1. Field of the Invention
The invention relates to medical instruments that provide tactile feedback to an operator. More particularly, magnets are used to provide the tactile feedback.
2. Description of the Related Art
Preferably, human-operated medical instruments provide some form of visible, audible, and or tactile feedback during use. This feedback can indicate a state of the instrument and/or a state of what the instrument is operating upon such as the patient. Prior art instruments typically use mechanisms such as springs, mechanical stops, or ratchets to provide feedback.
The prior art instruments are unsatisfactory in a number of ways. For example, the mechanical feedback devices such as springs, mechanical stops, or ratchets can wear out over time, and thus are not always reliable. As another example, these mechanisms may be difficult to modify to provide a specific desired resistance.
In one embodiment of the invention, a medical instrument includes a channel, a first interacting structure, a slider, and a control member. The first interacting structure can extend along at least a portion of the channel. At least a portion of the slider can also be disposed in the channel, so as to move in the channel. The slider can additionally have a first attraction portion. The control member can be rotatably coupled to the slider, and have a second interacting structure and a second attraction portion. The second interacting structure can engage the first interacting structure so as to move the slider in the channel when the control member is rotated. The second attraction portion can be disposed such that a distance between the second attraction portion and the first attraction portion changes as the control member is rotated relative to the slider.
In another embodiment of the invention, a medical instrument for receiving an attachment having a fixed portion and a moveable portion is provided. The medical instrument can include a handle, a slider, and a controller. The handle can be configured to receive the fixed portion of the attachment and have a channel. At least a portion can be disposed so as to move within the channel. Further, the slider can be configured to receive the movable portion of the attachment and have at least one magnetic portion. The controller can have at least one magnetic portion disposed so as to create a magnetic force with the at least one magnetic portion of the slider. Further, the controller can be configured such that movement of the controller causes movement of the slider, up to a threshold force at which the magnetic force is overwhelmed and the slider and the controller separate.
In a further embodiment of the invention, a medical instrument for operating a tool can include a track and a slider. The track can have a plurality of magnetic portions disposed thereto at a plurality of different locations along the track. The slider can be disposed on the track and have at least one magnetic portion disposed generally adjacent the track. The slider can move along the track such that when the slider slides through a full range of motion along the track the magnetic portions of the track and the magnetic portion of the slider are brought into a plurality of generally adjacent positions. This can affect a magnetic force between the magnetic portions of the track and the magnetic portion of the slider.
In an additional embodiment a kit can include a medical instrument and a plurality of magnetic portions. The medical instrument can have a moveable portion operatively connected to an operating portion of the medical instrument to control the operating portion. The medical instrument can also have a plurality of magnetic portions that provide at least one of an audible or tactile feedback to a user. Further, at least one of the magnetic portions can be removable and replaceable by one of the plurality of magnetic portions.
In yet another embodiment, a medical instrument can include an instrument and a first member. The instrument can include an operating portion and a non-operating portion, the non-operating portion comprising at least one first magnetic portion. The first member can include a moveable rod, a slot, and a release member. The moveable rod can include a second magnetic portion in magnetic connection with the first magnetic portion. The moveable rod can be housed with in the slot, allowing movement through the slot away from the first magnetic portion. The release member can be in operative communication with the moveable rod, such that actuation of the release member causes movement of the rod away from the first magnetic portion. This movement away from the first magnetic portion can release the magnetic connection with the first magnetic portion.
In an additional embodiment, a medical instrument can include an operating portion, a handle, and a magnet. The handle can be operatively connected to the operating portion and include at least one control piece that is moveable relative to the handle. The magnet can be disposed on at least one of the handle and the control piece so as to provide audible and/or tactile feedback to an operator.
These and other features, aspects, and advantages of the medical devices disclosed herein are described below with reference to the drawings of preferred embodiments, which are intended to illustrate and not to limit the invention. Additionally, from figure to figure, the same reference numerals have been used to designate the same components of an illustrated embodiment. Like components between the illustrated embodiments are similarly noted as the same reference numbers with a letter suffix to indicate another embodiment. The following is a brief description of each of the drawings.
