The present invention relates to a magnetic position sensor that detects position of a measured object using a magnetic detecting element.
Conventional magnetic position sensors have: a pair of first ferromagnetic stators that are disposed parallel to each other on opposite sides of an auxiliary air gap; and a second ferromagnetic stator that faces the first ferromagnetic stators across a main air gap. A permanent magnet that is magnetized so as to have two poles is disposed in the main air gap. The permanent magnet generates two magnetic flux loops that have a branch point at a center thereof, and is displaceable along the main air gap. A magnetic detecting element is disposed in the magnet auxiliary air gap. Positions of the magnetic flux loops change when the permanent magnet is displaced inside the main air gap due to displacement of the measured object, and this is detected by the magnetic detecting element (see Patent Literature 1, for example).
Japanese Patent No. 3264929 (Gazette)
In conventional magnetic position sensors such as that described above, since the branch point of the magnetic flux loops is always at the center of the permanent magnet, it is necessary to make a stroke uniform in two directions relative to the origin position. For this reason, accuracy of measurement is reduced if the origin position is not aligned centrally throughout the stroke (i.e., if it is inclined).
The present invention aims to solve the above problems and an object of the present invention is to provide a magnetic position sensor that enables decreases in accuracy of measurement to be suppressed by enabling an origin position to be adjusted so as to correspond to a place of use.
A magnetic position sensor includes: first and second detecting cores that are disposed so as to line up with each other on opposite sides of a detecting gap; a magnet unit having: first and second magnet cores that are disposed so as to line up with each other on opposite sides of an origin gap; and a magnet that generates two magnetic flux loops between the first and second detecting cores and the first and second magnet cores, the magnetic flux loops having a boundary at the origin gap, the magnet unit being displaced relative to the first and second detecting cores together with displacement of a measured object; and a magnetic detecting element that is disposed in the detecting gap, and that detects magnetic flux that passes through the detecting gap.
Preferred embodiments of the present invention will now be explained with reference to the drawings.
A movable body (a magnet unit) 6 that is displaceable by sliding along the fixed cores 2 and 3 in a direction that is perpendicular to the detecting gap g1 (left-to-right in the figure) is disposed inside a housing 1. The movable body 6 has: a holding part 7; first and second movable cores (magnet cores) 8 and 9 that are constituted by a ferromagnetic material such as iron, etc., for example; and a flat magnet (a permanent magnet) 10.
The movable cores 8 and 9 are held by the holding part 7. The movable cores 8 and 9 have L-shaped cross sections, and are disposed so as to have opposite orientations from each other. In addition, the movable cores 8 and 9 have: origin gap surfaces 8a and 9a that face each other on opposite sides of an origin gap g2; and fixed-core-facing surfaces 8b and 9b that face and contact the fixed cores 2 and 3.
The magnet 10 is held between the fixed cores 2 and 3 and the movable cores 8 and 9. The magnet 10 is magnetized so as to have two poles, and has a direction of magnetization that is vertical in the figure.
First and second shafts 11 and 12 that are made of a nonmagnetic material are fixed to two end portions of the movable body 6 in a direction of movement. A measured object 13 is placed in contact with the first shaft 11. The second shaft 12 is inserted through a spring 14. The spring 14 is disposed between the housing 1 and the movable body 6, and forces the movable body 6 and the first shaft 11 toward the measured object 13.
For example,
Now, since errors (absolute values) generated by the magnetic detecting element 5 increase in proportion to the output from the magnetic detecting element 5, decreases in accuracy of measurement can be suppressed by adjusting the origin (zero point) of the magnetic detecting element 5 so as to coincide with the portion for which measurement is most desired. For example, if the origin of the magnetic detecting element 5 is misaligned from the position of the measured object by 5 mm, the absolute quantity of the error will be doubled if a 5-mm measurement of position is performed since this corresponds to a position that is 10 mm from the origin of the magnetic detecting element 5.
Using a magnetic position sensor such as that described above, it is possible to adjust the position of the branch point of the magnetic flux loops by means of the position of the origin gap g2, enabling the origin position to be adjusted so as to correspond to the place of use, thereby enabling decreases in accuracy of measurement to be suppressed.
