This invention relates to a magnetic surgery system, and in particular to an open magnetic surgery system that provides greater access to the patient for imaging and other purposes.
A wide variety of minimally invasive surgical procedures have been developed which employ catheters, endoscopes, or other similar devices that can be navigated remotely from their distal ends. The catheter, endoscope or other medical device is manipulated through the tissue or through an existing body lumen or cavity using a guide wire or other mechanical means. Examples of such procedures include the treatment of aneurysms, arterial ventricular malformations, atrial fibrillation, ureteral stones, and investigations of lumen such as sigmoidoscopies and colonoscopies, ERCP's; and biliary duct examinations. While these procedures are highly beneficial to the patient, they are difficult and time consuming for the physician. Some procedures can only be performed by the most skilled surgeons.
Because of the small size of the vessels to be navigated, extremely high resolution and flexibly moveable fluoroscopes are needed to provide adequate imaging. These fluoroscopes are large instruments. Even now, accessibility of adequate imaging in the presence of equipment needed to navigate the catheters, endoscopes, or other similar devices through the vessels.
Systems have been disclosed for magnetic guidance of catheters and guidewires to facilitate navigation of difficult vascular turns. Imaging means can be used in conjunction with magnetically guided surgery. An example of such a system is described in U.S. utility patent application Ser. No. 09/020,798, filed Feb. 9, 1998, entitled “Device and Method for Specifying Magnetic Field for Surgical Applications,” now U.S. Pat. No. 6,014,580. While magnetically guided surgery with such systems is practical, the sheer bulk and size of their magnetic systems results in less accessibility of the operating region of the patient than a surgeon might prefer. Also, imaging equipment (such as X-ray equipment) for observing the operating region has been fixed to the magnetic system assembly, or otherwise been immobile or of limited mobility relative to the magnets and/or the patient. This relative immobility tends to reduce the ability of the surgeons to see the medical operating device within the patient, making the operation somewhat more difficult for the surgeon and somewhat riskier for the patient than might otherwise be the case. It would therefore be desirable to provide an apparatus for magnetically-assisted surgery that provides flexibility of both the imaging and of the magnetic field application.
A difficulty associated with magnetic guidance is that the magnetic field source needed to guide the medical devices within small vessels and body lumens may be relatively large. The distance between the magnet field source and the operating region is also a factor in providing a system for applying magnetic fields for navigation, while maintaining an “openness” and accessibility of imaging systems as described above.
Embodiments of the systems of the present invention advance the art of simultaneous imaging and remote surgical navigation by combining navigation and imaging system equipment in a manner that improves flexibility and accessibility of both systems. In one embodiment of the present invention, a system for imaging and magnetically navigating a medical device within an operating region in a subject's body is provided that comprises a first C-arm and a second C-arm. The system comprises an imaging beam source and an imaging beam receiver mounted on the first C-arm and positioned to be disposed on opposite sides of the operating region to image the operating region. The system further comprises an imaging beam source and an imaging beam receiver mounted on the second C-arm and positionable to be disposed on opposite sides of the operating region to image the operating region. In this embodiment, the second C-arm is movable between an imaging position in which the imaging beam source and imaging beam receiver on the second C-arm is positioned so that the imaging beam sources and receivers are in the same plane, and a stowed position in which the second C-arm is in a navigating position. The system comprises a pair of magnetic pods movably mounted on the first C-arm, the magnetic pods being movable between a navigating position in which the pods are disposed on opposite sides of the operating region in the same plane as the imaging beam source and the imaging beam receiver, for applying a navigating magnetic field of at least 0.08 T in any direction to the operating region, and a stowed position in which the magnets are moved out of the plane to accommodate the imaging beam source and imaging beam receiver on the second C-arm in its imaging position. The imaging beam source and the imaging beam receiver on the first C-arm are positioned so that a line between the imaging beam source and receive is generally perpendicular to, and coplanar with a line between the magnet pods in their navigating position.
