecting component is located at the first position, and the protecting component disengages from the operating component when the protecting component is located at the second position.
  • 3. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 2.
  • 4. The magnetic buckling assembly of claim 1, wherein the protecting component covers the operating component when the protecting component is located at the first position, and the operating component is exposed when the protecting component is located at the second position.
  • 5. The magnetic buckling assembly of claim 4, wherein the protecting component comprises a covering portion and a guiding portion connected to the covering portion, the covering portion selectively covers or exposes the operating component, the guiding portion is movably disposed on the female buckling component, and the covering portion and the guiding portion are misaligned with each other along the connecting direction.
  • 6. The magnetic buckling assembly of claim 5, wherein at least one of the guiding portion and the covering portion is a hollow structure with an opening toward the male buckling component.
  • 7. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 6.
  • 8. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 5.
  • 9. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 4.
  • 10. The magnetic buckling assembly of claim 1, wherein the operating component is slidably disposed on the female buckling component along an operating direction parallel to the connecting direction, and the protecting component is slidably disposed on the female buckling component along a sliding direction intersecting with the connecting direction.
  • 11. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 10.
  • 12. The magnetic buckling assembly of claim 1, wherein the protecting component is disposed on the female buckling component and slidable or rotatable relative to the female buckling component between the first position and the second position.
  • 13. The magnetic buckling assembly of claim 12, further comprising a recovering component for biasing the protecting component to slide or rotate to the first position.
  • 14. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 13.
  • 15. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 12.
  • 16. The magnetic buckling assembly of claim 1, wherein the protecting component comprises a first end and a second end, the first end of the protecting component is a resilient structure and connected to the female buckling component, and the second end of the protecting component is configured to cover or expose the operating component.
  • 17. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 16.
  • 18. A baby carrier, comprising two or more straps configured to be connected and disconnected by the male buckling component and the female buckling component of claim 1.
Priority Claims (3)
Number Date Country Kind
201711284857.0 Dec 2017 CN national
201820665048.8 May 2018 CN national
201821544286.X Sep 2018 CN national
CROSS REFERENCE TO RELATED APPLICATIONS

This is a divisional application of U.S. patent application Ser. No. 16/989,910, which is filed on Aug. 11, 2020, which is a continuation application of U.S. patent application Ser. No. 16/211,248, which is filed on Dec. 6, 2018, now U.S. Pat. No. 10,874,178, and claims the benefits of Chinese Application No. 201711284857.0, filed on Dec. 7, 2017, Chinese Application No. 201820665048.8, filed on May 3, 2018, and Chinese Application No. 201821544286.X, filed on Sep. 20, 2018, the contents of each of which applications are incorporated herein by reference.

US Referenced Citations (186)
Number Name Date Kind
D14106 Searle Jul 1883 S
323359 Noyes Jul 1885 A
