A magnetic detection device 1 illustrated in
When a magnetic field-generating member, such as a magnet M approaches, the magnetic detection device 1 can obtain, for example, a pulsed ON output. For example, the magnetic detection device 1 is built in a main section of a foldable cellular phone in which key switches are arranged. When the magnet M is mounted in a foldable section with a display screen, such as a liquid crystal device, and the main section and the foldable section are folded to each other, the magnet M approaches the magnetic detection device 1. In this case, a magnetic field emitted from the magnet M is detected by the magnetic detection device 1, and thus the ON output is obtained from the magnetic detection device 1.
The magnetic detection device 1 is not necessarily incorporated in the mobile phone, but the magnetic detection device 1 can be suitably incorporated in small-sized electronic devices since the magnetic detection device 1 according to the embodiment can be more suitably realized in a small profile.
By using a magnetoresistance effect an electrical resistance of the magnetic detection element 10 varies in accordance with an exterior magnetic field. The fixed resistance element 20 practically has the same electrical resistance and temperature coefficient as the magnetic detection element 10, but the electrical resistance thereof does not vary in accordance with the magnitude of the exterior magnetic field to which the magnetic detection element 10 responds.
The magnetic detection element 10 detects the exterior magnetic field by using a giant magnetoresistance effect (GMR effect). The magnetic detection element 10 has a basic structure in which an antiferromagnetic layer, a fixed magnetic layer, a non-magnetic layer and a free layer are sequentially laminated from the bottom, or vice versa. The antiferromagnetic layer is formed of an Ir—Mn alloy (iridium-manganese alloy), a Pt—Mn alloy (platinum-manganese alloy), or the like. The fixed magnetic layer or free layer are formed of the Co—Fe alloy (cobalt-ferrum alloy), a Ni—Fe alloy (nickel-ferrum alloy), or the like. The non-magnetic layer is formed of a non-magnetic conductive material such as Cu (cuprum). In addition, the magnetic detection element 10 is formed of a protection layer, a foundation layer, or the like.
It is desirable that the fixed resistance element 20 has the same layers as the magnetic detection element 10. That is, the fixed resistance element 20 has an antiferromagnetic layer, a fixed magnetic layer, a non-magnetic layer and a free layer, like the magnetic detection element 10. However, the fixed resistance element 20, for example, is sequentially laminated of the antiferromagnetic layer, the fixed magnetic layer, the free magnetic layer, and the non-magnetic layer from the bottom, or vice versa in a manner different from the magnetic detection element 10. The free magnetic layer constituting the fixed resistance element 20 becomes a magnetic layer of which a magnetization direction is fixed in company with the fixed magnetic layer. As a result, the resistance value of the free magnetic layer does not vary in accordance with a change in the exterior magnetic field (that is, it is no longer a free magnetic layer). Further, it is desirable that each layer constituting the fixed resistance element 20 is formed of the same material and film thickness as each layer constituting the magnetic detection element 10, in that an irregularity of the temperature coefficient of resistance (TCR) can be suppressed.
The magnetic detection element 10 can be also formed as an AMR element using the anisotropic magnetoresistance effect or a TMR element using the tunnel magnetoresistance effect as well as a GMR element.
As shown in
As shown in
One of the electrode layers 18 and 19 serves as an input terminal and the other serves as an earth or ground terminal. The lead layer 17 serves as an output terminal. Without application of the exterior magnetic field, the output terminal is placed at a central potential. With application of the exterior magnetic field, the resistance value of the magnetic detection element 10 varies, and a potential of the lead layer 17 varies in accordance with the variation. A detection circuit 3 connected to the lead layer 17 detects the variation in the potential based on the variation in the electrical resistance of the magnetic detection element 10 with respect to the exterior magnetic field, and generates a switching signal, ON-OFF, based of the detection result.
As shown in
A wiring layer 35, active elements 36 to 38 and a resistor 39, or the like constituting the detection circuit 3 are formed on the foundation layer. Examples of the active elements 36 to 38 are an integrated circuit (IC), a differential amplifier, a comparator, an output transistor, and the like.
The wiring layer 35 is formed of aluminum (Al), for example. In this manner the wiring layer 35 can be formed as a resistor with a low resistance value, and a wire-bonding process and the like (not shown) can be properly performed.