In another aspect of the present invention, a second embodiment of a system provides for quickly moving between a position for navigation operation and a position for imaging. In the second embodiment, the system comprises a first C-arm, and a second C-arm having an imaging beam source and beam receiver mounted generally adjacent the magnet pods, such that the second C-arm may move from a navigation position utilizing the magnet pods to an imaging position utilizing the imaging beam source and beam receiver. The system comprises an imaging beam source and an imaging beam receiver mounted on the first C-arm so that the imaging beam source and imaging beam receiver can be disposed on opposite sides of the operating region in the subject. The system also comprises a second C-arm movable relative to the first C-arm between a stowed position and an imaging position, and having an imaging beam source and an imaging beam receiver mounted on the second C-arm. When the second C-arm is in its imaging position, the imaging beam source and imaging beam receiver are disposed on opposite sides of the operating region, in substantially the same plane as the imaging beam source and imaging beam receiver on the first C-arm. The second C-arm comprises a pair of magnetic pods mounted on the first C-arm, the C-arm being movable between a navigating position in which the pods are disposed on opposite sides of the operating region in the same plane as the imaging beam source and the imaging beam receiver, for applying a navigating magnetic field of at least 0.08 T in any direction to the operating region, and a stowed position in which the magnets are not on opposite sides of the operating region to accommodate the imaging beam source and imaging beam receiver on the second C-arm in its imaging position. When in the stowed position, the imaging beam source and the imaging beam receiver on the second C-arm are positioned so that a line between the imaging beam source and receiver is generally perpendicular to, and coplanar with a line between the magnet pods in their navigating position.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The following description of the various embodiment(s) are merely exemplary in nature and are in no way intended to limit the invention, its application, or uses.
In one first embodiment of the present invention, a system that enables both imaging and magnetic navigation within an operating region of a subject's body is provided. The system comprises magnetic navigational equipment 22 that provides navigation control in an operating region 28 of a subject's body, as well as imaging equipment for procedures where anatomical views of the patient may be required during the procedure. The system generally comprises a first imaging equipment support structure having a generally C-shaped configuration 24, and a second equipment support structure having a generally C-shaped configuration 26. The first and second C-arm structures are preferably mounted on tracks that enable the C-arms to rotate circumferentially about an operating region 28 of the subject's body as shown in
In the first embodiment, the system comprises a first C-arm 24 with an imaging beam source 30 and an imaging beam receiver 32 that are mounted on the first C-arm 24 and positioned to be disposed on opposite sides of the operating region 28 for imaging the operating region. The imaging beam receiver 32 may be configured to accommodate an imaging plate of approximately 20 centimeters, and may preferably accommodate an imaging plate of up to approximately 30 centimeters. The operating region 28 is represented by a sphere of approximately 12 inch diameter as shown in
The first C-arm 24 is preferably mounted on a track 38 for enabling the C-arm to rotate about the radial center of the first C-arm 24, such that the first C-arm 24 rotates in a generally circumferential arc about the operating region 28. The track 38 is preferably mounted to a base unit having a drive mechanism for controlling the rotation of the first C-arm 24 about the operating region. In the first embodiment, a standing C-arm imaging system is provided as shown in
The first embodiment further comprises a second C-arm 26 that is mounted on a track support 40 for enabling the second C-arm to rotate about the radial center of the second C-arm 24. The second C-arm 24 rotates in a generally circumferential arc about the operating region 28. The track support 40 is preferably mounted via a motorized trolley or travel mechanism to an overhead linear track that is parallel to the longitudinal axis of the patient and/or support table. The overhead linear track comprises a pair of magnetic navigational pods that are disposed or mounted at the ends of the second C-arm such that a line between the imaging beam source 30 and receiver 32 on the first C-arm 24 is generally perpendicular to, and coplanar with a line between the magnetic navigational pods 22 mounted on the second C-arm 26. The second C-arm 26 shown in
Referring to
In the second embodiment, the system comprises a first C-arm 24 with an imaging beam source 30 and an imaging beam receiver 32 that are mounted on the first C-arm 24 and positioned to be disposed on opposite sides of the operating region 28 for imaging the operating region. The imaging beam receiver 32 may be configured to accommodate an imaging plate of approximately 20 centimeters, and may preferably accommodate an imaging plate of up to approximately 30 centimeters, as shown by the region 29 in
The second C-arm 26 is movable between an imaging position and a navigating position. In the navigating position, a pair of magnetic pods 22 are disposed on opposite sides of and projecting towards the operating region 28, in the same plane as the imaging beam source 30 and the imaging beam receiver 32 mounted on the first C-arm. The pair of magnetic pods 22 are mounted on the second C-arm 24 in a manner such that they extend from the second C-arm towards the patient. The magnetic pods 22 are capable of applying a navigating magnetic field of at least 0.8 T in any direction to the operating region 28. The pair of magnetic navigation equipment pods 22 are preferably positioned relative to each other to provide a 12 inch pod-to-pod separation, which spacing provides for INR or Neurosurgery therapies. The magnetic pods 22 each have a weight of approximately 120 pounds. In the imaging position, the imaging beam source 34 and imaging beam receiver 36 on the second C-arm 26 are positioned so that the imaging beam sources 30, 34 and receivers 32, 36 on both the first C-arm 24 and second C-arm 26 are in the same plane. The second C-arm 26 accordingly is movable from a navigating position to a secondary imaging position in as little as 10 seconds.