D31503 Shipman Sep 1899 S
633752 Clark Sep 1899 A
D34991 Freeman Aug 1901 S
D40432 Kemp Jan 1910 S
1055008 Wright Mar 1913 A
D44412 Pflueger Jul 1913 S
1515997 Chappell Nov 1924 A
1613444 Daughaday Jan 1927 A
D127880 Chernow Jun 1941 S
D134704 Stephen Dec 1942 S
3041697 Frances Jan 1962 A
3083429 Barlow Apr 1963 A
3418658 Danico Dec 1968 A
3538554 Ford Nov 1970 A
D228082 Waller Aug 1973 S
D273840 Morita May 1984 S
D294810 Morita Mar 1988 S
4779314 Aoki Oct 1988 A
D301566 Heiberger Jun 1989 S
D302401 Weingast Jul 1989 S
D319201 Aoki Aug 1991 S
D323359 Rose Jan 1992 S
D330509 Belknap Oct 1992 S
D335266 Morita May 1993 S
D339521 Bartlett Sep 1993 S
D360391 Aoki Jul 1995 S
D375061 Morita Oct 1996 S
D377919 Singer Feb 1997 S
5630258 Schneider May 1997 A
D383706 Archambault Sep 1997 S
D386669 Aoki Nov 1997 S
D400429 Morita Nov 1998 S
D401889 Wong Dec 1998 S
D405237 Maslowski Feb 1999 S
D411478 Kenagy Jun 1999 S
D412865 Aoki Aug 1999 S
D413282 Aoki Aug 1999 S
5937487 Bauer Aug 1999 A
D425780 Aoki May 2000 S
D426491 Chan Jun 2000 S
D426765 Aoki Jun 2000 S
D430483 Wah et al. Sep 2000 S
D431453 Chan Oct 2000 S
D432400 Chan Oct 2000 S
D434644 Aoki Dec 2000 S
D438451 Reiter Mar 2001 S
D439147 Kenagy Mar 2001 S
D441317 Nire May 2001 S
D441639 Reiter May 2001 S
D450625 Khromachou Nov 2001 S
D452137 Aoki Dec 2001 S
D452643 Morita Jan 2002 S
D452644 Morita Jan 2002 S
D452813 Morita Jan 2002 S
D453105 Morita Jan 2002 S
D454482 Morita Mar 2002 S
D456130 Towns Apr 2002 S
D457834 Morita May 2002 S
D461116 Aoki Aug 2002 S
D461400 Aoki Aug 2002 S
D462255 Aoki Sep 2002 S
D464562 Reiter Oct 2002 S
D479149 Degl'Innocenti Sep 2003 S
D481298 Aoki Oct 2003 S
D482266 Aoki Nov 2003 S
D486093 Tobergte Feb 2004 S
D504311 Aoki Apr 2005 S
D506921 Aoki Jul 2005 S
D511449 Aoki Nov 2005 S
D518707 Aoki Apr 2006 S
D527618 Aoki Sep 2006 S
D527620 Aoki Sep 2006 S
D533807 English Dec 2006 S
D539132 Aoki Mar 2007 S
7186931 Chang et al. Mar 2007 B2
D555470 Aoki Nov 2007 S
D556032 Aoki Nov 2007 S
D558038 Aoki Dec 2007 S
D569717 Aoki May 2008 S
D570672 Aoki Jun 2008 S
D572579 Aoki Jul 2008 S
D575670 Niwa Aug 2008 S
D581774 Aoki Dec 2008 S
D584601 Aoki Jan 2009 S
D584602 Aoki Jan 2009 S
D595123 Aoki Jun 2009 S
D618590 Paik Jun 2010 S
D623088 Schiebl Sep 2010 S
D628515 Schiebl Dec 2010 S
D633752 Macler Mar 2011 S
3056151 Bologna Nov 2011 A1
D671443 Paik et al. Nov 2012 S
D671862 Metsker Dec 2012 S
8353544 Fiedler Jan 2013 B2
8359716 Fiedler Jan 2013 B2
8368494 Fiedler Feb 2013 B2
8430434 Fiedler Apr 2013 B2
8464403 Fiedler Jun 2013 B2
8484809 Fiedler Jul 2013 B2
8495803 Fiedler Jul 2013 B2
D691879 Bernard Oct 2013 S
D705695 Wall May 2014 S
D707584 Webb Jun 2014 S
8739371 Fiedler Jun 2014 B2
8794682 Fiedler Aug 2014 B2
8800117 Fiedler Aug 2014 B2
8850670 Fiedler Oct 2014 B2
8851534 Fiedler Oct 2014 B2
D716685 Oh Nov 2014 S
8914951 Gaudillere Dec 2014 B2
9044071 Fiedler Jun 2015 B2
9096148 Fiedler Aug 2015 B2
9101185 Greenberg Aug 2015 B1
9245678 Fiedler Jan 2016 B2
D749983 Paik et al. Feb 2016 S
9249814 Tsai Feb 2016 B2
D768028 Ling Oct 2016 S
D774413 Paik et al. Dec 2016 S
9555935 Fiedler Jan 2017 B2
D778207 Paik et al. Feb 2017 S
D778777 Paik et al. Feb 2017 S
9572410 Fiedler Feb 2017 B2
D782152 Woodward Mar 2017 S
9635919 Fiedler May 2017 B2
9677581 Tucholke et al. Jun 2017 B2
9717323 Tsai Aug 2017 B2
9907367 Paik et al. Mar 2018 B2
9936772 Paik Apr 2018 B2
D817830 Archambault May 2018 S
9986791 Botkus et al. Jun 2018 B2
D822536 Wu Jul 2018 S
10098422 Fiedler et al. Oct 2018 B2
10111499 Fiedler et al. Oct 2018 B2
10143270 Fiedler et al. Dec 2018 B2
10179548 Fiedler et al. Jan 2019 B2
10202790 Fiedler Feb 2019 B2
10212993 Fiedler et al. Feb 2019 B2
D845168 Paik et al. Apr 2019 S
10315549 Fiedler Jun 2019 B2
10328983 Fiedler et al. Jun 2019 B2