The present disclosure provides magnetic detent mechanisms for medical instruments. The figures depict the magnetic detent mechanisms in the context of a handle for a stone basket. More specific descriptions of various stone baskets and basket handles can be found in, e.g., U.S. Pat. Nos. 6,676,668 and 6,652,537, which are both incorporated by reference herein in their entirety. However, it will be clear from the disclosure that the magnetic detent mechanisms can include other medical and non-medical instruments. For example, the magnetic detent mechanisms can be employed with steering catheters, stents, and a variety of other medical articles. In a more general set of embodiments, the magnetic detent mechanisms are employed with any instrument for which it is desirable to provide tactile or audible feedback in addition to or in place of visible feedback, such as where an operator may be looking elsewhere or require feedback more precise than available by sight alone. In another general set of embodiments, the magnetic detent mechanisms are employed with instruments used for delicate procedures, where excessive force may cause complications, potentially causing damage to the instrument or something the instrument is acting on (such as a medical patient). In another general set of embodiments, the magnetic detent mechanisms are employed with instruments which are held in a prescribed position until released. It will be clear from the disclosure herein that the magnetic detent mechanisms can include a much greater variety of instruments than those explicitly described, medical or otherwise.
For example, an embodiment of a stone basket 1, which can be attached to a basket handle 10 that includes a magnetic detent mechanism as is illustrated in
As depicted, in this embodiment movement of the slider 14 can be caused in two distinct ways. First, the slider 14 can be moved directly by a finger of an operator. The slider 14 may further include one or more ridges 15 on its upper surface to increase traction with the finger. However, the slider 14 can also move via the control portion 20. As most clearly shown in
As depicted, at least one of the control portion 20 and the slider 14 comprises a magnet 17, 24. A magnet is defined as a material that produces a magnetic field. The other one of the control portion 20 and the slider 14 can comprises either a magnet 17, 24, a non-magnetized ferromagnetic material, or a paramagnetic material. For ease of explanation, the term magnet is used throughout the disclosure to include materials that produce a magnetic field, non-magnetized ferromagnetic materials, and paramagnetic materials.
The magnet 24 on the slider 14 can be positioned directly above the center of the slider hole 18 at a distance approximately the same as the distance the magnet 17 on the control portion 20 is from the center of the axle 22. However, it will be clear that the magnets 17, 24 need not be at these exact locations such as being directly above the slider hole 18. For example, the magnets 17, 24 can be an equal radial distance from the hole 18 or axle 22. As the control portion 20 rotates, so does the magnet 24, bringing it eventually into alignment with the magnet 17. Similarly, the magnets 17, 24 can be at different radially distances, since they need not be in perfect alignment to have a mutual magnetic force.
When the magnets 17, 24 approach each other, their attractive or repulsive force can increase, providing a tactile response to an operator. This force can further cause the slider 14 to naturally tend to stay (or stay away from) a given position. In some embodiments this position can be configured to coincide with, a preferred state, such as a preferred size opening of the stone basket 1. Further, the magnets 17, 24 can be chosen to have an attractive force strong enough to hold the slider 14 at the chosen position without application of some dislodging force greater than a force expected in normal operation that preferably would not cause the slider 14 to move.
To indicate this position to the operator, the control portion 20 can further include a tactile indicator 25 (depicted as a larger ridge in
As depicted the handle 30 and clutch 31, when combined are still free to spin independently via the smooth axle 33 of the handle 30. However, the clutch magnets 32, when aligned, can provide an attractive force inhibiting the relative rotation of the handle 30 and the clutch 31. When the handle 30 is rotated by an operator, the entire control portion 20b can rotate, causing the slider 14 to move. However, if this rotation requires too much force, the force resisting rotation of the clutch 31 can overwhelm the attractive force between the clutch magnets 32 and cause the handle 30 and the clutch 31 to rotate independently. The attractive force between the clutch magnets 32 can thus be chosen to prevent an excessive force in opening and closing the basket 1. Further, an operator can feel the sudden change in resistance as the clutch magnets 32 come out of alignment, indicating that the magnets 32 have released and that a threshold force has been reached. As discussed further below, in some embodiments the strength of the magnetic force can be adjusted to fit individual needs.