The second C-arm 26 provides a minimum articulation of the magnetic pods 22 to ensure compatibility with secondary imaging equipment. The second C-arm 26 is preferably translatable between an extended position and a retracted position, by virtue of a ceiling track 42 extending above the patient support table 44. In one position, the second C-arm 26 is extended such that the magnetic pods 22 are moved into the plane comprising the imaging beam source on the first C-arm, to enable magnetic navigation in the operating region 28. The magnetic pods 22 mounted on the second C-arm are positioned so that, in their navigating position, a line between the magnetic pods 22 is generally perpendicular to, and coplanar with a line between the imaging beam source 30 and the imaging beam receiver 32 mounted on the second C-arm 24. the second C-arm is retracted such that the magnetic pods 22 are moved out of the plane to accommodate the imaging beam source 34 and imaging beam receiver 36 on the second C-arm in its imaging position. In the second secondary imaging position, the line between the imaging beam source 34 and imaging beam receiver 36 on the second C-arm 26 is generally perpendicular to, and coplanar with a line between the imaging beam source 30 and imaging beam receiver 32 on the first C-arm.
The first C-arm 24 is preferably mounted on a track 38 for enabling the C-arm to rotate about the radial center of the first C-arm 24, such that the first C-arm 24 rotates in a generally circumferential arc about the operating region 28. The track 38 is preferably mounted to a base unit having a drive mechanism for controlling the rotation of the first C-arm 24 about the operating region. The base unit for the first C-arm may be positioned on the floor in a location relative to a horizontal support table 44 for the patient, such that the longitudinal axis of the patient is within the operating region 28. In the first embodiment, a standing C-arm imaging system is provided as shown in
The second embodiment further comprises a second C-arm 26 that is mounted on a track support 40 for enabling the second C-arm to rotate about the radial center of the second C-arm 24. The second C-arm 24 rotates in a generally circumferential arc about the operating region 28. The second C-arm 26 shown in
Referring to
The second C-arm 26 is movable between an imaging position and a stowed position. In the imaging position, the imaging beam source 34 and imaging beam receiver 36 on the second C-arm 26 are positioned so that the imaging beam sources 30, 34 and receivers 32, 36 on both the first C-arm 24 and second C-arm 26 are in the same plane. In the stowed position, the second C-arm 26 is retracted away from the plane via a ceiling track 42, to provide accessibility for the magnetic navigation pods 22 on the first C-arm 24. The pair of magnetic pod units 22 are rotated or aligned to project towards the operating region. The pair of magnetic pods 22 are movably mounted on the first C-arm 24, such that the pods may be switched between a navigating position and a stowed position. In navigating position, the pods 22 are disposed on opposite sides of the operating region 28 in the same plane as the imaging beam source 30 and the imaging beam receiver 32 mounted on the first C-arm. The magnetic pods 22 are capable of applying a navigating magnetic field of at least 0.8 T in any direction to the operating region 28. The pair of magnetic pods 22 are preferably positioned relative to each other to provide a 12 inch pod-to-pod separation. Such separation permits the magnetic navigation equipment to be utilized for INR or Neurosurgery therapies. The magnetic pods 22 each have a weight of approximately 120 pounds.