10383409 Fiedler Aug 2019 B2
10385895 Fiedler et al. Aug 2019 B2
10578241 Fiedler Mar 2020 B2
D880625 Romanoff Apr 2020 S
10617179 Fiedler et al. Apr 2020 B2
10626636 Fiedler Apr 2020 B2
10703429 Fiedler et al. Jul 2020 B2
10758019 Paik et al. Sep 2020 B2
10791804 Chu et al. Oct 2020 B2
10874178 Cheng Dec 2020 B2
D913840 Lachapelle Mar 2021 S
D920834 Maley Jun 2021 S
11266208 Cheng Mar 2022 B2
11425969 Li Aug 2022 B2
20060283691 Chang et al. Dec 2006 A1
20100283269 Fiedler Nov 2010 A1
20100308605 Fiedler Dec 2010 A1
20100325844 Fiedler Dec 2010 A1
20110001025 Fiedler Jan 2011 A1
20110030174 Fiedler Feb 2011 A1
20110131770 Fiedler Jun 2011 A1
20110167595 Fiedler Jul 2011 A1
20110296653 Fiedler Dec 2011 A1
20110298227 Fiedler Dec 2011 A1
20120124786 Fiedler May 2012 A1
20120216373 Fiedler Aug 2012 A1
20120227220 Fiedler Sep 2012 A1
20120248793 Fiedler Oct 2012 A1
20120255144 Gaudillere Oct 2012 A1
20120291227 Fiedler Nov 2012 A1
20130011179 Fiedler Jan 2013 A1
20130185901 Heyman Jul 2013 A1
20140317890 Koons et al. Oct 2014 A1
20140339232 Fiedler Nov 2014 A1
20150135486 Fiedler May 2015 A1
20150327631 Kaneko Nov 2015 A1
20160198813 Fiedler et al. Jul 2016 A1
20170015229 Fiedler Jan 2017 A1
20180132670 Beckerman et al. May 2018 A1
20190174875 Cheng Jun 2019 A1
20200367611 Cheng Nov 2020 A1
20210076784 Cheng Mar 2021 A1
20220047045 Li Feb 2022 A1
20220330664 Li Oct 2022 A1
Foreign Referenced Citations (36)
Number Date Country
1628568 Jun 2005 CN
201398539 Feb 2010 CN
101925313 Dec 2010 CN
102336210 Feb 2012 CN
102726891 Oct 2012 CN
203028290 Jul 2013 CN
103957739 Jul 2014 CN
104853636 Aug 2015 CN
104856373 Aug 2015 CN
106174909 Dec 2016 CN
206213411 Jun 2017 CN
206333464 Jul 2017 CN
108056538 May 2018 CN
108065513 May 2018 CN
108968240 Dec 2018 CN
208259203 Dec 2018 CN
307382316 Jun 2022 CN
307460591 Jul 2022 CN
2508095 Oct 2012 EP
3165117 Apr 2018 EP
3165118 Jun 2018 EP
3183986 Jul 2018 EP
3616552 Mar 2020 EP
563150516 Oct 1988 JP
H07289311 Nov 1995 JP
2000270906 Oct 2000 JP
2001275717 Oct 2001 JP
2006130182 May 2006 JP
2006204691 Aug 2006 JP
2007244543 Sep 2007 JP
2009542380 Dec 2009 JP
2016505306 Feb 2016 JP
2017012498 Jan 2017 JP
301151169.0000 Feb 2022 KR
2017063195 Apr 2017 WO
2020173410 Sep 2020 WO
Non-Patent Literature Citations (11)
Entry
Decision of Dismissal of Amendment in Japanese Patent Application No. 2021-093505, dated Jan. 25, 2022.
Non-Final Office Action issued in corresponding U.S. Appl. No. 17/322,682 dated Jul. 8, 2022, consisting of 38 pp.
SNAP Male 25 Adjuster, available Nov. 21, 2022, online, site visited Nov. 21, 2022. Available online, URL: https://www.extremtextil.de/en/snap-male-25-adjuster-size-l-magnetic-fastener-fidlock-25mm.html (Year: 2022).
SNAP Male Large 25 Adjuster Split Bar, available Nov. 21, 2022, online, site visited Nov. 21, 2022. Available online, URL: https:// www.aplusproducts.net/products/fidlock-snap-male-large-25-adjuster-split-bar?variant=41037158973617 (Year: 2022).
SNAP pull female/male m 25 adjuster, available Nov. 10, 2022, online, site visited Nov. 21, 2022. Available online, URL: https:// www.etsy.com/listing/1320854678/snap-pull-femalemale-m-25-adjuster-set (Year: 2022).
CN202110184952.3 First Office Action dated Aug. 2, 2021.
CN201910106228.1 First Office Action dated Apr. 28, 2022.
CN202110594687.6 First Office Action dated Apr. 18, 2022.
CN201711284857.0 First Office Action dated Mar. 3, 2021.
CN201711284857.0 Notice of Allowance dated Apr. 1, 2022.
U.S. Appl. No. 29/776,769 Non-Final Office Action dated Dec. 8, 2022.
Related Publications (1)
Number Date Country
20220053887 A1 Feb 2022 US
Divisions (1)
Number Date Country
Parent 16989910 Aug 2020 US
Child 17518920 US
Continuations (1)
Number Date Country
Parent 16211248 Dec 2018 US
Child 16989910 US