As shown in
By forming a hole section 45 of the insulating layer 40 in parts of the wiring layer 35, upper surfaces from the hole section 45 to wiring layer 35 are exposed. The shape of the plan surface of the hole section 45 is not limited to a circular shape, a rectangular shape, and the like, and any suitable shape may be used.
As shown in
As shown in
The insulating upper surface layer 43 made of, for example, silicon nitride (SiN) is formed on the resistor layer 42. By providing the insulating upper surface layer 43, an insulating characteristic can be more ensured. It is not required that the insulating upper surface layer 43 is formed.
As shown in
Additionally, the hole section 45 formed on the insulating layer 40 is also formed in a location opposite to the electrode layer 18 of the magnetic detection element 10 and the electrode layer 19 of the fixed resistance element 20, and has a cross section in shape shown in
As shown in
The alumina layer 31 has better thermal resistance than the silica layer 32. In contrast, the silica layer 32 has better water resistance than the alumina layer 31. As shown in
Meanwhile, when the insulating protection layer 30 in which the alumina layer 31 and the silica layer 32 are sequentially laminated from the bottom is formed according to the embodiment, the moisture in air and the cooling water used during the dicing process are kept out, and thus cannot permeate into the alumna layer 31. Additionally, since the silica layer 32 has poor thermal resistance, oxygen easily permeates into the silica layer 32 in the heated environment, but the air cannot permeate into the magnetic detection element 10 due to the excellent thermal resistance of the alumina layer 31, thereby properly preventing the magnetic detection element 10 from being oxidized. Accordingly, a constant resistance value of the magnetic detection element 10 can be obtained without the application of the exterior magnetic field.
In this manner, according to the embodiment, the thermal resistance and water resistance can be properly improved, and thus the magnetic detection device 1 with an excellent magnetic sensitivity and high reliability can be realized without degrading the characteristic of the magnetic detection element 10.
The alumina layer 31 completely covers the upper surface and sides of the magnetic detection element 10 such that there is no an exposed part on the magnetic detection element 10. Accordingly, as shown in
An average film thickness of the alumina layer 31 and the silica layer 32 is in the range of 50 to 500 nm or so.
As shown in
In this manner, the whole area of the sensor section 4 can be realized to have excellent thermal resistance and water resistance, and more effectively, the magnetic detection device 1 with an excellent magnetic sensitivity and high reliability can be achieved.
As shown in
A method of manufacturing the magnetic detection device 1 according to the embodiment will be described with reference to
The substrate 44 is formed to have a size such that the detection circuit 3 can be formed. That is, the substrate 44 is larger than the substrate 2 of the manufactured product shown in
Sequentially, the insulating lower surface layer 41 formed of silicon nitride (SiN) on the detection circuit 60 and the substrate 44 is filmed by performing the sputtering method or the CVD method. In this case, the insulating lower surface 41 can be patterned on the detection circuit 3 and the substrate 44 other than a dicing line DL. The substrate 44 is divided into each group by the dicing line DL.
Next, in the step shown in
In the step shown in
Next, the insulating upper surface layer 43 formed of Al2O3, SiO2, silicon nitride (SiN), or the like is formed on the resistor layer 42 by using the sputtering method. The insulating upper surface layer 43 can be patterned by using, for example, the lift-off resistor (not shown) such that the insulating upper surface layer 43 is not formed on the hole sections 41d and 42d and the dicing line DL. It is not required that the insulating upper surface layer 43 is formed.
Next, in a step shown in
Additionally, the electrode layers 15, 16, 18, and 19 and the lead layer 17 shown in
The electrode layers 15, 16, 17 and 18 and the lead layer 17 can be formed of a non-magnetic conductive material by using the sputtering method and the coating method.
Next in a process shown in
Next, for example, in order to generate an exchange coupling magnetic field between the antiferromagnetic layer and the fixed resistance layer included by the magnetic detection element 10, and thus fix the magnetization of the fixed resistance layer in the pin direction, the heat treatment process in a magnetic field is performed.
According to the embodiment, even when the heat treatment process is performed, the magnetic detection element 10 is covered with the alumina layer 31 having excellent thermal resistance, and thus the alumina layer 31 can properly prevent the magnetic detection element 10 from being oxidized. That is, because oxygen cannot permeate into the alumina layer 31 under a heated environment. Accordingly, the resistance value of the magnetic detection element 10 does not vary due to the oxidation, thereby preventing the characteristic degradation. Further, the fixed resistance element 20, the electrode layers 15, 16, 18, and 19, and the lead layer 17 are covered with the alumina layer 31, thereby protecting such layers from the oxidation.