In Embodiment 1, as shown in
In contrast to this, if the end portion of the magnet 10 does not overlap with the first fixed core 2 at the maximum stroke position, as shown in
In addition, in Embodiment 1, the first and second movable cores 8 and 9 are positioned within limits of the first and second fixed cores 2 and 3 even if the movable body 6 is moved to the position of the maximum stroke that enables position detection, as shown in
In contrast to this, if the second movable core 9 projects beyond the end surface of the second fixed core 3 at the maximum stroke position, as shown in
A spring (an elastic body) 19 that expands and contracts in response to load weight inside the cage 18 and a magnetic position sensor 20 that functions as a weighing apparatus that detects displacement of the floor portion of the cage 18 are disposed between a floor portion of the cage 18 and a lower beam of the car frame 17. Basic principles of the magnetic position sensor 20 are similar to those in
Moreover, the weighing apparatus can also be disposed at another location on the elevator such a rope shackle or a rope fastening portion, for example.
Next,
The exhaust gas recirculation valve 25 is opened and closed by an actuator 26. A magnetic position sensor 27 is disposed on the actuator 26 so as to function as an opening measuring apparatus for measuring the degree of opening of the exhaust gas recirculation valve 25. Basic principles of the magnetic position sensor 27 are similar to those in
Thus, a magnetic position sensor according to the present invention can be used for any application, and the origin position can be adjusted so as to correspond to the place of use, enabling decreases in accuracy of measurement to be suppressed.
Next,
The strokes may thereby be made asymmetric, and the origin position can be adjusted so as to correspond to the place of use, enabling decreases in accuracy of measurement to be suppressed.
Next,
In a magnetic position sensor of this kind, resistance to gap fluctuations due to displacement of the movable cores 8 and 9 and the magnet 10 in a direction toward or away from the fixed cores 2 and 3 (vertically in the figure) is increased by the fluctuation control gap g3.
For example, if the movable cores 8 and 9 and the magnet 10 are placed in contact with the fixed cores 2 and 3 initially, fluctuations in overall magnetic resistance may be increased severalfold if a gap of even 0.1 mm arises between the two since air has a magnetic resistance that is as much as three orders of magnitude higher than that of a ferromagnetic material. In contrast to that, when a fluctuation control gap g3 is present in advance, even if the fluctuation control gap g3 fluctuates by 0.1 mm from 1.0 mm, for example, the rate of change in overall magnetic resistance is suppressed to approximately 10 percent.
Now, since a magnetic detecting element 5 generates signals that correspond to the magnetic flux that passes through the detecting gap g1, the effects of changes in magnetic resistance that are mentioned above are not small. Consequently, stable output can be obtained relative to displacement of the movable cores 8 and 9 and the magnet 10 in the direction toward or away from the fixed cores 2 and 3 by predisposing the fluctuation control gap g3.
Magnetic flux density can also be adjusted so as to be appropriate to the sensitivity of the magnetic detecting element 5 by adjusting the size of the fluctuation control gap g3.
Next,
In a magnetic position sensor of this kind, since a magnetic gap is also disposed in portions of the magnetic flux loops in advance, stable output can be obtained relative to displacement of the movable cores 8 and 9 and the magnet 10 in the direction toward or away from the fixed cores 2 and 3 in a similar manner to Embodiment 3.
Next,
Now,
When magnet end gaps g5 are not disposed, the magnetic flux that passes through the detecting gap g1 at the maximum stroke position is inclined relative to the direction of magnetic sensitivity of the magnetic detecting element 5. Thus, linearity of the sensor output in the vicinity of the maximum stroke position decreases. In contrast to that, when the magnet end gaps g5 are disposed, the magnetic flux that passes through the detecting gap g1 can be kept parallel to the direction of magnetic sensitivity of the magnetic detecting element 5 even at the maximum stroke position. Thus, linearity of sensor output can be improved in a vicinity of the maximum stroke position.
Next,
In a magnetic position sensor of this kind, since the origin gap g2 is a wider than the detecting gap g1, magnetic resistance is greater in the origin gap g2, enabling branching of the magnetic flux loops to be made clear, and also enabling setting of the origin to be facilitated.
Next,
The magnetic pole face of the magnet 10 near the fixed cores 2 and 3 projects toward the fixed cores 2 and 3 more than fixed-core-facing surfaces 8b and 9b. Conversely, spacing between the fixed-core-facing surfaces 8b and 9b and the fixed cores 2 and 3 is greater than spacing between the magnet 10 and the fixed cores 2 and 3. The rest of the configuration is similar to that of Embodiment 1.