If the outer control portion magnet 24 is also present on the control portion 20b, e.g. on the clutch 31, the operator can feel the additional tactile feedback previously discussed. In some embodiments the outer magnet 24 can be the same magnet as the clutch magnet 32 on the clutch 31. In such embodiments, the tactile feedback magnetic force can be less than the clutch magnetic force.
As depicted in
Further, as depicted, the slot magnets 42 can be in the form of pins or screws. An operator can easily adjust the depth of the pins or screws to modify the attractive force between the magnets 41, 42. Similarly, the slider magnet 41 can have a threaded portion with a screw head allowing its depth to be varied, or for it to be removed and replaced with a magnet of a different strength. These variations can affect both the tactile feedback and the tendency for the slider 40 to stay near or away from the slot magnets 42, as discussed above.
Advantageously, the metal sheet 44 can be easily replaced and reconfigured. For example, the slot 13d can have small slits at its ends, into which ends of the metal sheet 44 can be inserted, thus holding the sheet in place and allowing easy removal, as depicted in
As depicted in the embodiment in
Via the magnetic attachment, a force moving the control piece 51 in a rearward or proximal direction can similarly move the wire holder 50 in the same direction, moving the control wire 3 as well. If the force required is too great, the wire holder 50 and the control piece 51 can separate, as the magnetic attractive force is overcome. Further as discussed above, the magnets 52 can be chosen to require a specific desired force of separation, such as a force that would cause a controlled medical article to break or that would potentially cause damage to an object on which the medical article is acting.
It should also be noted that in the embodiment of
The fixed block 65 can release the sliding block 61 by actuation of a release member 67, depicted as a lever. It will be clear from the disclosure herein that other release members 67 can be used, including cross pins, cams, and the like. The lever 67 can attach to or abut the pin 66, and upon actuation can move the pin away from the magnet 62 through the hole 68. As the remaining material of the blocks 61, 65 prevent the magnet 62 from coming any closer to the withdrawn pin 66, the magnetic attraction can weaken sufficiently to allow separation of the blocks. The sliding block 61 can thus move away from the fixed block 65, allowing an extension 63 to perform a desired function.
Referring back to the embodiments previously discussed, the embodiment in
In conjunction with the invention and the embodiments described above, a variety of materials can be used. For permanent magnets, materials such as iron, neodymium boron iron, samarium cobalt, magnetite, and cobalt can be used. For unmagnetized, magnetic materials, the invention can use steel, iron, other paramagnetic and ferromagnetic materials, by way of example. The magnetic properties can further be modified by adjusting alloys, sizes, distances between magnets, and other properties. In some embodiments, the materials can be chrome or nickel plated to improve resistance to corrosion.
In further embodiments, a medical instrument can come in the form of a kit. The magnets can reversibly insert into the medical instrument, for example by a screw-thread mechanism. Accordingly, a variety of magnets can be interchanged to modify the attractive forces. Further, via the screw-thread arrangement the magnetic force can be more finely calibrated by rotating through the thread, modifying the precise position of the magnets.
In some embodiments, a practitioner can test a medical instrument, directly or indirectly observing the magnetic force. If the magnetic force is too strong or weak by at least a given amount, the practitioner can interchange the magnets. If the magnetic force is not too strong or weak by at least the given amount, the practitioner can adjust the position of any of the magnets to more finely tune the magnetic force.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application claims the priority benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/122,686 (filed Dec. 15, 2008), the entirety of which is hereby expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61122686 | Dec 2008 | US |