According to the embodiment, even when heat treatments other than the heat treatment process for generating the exchange coupling magnetic field between the antiferromagnetic layer and the fixed resistance layer are performed, the magnetic detection element 10 can be properly prevented from being oxidized.
Next, the substrate 44 is diced along the dicing line DL to individually obtain chips.
As shown in
Additionally, the substrate 44 is cut along the dicing line DL by a dicing blade (circular blade) 51. In this case, in order to cool the frictional heat, the dicing process is performed on the magnetic detection device collective 53 while a cooling water W from the nozzle 52 is sprayed.
As shown in
According to the embodiment, the protection structure, where the detection element is covered with the alumina layer 31 and the alumina layer 31 is covered with the silica layer 32, can properly improve both the water resistance and the thermal resistance, and can properly protect the magnetic detection element 10 from the outside environment, thereby not degrading the characteristic of the magnetic detection element 10. By covering the fixed resistance element 20, the electrode layers 15, 16, 18, and 19, and the lead layer 17 exposed in
In a process shown in
Additionally, only one magnetic detection element 10 and one fixed resistance element 20 are provided according to the embodiment, but for example, by providing two magnetic detection element s10 and two fixed resistance elements 20 to configure abridge circuit, it desirable that a magnetic detection device with greater magnetic sensitivity can be realized.
Additionally, the magnetic detection element 10 and the fixed resistance element 20 are combined according to the embodiment, but for example, a magnetic detection element using another magnetic resistance effect where the pin direction is different can be configured as a circuit. Alternatively, a first magnetic detection element in which approach of the N pole of a magnet varies the resistance and the approach of the S pole thereof does not vary the resistance, and a second detection element in which the approach of the S pole of a magnet varies the resistance and the approach of the N pole thereof does not vary the resistance, can be combined to constitute a circuit.
The detection circuit 3 is formed on the substrate 2 according to the embodiment the detection circuit 3 is covered with the insulating layer 40, and the sensor section 4 is formed on the insulating layer 40. However, the sensor section 4 and the detection circuit 3 can be formed in a line in the width direction.
In such a configuration, it is preferable that the detection circuit 3 together with the sensor section 4 is covered with the insulating layer 30.
The magnetic detection element is formed in order to perform a thermal resistance experiment with respect to each sample covering the magnetic detection element with an insulating layer shown below.
A layered configuration of the magnetic detection element used in an experiment was formed by sequentially laminating PtMn (200), CoFe (14), Ru (8.7), CoFe (12), cu (21), CoFe (10), NiFe (20), and Ta (50) from the bottom. Integers in parentheses refer to layer thicknesses and the unit is Å.
The magnetic detection element was covered with an alumina (Al2O3) layer with a thickness of 1000 Å and the alumina layer was covered with a silica (SiO2) layer with a thickness of 3000 Å.
The magnetic detection element was covered with a silica (SiO2) layer with a thickness of 4000 Å.
The magnetic detection element was covered with an alumina (Al2O3) layer with a thickness of 4000 Å.
The time elapsed and variation ratio (%) of the resistance value with respect to each sample described above were investigated while being heated at 200° C. The variation ratio (%) of the resistance value is represented as ([(resistance value after a predetermined time elapsed)−(standard resistance value)]/(standard resistance value)) 100 (%) on the basis of the standard resistance value which is a resistance value of each magnetic detection element when the time elapsed is 0 hour (that is, before a heat treatment process).
As shown in
In contrast, the thicknesses of the alumina layers in Example 1 and Comparative Example 2 were different, but the variation ratio of the resistance values was almost 0%. The thickness of the alumina layer in Example 1 was 1000 Å and this thickness in Example 1 was a quarter of a thickness in Comparative Example 2, in spite of such a small thickness, a satisfactory thermal resistance could be obtained.
Next, a water resistance experiment was performed using the sample of Example 1. The result of the water resistance experiment performed under a temperature of 85° C., humidity of 85%, and time of 500 hours showed that the resistance value of the magnetic detection element rose by only 1% or so from the initial state (before the experiment of the water resistance) after the water resistance experiment was performed.
Number | Date | Country | Kind |
---|---|---|---|
2006-239188 | Sep 2006 | JP | national |