In a magnetic position sensor of this kind, errors that occur if the movable cores 8 and 9 and the magnet 10 are inclined relative to the fixed cores 2 and 3 can be reduced. As shown in
Next,
End portions of a magnetic detecting element 5 project beyond the fixed cores 2 and 3 toward the magnet 10 and in an opposite direction thereto. Conversely, a thickness dimension of the fixed cores 2 and 3 is less than a dimension of the magnetic detecting element 5 in the same direction. The rest of the configuration is similar to that of Embodiment 1.
The thickness of the fixed cores 2 and 3 is set to so as to enable magnetic flux that is parallel to the magnetic detecting element 5 to be supplied. Even if a portion of the magnetic detecting element 5 projects beyond the fixed cores 2 and 3, it will not interfere with the magnet 10 if the fluctuation control gap g3 is disposed. Because of this, even if the thickness dimension of the fixed cores 2 and 3 is made smaller than the dimension of the magnetic detecting element 5 in the same direction, parallel magnetic flux can be supplied to the magnetically sensitive portion 5a, enabling reductions in size and weight and reductions in cost (material costs) in the magnetic position sensor.
Next,
In the figures, cylindrical first and second fixed cores (detecting cores) 32 and 33 that are constituted by a ferromagnetic material such as iron, etc., for example, are fixed inside a cylindrical housing 31. The fixed cores 32 and 33 are disposed coaxially on opposite sides of a ring-shaped detecting gap g1. A magnetic detecting element 5 is disposed at one circumferential position in the detecting gap g1.
A movable body (a magnet unit) 36 that is displaceable by sliding along the fixed cores 32 and 33 in an axial direction of the fixed cores 32 and 33 (left-to-right in the figure) is disposed inside the fixed cores 32 and 33. The movable body 36 has: cylindrical first and second movable cores (magnet cores) 38 and 39 that are constituted by a ferromagnetic material such as iron, etc., for example; and a cylindrical magnet (a permanent magnet) 40.
Flange portions 38a and 39a are disposed on one axial end portion of the movable cores 38 and 39 as shown in
The magnet 40 surrounds the portions of the movable cores 38 and 39 that do not include the flange portions 38a and 39a, and the origin gap g2. The magnet 40 is magnetized so as to have two poles, and has a direction of magnetization that is in a radial direction (a wall thickness direction).
A shaft 41 that is made of a nonmagnetic material penetrates through the movable body 36. The movable cores 38 and 39 are fixed to the shaft 41. A measured object 13 is placed in contact with the shaft 41. A spring 44 that forces the movable body 36 and the shaft 41 toward the measured object 13 is disposed between the housing 31 and the movable body 36.
The configuration of the fixed cores 32 and 33, the movable cores 38 and 39, and the magnet 40 of a magnetic position sensor of this kind is equivalent to rotating the fixed cores 2 and 3, the movable cores 8 and 9, and the magnet 10 according to Embodiment 1 into a cylindrical shape. Consequently, the basic principles of position detection are similar to those of Embodiment 1, enabling the origin position to be adjusted so as to correspond to the place of use, and also enabling decreases in accuracy of measurement to be suppressed.
By forming each of the fixed cores 32 and 33, the movable cores 38 and 39, and the magnet 40 so as to have a cylindrical shape, accuracy of measurement can be improved since the construction becomes differential with respect to the errors generated by gap fluctuations.
In addition, magnetic flux density across the detecting gap g1 is made approximately uniform no matter which direction the movable cores 8 and 9 and the magnet 40 may be biased toward relative to the fixed cores 32 and 33 since the magnetic resistance of the air is extremely large compared to that of the fixed cores 32 and 33. Consequently, sufficient accuracy of measurement can be achieved even though the magnetic detecting element 5 is disposed only at a single circumferential position in the detecting gap g1.
Moreover, in Embodiment 9, each of the fixed cores 32 and 33, the movable cores 38 and 39, and the magnet 40 are formed so as to have a cylindrical shape, but they may also be formed into polygonal prisms that have three or more corner portions in cross section.
As shown in Embodiment 2, a stroke may also be asymmetric on two sides of the origin.
In addition, as shown in Embodiment 3, a fluctuation control gap may also be disposed between the fixed cores 32 and 33 and the movable cores 38 and 39 and between the fixed cores 32 and 33 and the magnet 40.