The first C-arm 24 provides a minimum articulation of the magnetic pods 22 to ensure compatibility with secondary imaging equipment on the second C-arm 26. In the stowed position, the magnetic pods 22 are moved out of the plane comprising the imaging beam source on the first C-arm, to provide accessibility for the imaging beam source 34 and imaging beam receiver 36 on the second C-arm 26 to move into an imaging position. The magnetic pods 22 are preferably able to pivot or rotate away from the patient to provide a separation of at least 30 inches to accommodate positioning of the patient between the primary and secondary imaging sources. The imaging beam source 30 and the imaging beam receiver 32 mounted on the first C-arm 24 are positioned so that a line between the imaging beam source 30 and receiver 32 is generally perpendicular to, and coplanar with a line between the magnet pods 22 in their navigating position. In the secondary imaging position, the line between the imaging beam source 30 and receiver 32 on the first C-arm 24 is generally perpendicular to, and coplanar with a line between the imaging beam source 34 and imaging beam receiver 36 on the second C-arm 26.
The first C-arm 24 is preferably mounted on a track 38 for enabling the C-arm to rotate about the radial center of the first C-arm 24, such that the first C-arm 24 rotates in a generally circumferential arc about the operating region 28. The track 38 is preferably mounted to a base unit having a drive mechanism for controlling the rotation of the first C-arm 24 about the operating region. The base unit for the first C-arm may be positioned on the floor in a location relative to a horizontal support table 44 for the patient, such that the longitudinal axis of the patient is within the operating region 28. In the first embodiment, a standing C-arm imaging system is provided as shown in
The third embodiment further comprises a second C-arm 26 that is mounted on a track support 40 for enabling the second C-arm to rotate about the radial center of the second C-arm 24. The second C-arm 24 rotates in a generally circumferential arc about the operating region 28. The track support 40 is preferably mounted via a motorized trolley or travel mechanism to an overhead linear track 42 that is parallel to the longitudinal axis of the patient and/or support table 44. The overhead linear track 42 enables the second C-arm 26 to be moved to a secondary imaging position, such that a line between the imaging beam source 30 and receive 32 on the first C-arm 24 is generally perpendicular to, and coplanar with a line between the imaging beam source 34 and imaging beam receiver 36 on the second C-arm 26. The second C-arm 26 shown in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/697,822 filed on Jul. 8, 2005, the entire disclosure of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5654864 | Ritter et al. | Aug 1997 | A |
5931818 | Werp et al. | Aug 1999 | A |
6014580 | Blume et al. | Jan 2000 | A |
6015414 | Werp et al. | Jan 2000 | A |
6128174 | Ritter et al. | Oct 2000 | A |
6148823 | Hastings | Nov 2000 | A |
6152933 | Werp et al. | Nov 2000 | A |
6157853 | Blume et al. | Dec 2000 | A |
6212419 | Blume et al. | Apr 2001 | B1 |
6241671 | Ritter et al. | Jun 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6296604 | Garibaldi et al. | Oct 2001 | B1 |
6298257 | Hall et al. | Oct 2001 | B1 |
6304768 | Blume et al. | Oct 2001 | B1 |
6315709 | Garibaldi et al. | Nov 2001 | B1 |
6330467 | Creighton, IV et al. | Dec 2001 | B1 |
6352363 | Munger et al. | Mar 2002 | B1 |
6364823 | Garibaldi et al. | Apr 2002 | B1 |