As shown in Embodiment 4, a fluctuation control gap may also be disposed between a magnetic pole face of the magnet 40 near the movable cores 38 and 39 and the movable cores 38 and 39.
As shown in Embodiment 5, magnet end gaps may be disposed between two end surfaces in the direction of movement of the magnet 40 and the movable cores 38 and 39.
In addition, as shown in Embodiment 6, a dimension of the origin gap in the direction of movement of the movable cores 38 and 39 and the magnet 40 may also be greater than a dimension of the detecting gap in the same direction.
As shown in Embodiment 7, spacing between surfaces of the movable cores 38 and 39 that face the fixed cores 32 and 33 and the fixed cores 32 and 33 may also be set so as to be greater than spacing between the magnet 40 and the fixed cores 32 and 33.
As shown in Embodiment 8, end portions of the magnetic detecting element 5 may also project beyond the fixed cores 32 and 33 toward the magnet 40 and in an opposite direction thereto.
Next,
In a magnetic position sensor of this kind, slight errors that are due to the position of the magnetic flux density that passes across the detecting gap g1 can be corrected by averaging output from the four magnetic detecting elements 5, enabling accuracy of measurement to be improved further.
Next,
By omitting penetrating apertures from the movable cores 38 and 39 in this manner, construction of the movable cores 38 and 39 is simplified, enabling preparation costs to be reduced.
Next,
In a magnetic position sensor of this kind, magnetic resistance can be reduced between the protruding portions 32a and 33a, enabling sufficient accuracy of measurement to be obtained even if a magnetically weak magnet 40 (see
Next,
In the figures, protruding portions 32b and 33b that project radially outward are disposed on end portions of fixed cores 32 and 33 that face each other. The protruding portions 32b and 33b are disposed on the fixed cores 32 and 33 at circumferential positions that align with a magnetic detecting element 5. In other words, a portion of the magnetic detecting element 5 is disposed between the protruding portions 32b and 33b. The rest of the configuration is similar to that of Embodiment 9.
In a magnetic position sensor of this kind, because the protruding portions 32b and 33b are disposed on outer circumferential portions of the fixed cores 32 and 33 and the magnetic detecting element 5 is disposed between the protruding portions 32b and 33b, wall thickness of portions of the fixed cores 32 and 33 that do not include the protruding portions 32b and 33b can be made thinner while ensuring a supply of magnetic flux to the magnetic detecting element 5. Thus, reductions in overall size and weight of the sensor can be achieved.
Next,
Thus, if gaps between the fixed cores 32 and 33 and the protruding portions 45 and 46 are sufficiently small compared to the detecting gap g1, it is possible to configure the protruding portions 45 and 46 as separate parts from the fixed cores 32 and 33, enabling wall thickness of the fixed cores 32 and 33 to be made thinner without complicating the construction of the fixed cores 32 and 33.
Next,
In a magnetic position sensor of this kind, because the opening portion 31a is disposed on the housing 31, it is possible to mount the protruding portions 45 and 46 and the magnetic detecting element 5 after the fixed cores 32 and 33 have been inserted into the housing 31, enabling the shapes of the housing 31 and the fixed cores 32 and 33 to be simplified, and positioning between the protruding portions 45 and 46 and the fixed cores 32 and 33 and between the magnetic detecting element 5 and the fixed cores 32 and 33 is facilitated.
Moreover, the magnetic detecting element 5 may also be fixed between the protruding portions 45 and 46 before the protruding portions 45 and 46 are inserted in the opening portion 31a. In that case, adhesive or nonmagnetic spacers, etc., may also be interposed between the protruding portions 45 and 46 and the magnetic detecting element 5.
Next,
By configuring in this manner, magnetic resistance can be reduced between the protruding portions 45 and 46 in a similar manner to Embodiment 12, enabling sufficient accuracy of measurement to be obtained even if a magnetically weak magnet 40 (see
Next,
Next,
In a magnetic position sensor of this kind, because the protruding portions 32c and 33c are disposed on outer circumferential portions of the fixed cores 32 and 33 and the magnetic detecting element 5 is disposed between the protruding portions 32c and 33c, wall thickness of portions of the fixed cores 32 and 33 that do not include the protruding portions 32c and 33c can be made thinner while ensuring a supply of magnetic flux to the magnetic detecting element 5. Thus, reductions in overall size and weight of the sensor can be achieved. Because the protruding portions 32c and 33c are disposed around the entire circumferences of the fixed cores 32 and 33, shapes of the fixed cores 32 and 33 can be simplified.
Next,
In this example, outside diameters of fixed cores 32 and 33 are changed continuously in an axial direction of the fixed cores 32 and 33 instead of disposing protruding portions 32c and 33c on end portions of the fixed cores 32 and 33. Specifically, outside diameters of end portions of the fixed cores 32 and 33 that face each other are greater than outside diameters of end portions at opposite ends. However, inside diameters of the fixed cores 32 and 33 are constant in the axial direction. The rest of the configuration is similar to that of Embodiment 9.
In a magnetic position sensor of this kind, because the outside diameters of the end portions of the fixed cores 32 and 33 near the magnetic detecting element 5 are formed so as to be larger than the end portions at the opposite ends, wall thickness of the fixed cores 32 and 33 can be made gradually thinner toward the end portions at opposite ends from the magnetic detecting element 5 while ensuring a supply of magnetic flux to the magnetic detecting element 5. Thus, reductions in overall size and weight of the sensor can be achieved.
Next,
Cross sections of the fixed cores 32 and 33 are elliptical. The size of the fluctuation control gap g3 in a circumferential direction of the sensor is formed so as to be smallest (d1) in vicinities of the magnet segment gaps g6 and g7, and formed so as to be largest (d2) at positions that are farthest away from the magnet segment gaps g6 and g7. The rest of the configuration is similar to that of Embodiment 9.
By dividing the cylindrical magnet 40 into the magnet segments 40a and 40b in this manner, manufacturing of the magnet 40 can be facilitated. By disposing the magnet segment gaps g6 and g7 between the magnet segments 40a and 40b, manufacturing precision for the magnet segments 40a and 40b can be lowered, and assembly of the magnet segments 40a and 40b onto the movable cores 38 and 39 can be facilitated.
However, if the magnet segment gaps g6 and g7 are disposed, effects of the differential construction that result from forming the sensor so as to have a cylindrical shape are reduced since magnetic flux density is reduced at portions near the magnet segment gaps g6 and g7. In answer to this, the strength of the magnetic flux loops is made uniform in a circumferential direction of the sensor by making the size of the fluctuation control gap g3 smaller at positions near the magnet segment gaps g6 and g7 than at other positions, enabling reductions in the effects due to the differential construction to be suppressed.
Next,
In a magnetic position sensor of this kind, because the magnetic flux density is proportional to the wall thickness of the magnet 40, the magnetic flux density in the vicinity of the magnet segment gaps g6 and g7 is increased by making the wall thickness of the magnet segments 40a and 40b in the vicinity of the magnet segment gaps g6 and g7 thicker than the wall thickness in other portions, enabling the strength of the magnetic flux loops to be made uniform in the circumferential direction of the sensor.
Next,
Thus, the strength of the magnetic flux loops can be made uniform in the circumferential direction of the sensor even if outer circumferential shapes of the flange portions 38a and 39a are modified so as to increase the magnetic flux density at positions near the magnet segment gaps g6 and g7.
Next,
Cross sections of the fixed cores 32 and 33 are triangular. The size of the fluctuation control gap g3 in a circumferential direction of the sensor is smallest in the vicinities of the magnet segment gaps g8 through g10, and largest at positions that are farthest away from the magnet segment gaps g8 through g10. The rest of the configuration is similar to that of Embodiment 9.
By forming the cross-sectional shapes of the fixed cores 32 and 33 into polygons that correspond to the number of magnet segment gaps g8 through g10 in this manner, the size of the fluctuation control gap g3 can also be made smaller at positions near the magnet segment gaps g6 and g7 than at other positions, making the strength of the magnetic flux loops uniform in a circumferential direction of the sensor and enabling reductions in the effects due to the differential construction to be suppressed.
Moreover, use of a magnetic position sensor according to the present invention is not limited to elevator weighing apparatuses and valve opening measuring apparatuses.
In the above examples, first and second detecting cores were fixed, and the magnet unit was movable, but that may also be reversed.
In addition, if the first and second detecting cores, the first and second magnet cores, and the magnet are formed so as to be tubular, the first and second detecting cores can also be disposed inside the magnet unit.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/326217 | 12/28/2006 | WO | 00 | 5/8/2008 |