6375606 | Garibaldi et al. | Apr 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6401723 | Garibaldi et al. | Jun 2002 | B1 |
6428551 | Hall et al. | Aug 2002 | B1 |
6459924 | Creighton, IV et al. | Oct 2002 | B1 |
6505062 | Ritter et al. | Jan 2003 | B1 |
6507751 | Blume et al. | Jan 2003 | B2 |
6522909 | Garibaldi et al. | Feb 2003 | B1 |
6524303 | Garibaldi | Feb 2003 | B1 |
6527782 | Hogg et al. | Mar 2003 | B2 |
6537196 | Creighton, IV et al. | Mar 2003 | B1 |
6542766 | Hall et al. | Apr 2003 | B2 |
6562019 | Sell | May 2003 | B1 |
6630879 | Creighton, IV et al. | Oct 2003 | B1 |
6662034 | Segner et al. | Dec 2003 | B2 |
6677752 | Creighton, IV et al. | Jan 2004 | B1 |
6702804 | Ritter et al. | Mar 2004 | B1 |
6733511 | Hall et al. | May 2004 | B2 |
6755816 | Ritter et al. | Jun 2004 | B2 |
6817364 | Garibaldi et al. | Nov 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6902528 | Garibaldi et al. | Jun 2005 | B1 |
6911026 | Hall et al. | Jun 2005 | B1 |
6968846 | Viswanathan | Nov 2005 | B2 |
6975197 | Creighton, IV | Dec 2005 | B2 |
6980843 | Eng et al. | Dec 2005 | B2 |
7008418 | Hall et al. | Mar 2006 | B2 |
7010338 | Ritter et al. | Mar 2006 | B2 |
7019610 | Creighton, IV et al. | Mar 2006 | B2 |
7020512 | Ritter et al. | Mar 2006 | B2 |
7066924 | Garibaldi et al. | Jun 2006 | B1 |
7313429 | Creighton et al. | Dec 2007 | B2 |
20010038683 | Ritter et al. | Nov 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020177789 | Ferry et al. | Nov 2002 | A1 |
20040006301 | Sell et al. | Jan 2004 | A1 |
20040019447 | Shachar | Jan 2004 | A1 |
20040064153 | Creighton, IV et al. | Apr 2004 | A1 |
20040068173 | Viswanathan | Apr 2004 | A1 |
20040096511 | Harburn et al. | May 2004 | A1 |
20040133130 | Ferry et al. | Jul 2004 | A1 |
20040157082 | Ritter et al. | Aug 2004 | A1 |
20040158972 | Creighton, IV et al. | Aug 2004 | A1 |
20040186376 | Hogg et al. | Sep 2004 | A1 |
20040199074 | Ritter et al. | Oct 2004 | A1 |
20040249262 | Werp et al. | Dec 2004 | A1 |
20040249263 | Creighton, IV | Dec 2004 | A1 |
20040260172 | Ritter et al. | Dec 2004 | A1 |
20050020911 | Viswanathan et al. | Jan 2005 | A1 |
20050043611 | Sabo et al. | Feb 2005 | A1 |
20050065435 | Rauch et al. | Mar 2005 | A1 |
20050096589 | Shachar | May 2005 | A1 |
20050113628 | Creighton, IV et al. | May 2005 | A1 |
20050113812 | Viswanathan et al. | May 2005 | A1 |
20050119687 | Dacey, Jr. et al. | Jun 2005 | A1 |
20050182315 | Ritter et al. | Aug 2005 | A1 |
20050187424 | Hambuchen et al. | Aug 2005 | A1 |
20050256398 | Hastings et al. | Nov 2005 | A1 |
20060009735 | Viswanathan et al. | Jan 2006 | A1 |
20060025679 | Viswanathan et al. | Feb 2006 | A1 |
20060036125 | Viswanathan et al. | Feb 2006 | A1 |
20060036163 | Viswanathan | Feb 2006 | A1 |
20060041178 | Viswanathan et al. | Feb 2006 | A1 |
20060041179 | Viswanathan et al. | Feb 2006 | A1 |
20060041180 | Viswanathan et al. | Feb 2006 | A1 |
20060041181 | Viswanathan et al. | Feb 2006 | A1 |
20060041245 | Ferry et al. | Feb 2006 | A1 |
20060058646 | Viswanathan | Mar 2006 | A1 |
20060074297 | Viswanathan | Apr 2006 | A1 |
20060079745 | Viswanathan | Apr 2006 | A1 |
20060079812 | Viswanathan | Apr 2006 | A1 |
20060093193 | Viswanathan | May 2006 | A1 |
20060094956 | Viswanathan | May 2006 | A1 |
20060100505 | Viswanathan | May 2006 | A1 |
20060114088 | Shachar | Jun 2006 | A1 |
20060116633 | Shachar | Jun 2006 | A1 |
20060144407 | Aliberto et al. | Jul 2006 | A1 |
20060144408 | Ferry | Jul 2006 | A1 |
20090062646 | Creighton et al. | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20070038064 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60697822 | Jul 2005 | US |